
Khary I. Parker, James L. Felder, Thomas M. Lavelle, Colleen A. Withrow, and Albert Y. Yu
Glenn Research Center, Cleveland, Ohio

William V.A. Lehmann
Modern Technologies Corporation, Middleburg Heights, Ohio

Integrated Control Modeling for
Propulsion Systems Using NPSS

NASA/TM—2004-212945

February 2004

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

∑ TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

∑ TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

∑ CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

∑ CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

∑ SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

∑ TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

∑ Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

∑ E-mail your question via the Internet to
help@sti.nasa.gov

∑ Fax your question to the NASA Access
Help Desk at 301–621–0134

∑ Telephone the NASA Access Help Desk at
301–621–0390

∑ Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076

Khary I. Parker, James L. Felder, Thomas M. Lavelle, Colleen A. Withrow, and Albert Y. Yu
Glenn Research Center, Cleveland, Ohio

William V.A. Lehmann
Modern Technologies Corporation, Middleburg Heights, Ohio

Integrated Control Modeling for
Propulsion Systems Using NPSS

NASA/TM—2004-212945

February 2004

National Aeronautics and
Space Administration

Glenn Research Center

Prepared for the
39th Combustion/27th Airbreathing Propulsion/21st Propulsion Systems Hazards/
3rd Modeling and Simulation Joint Subcommittee Meeting
sponsored by the Joint-Army-Navy-NASA-Air Force Interagency Propulsion
Committee (JANNAF)
Colorado Springs, Colorado, December 1–5, 2003

Acknowledgments

The authors would like to thank the Controls and Dynamics Technology Branch at NASA Glenn Research Center
for the opportunity to add these enhancements to NPSS. Thanks also go out to the Engineering for Complex

Systems (ECS) and the Ultra-Efficient Engine Technology (UEET) program offices for their dedication
and support.

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

Trade names or manufacturers’ names are used in this report for
identification only. This usage does not constitute an official
endorsement, either expressed or implied, by the National

Aeronautics and Space Administration.

This report contains preliminary
findings, subject to revision as

analysis proceeds.

Available electronically at http://gltrs.grc.nasa.gov

http://gltrs.grc.nasa.gov

NASA/TM�2004-212945 1

Integrated Control Modeling for Propulsion Systems using NPSS

Khary I. Parker, James L. Felder, Thomas M. Lavelle, Colleen A. Withrow, and Albert Y. Yu
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

William V.A. Lehmann

Modern Technologies Corporation
Middleburg Heights, Ohio 44130

Abstract
The Numerical Propulsion System Simulation
(NPSS), an advanced engineering simulation
environment used to design and analyze aircraft
engines, has been enhanced by integrating
control development tools into it. One of these
tools is a generic controller interface that allows
NPSS to communicate with control development
software environments such as MATLAB and
EASY5. The other tool is a linear model
generator (LMG) that gives NPSS the ability to
generate linear, time-invariant state-space
models. Integrating these tools into NPSS
enables it to be used for control system
development. This paper will discuss the
development and integration of these tools into
NPSS. In addition, it will show a comparison of
transient model results of a generic, dual-spool,
military-type engine model that has been
implemented in NPSS and Simulink. It will also
show the linear model generator’s ability to
approximate the dynamics of a nonlinear NPSS
engine model.

Introduction
As the global market for the development of
reliable aero-propulsion engines becomes
increasingly competitive, aircraft engine
companies are searching for ways to develop
higher quality engines, in less time, and for
lower cost. To accomplish this goal, NASA
Glenn Research Center has collaborated with
industry and academia to develop an advanced
engineering simulation environment that will be
used to design and analyze propulsion systems.

This simulation environment is known as the
Numerical Propulsion Systems Simulation (NPSS).
This environment is being developed as a
“numerical test cell” because it allows designers to
numerically develop full propulsion systems or
individual components [1]. It was estimated by a
major engine manufacture that NPSS “could reduce
design and development time and cost by about 30
to 40 percent through fewer redesigns, re-test, and
rebuilds of costly hardware…” which “…translates
into savings of $100 million over a year of
development time” [2].

NPSS has several capabilities that assist in
conducting high quality design and analysis. One
such capability allows designers to analyze an
engine, and/or interactions between components, at
various levels of fidelity via independent high to
low fidelity simulation code, in a technique known
as zooming [2,3]. In one instance, NPSS was used
to simulate an expender cycle pump-fed rocket
engine system to demonstrate its ability to use a
mean line pump flow model, which estimates the
pump performance, as opposed to using maps to
represent the pump [4]. This example of zooming
allowed NPSS to represent the dynamics of a
system more accurately. NPSS has also been used
to develop a high-fidelity simulation of a
commercial, turbofan engine using APNASA, an
average passage, three-dimensional Navier-Stokes
flow code that simulates the flow between the
compressor and turbine; and the National
Combustion Code (NCC), a three-dimensional code
that simulates the flow and chemical reactions
through an aircraft combustor. The engine model

NASA/TM�2004-212945 2

was created in NPSS; the two codes were added
to provide three-dimensional results [1].

Among the developing partners (comprised of
government, industry, and academia), interest
has grown in conducting control development
research using NPSS. However, at the time
linear model generation capabilities and other
tools necessary for meaningful control
development did not exist in the NPSS
environment. Therefore, work began towards
developing two tools that would make NPSS
amenable to the development of control systems
for any type of NPSS model. One of the tools
was the generic controller interface that would
allow NPSS to communicate with control
development software. The other tool was the
linear model generator (LMG), which would be
used to create linear models from the nonlinear
NPSS simulations.

This paper will discuss the development and use
of the two tools. First, a description of the
engine model that was implemented in NPSS
and used to validate the tools will be described.
Next, a description and validation results will be
discussed for each tool. It is worth noting that
development of the LMG began prior to this
study; whereas, the generic controller interface
was, however, developed for this study. This
paper will present data verifying the generic
controller interface’s ability to provide
communication between NPSS and a control
development platform; and, the LMG’s ability to
accurately approximate the dynamics of a
nonlinear model. Finally, the paper will
conclude with a summary of results and
suggestions for future work.

Engine Model Description
The baseline engine model that was selected for
validating the control design tools that were
developed was a previously validated
FORTRAN-based model of a modern high-
pressure ratio, dual-spool, low bypass, military-
type variable cycle engine model, with a digital
controller. This engine model (shown in
Figure 1) is a nonlinear, low bandwidth,

transient, performance model similar to the type
used in advanced engine control research such as
model-based control [5] and nonlinear performance
seeking control programs [6]. The first task was to
create an NPSS implementation of this model that
was capable of both steady-state and open-loop
transient execution.

The engine model in the FORTRAN simulation is
represented as a component level model (CLM), so
called because the major components of the engine
are individually modeled and assembled together
(see Figure 1). The components of this engine
model consist of a two-stage high-pressure ratio fan
with variable inlet stator vanes, core driven fan
(CDF) with independent hub and tip stator vanes,
high-pressure axial compressor, combustor, high-
and low-pressure turbines, afterburner, and nozzle
components. Also included are forward blocker
doors and an aft variable area bypass injector
(VABI), giving the engine variable cycle capability
[6]. The CLM uses low-pressure and high-pressure
rotor speeds, as well as average hot section metal
temperature (measured from aft of the combustor to
HPT) as state variables. The integration of these
state variables occurs within a while loop in order
to achieve mass, energy, and momentum balance
within a certain tolerance.

Also shown in Figure 1 are the actuator variables
and some of the sensor variables used by the
controller. The actuator variables, listed above the
engine diagram, include the fan variable inlet stator
vanes (STP2), forward blocker door area
positioning (A14), core driven fan tip stator vanes
(STP27D), high-pressure compressor and core
driven fan hub stators vanes (STP27), burner fuel
flow (WF36), aft VABI area positioning (A16),
afterburner fuel flow (WF6), and nozzle throat and
exit area positioning (A8 and A9, respectively).
There are many sensors located throughout the
engine, as shown in Figure 1, below the engine
diagram. The sensors are used by the controller in
this model measure fan inlet temperature (T2) and
pressure (P2), low-pressure spool speed (XNL),
high-pressure compressor inlet temperature (T27)
and pressure (P27), high-pressure spool speed
(XNH), high-pressure compressor exit temperature
(T3) and static pressure (PS3), low-pressure turbine

NASA/TM�2004-212945 3

blade temperature (T5B), bypass duct static
pressure at the mixing plane (PS15), low-
pressure turbine exit temperature (T56) and
static pressure (PS56).

The steady-state implementation of the NPSS
generic military-type CLM simulates the fan,
core driven fan, high-pressure compressor,
combustor, high-pressure turbine, low-pressure
turbine, mixer, afterburner, and nozzle. In
addition, it models the bypass splits aft of the
fan and forward of the core driven fan, bypass
dynamics, and bleeds. The full dynamics of the
variable geometries (i.e.; inlet guide vanes,
VABI, and the forward blocker door) were not
modeled because their full schedules were
difficult to identify and extract from the baseline
FORTRAN model. The fan and high-pressure
compressor maps were extracted, but for a fixed
inlet guide vane schedule; the core driven fan
map was valid for a limited inlet guide vane
range. The turbine maps used were scaled
in-house maps. Although the NPSS implemen-
tation does not model all of the same
components of the baseline CLM, steady state
results show that it is a reasonable
approximation. Some of the steady state
parameters are shown in Figure 2. Each plot in
Figure 2 shows a point-wise trend of the
baseline model and NPSS generic military-type
CLM steady state behavior for each power lever
angle (PLA) value. Both models were run at the
same constant value of burner fuel flow and fan
airflow for each PLA value, and the remaining
plots show the steady state responses of both
models to this input. The maximum absolute
error for normalized thrust is ~0.021; the
maximum absolute error for normalized core
driven fan pressure ratio is ~0.029; the
maximum absolute error for normalized nozzle
throat exit area is ~0.013. Similar results were
seen in other steady state parameters. Because
of this type of steady state performance, it was
felt that the NPSS generic military-type CLM
was sufficiently modeled to use in the remainder
of the study.

Generic Controller Interface
To facilitate effective control design using NPSS, a
generic controller interface was developed to
provide communication between NPSS and control
development platforms. Via this interface, a
control loop could be developed and tested while
using an NPSS engine model as the plant. The
result would be a control loop that is able to
regulate the performance behavior of the NPSS
plant. Conceptually, the interface would allow any
control development software (e.g.; MATLAB/
Simulink, MATRIX X, or EASY5) to communicate
with NPSS. For the purpose of this task, the
interface provided communication between
MATLAB/Simulink and NPSS. The use of
MATLAB and Simulink will be referred to for
illustration purposes only. At the time this report
was written, the code for other control software
environments to communicate with NPSS had not
been written. A flexible feature of the interface is
that any number of control loops can be allowed to
interface with an NPSS model. For example, one
could have a fuel flow and an Active Clearance
Control model communicating with an NPSS
engine model via the same interface. A constraint
that was placed on the development of the interface
was that the NPSS executable should not be
recompiled with MATLAB code. The thought was
to keep the NPSS executable as generic as possible.

The following discussion is a description on how
the generic controller interface is operated. To
validate the operation of the interface, a comparison
of transient results was conducted between the
NPSS engine model and a Simulink-based
implementation of the FORTRAN engine model.
The Simulink implementation, called the Modular
Aero-Propulsion System Simulation (MAPSS),
models both the CLM and the digital controller
used in the FORTRAN simulation. For the
transient comparison, the controller from MAPSS
will be used to control the NPSS engine model. A
more detailed description of the interface may be
found in the Generic Controller Interface User
Guide, which is currently under development. A
description of the development of MAPSS may be
found in reference [7].

NASA/TM�2004-212945 4

The controller interface consists of two parts: a
definition file and the control model declaration
in the NPSS model file. The definition file is a
simple text file that sets up communication
between NPSS and MATLAB (see Figure 3). It
allows the user to specify the control
development platform (e.g.; ML = MATLAB),
the NPSS engine model name, the number in
inputs and outputs, and the amount of error
reporting. There are seven levels of error
reporting that range from showing no screen
output or errors (error code 0) to showing all
screen output and errors (error code 6). This file
is also used to establish a relationship, or
mapping between the MATLAB/Simulink
control model variables and the corresponding
NPSS variables. The input and output variables
for Simulink and NPSS are entered in the
following manner:

Input:

<Data Type> <Simulink input variable>

 <NPSS input variable>

Output:

<Data Type> <Simulink output

 variable> <NPSS output variable>

This section of the definition file is key because
it specifies what data is “going to” and “coming
from” the control model. The file is saved with
the same name as the control model file with a
.def extension (e.g.; <controller model
name>.def). The interface uses the name of the
controller as a reference key to the associated
files used by NPSS and the control model. The
next part of the interface is declaring a control
model in the NPSS engine model file. There are
two types of interfacing methods: the
GenControls and the ExtControl. The
GenControls interface is a dynamically loadable
module (DLM) that allows NPSS to run
MATLAB. It was developed to be “cloned” for
use with other control development platforms.
The ExtControl interface is also a DLM that
runs NPSS in parallel with MATLAB. The
main task of both interfacing methods is to set
up the communication link between MATLAB
and NPSS, prior to either system running. Using
either interfacing method, code can be written in

the NPSS model to initialize the control model. It
would be done by first allowing the model to run
steady state and then declare an instance of the
interface. The values from the steady state run
would be used as initial inputs for the control
model. This ensures that when the NPSS model
begins a transient, both models will be starting at
the same point.

For GenControls operation, at the start-up of NPSS
the definition is parsed to determine the control
development platform via the control platform
designator. Next, it takes the controller and NPSS
engine model filenames to modify them with the
correct extensions for parsing, and then it sets the
user-defined error reporting level. GenControls
then maps each input and output variable defined in
the definition file to an array of NPSS data storage
structures, which allow for mixed variable types.
The size of this array of structures is determined by
the number of inputs and outputs specified in the
definition file. Each structure will contain the
variable type, control model variable name, the
corresponding NPSS variable name (as defined in
the definition file), and the value of the variable.
At this point, the parsing setup routine is complete.
GenControls then goes to the NPSS model file to
find a declared instance of the control model using
this interface. NPSS, then, runs the engine model
at steady state to determine the initial conditions for
a transient run. After the steady-state run, an
instance of the control model is declared. The
GenControls interface is called to initialize the
Simulink control model with the results from the
steady-state run. Figure 4 is an example of a
defined instance of a control model, using
GenControls, in a NPSS model file. In this
example, the name of the control model is xcontrol.
Once the control model is initialized, NPSS enters
the transient phase of the engine model run. The
instance contains a preexecute function that
prepares, and then sends the NPSS data, after
running one transient time step, to the control
model via the data structure. Once that data is
received, GenControls starts a persistent instance of
MATLAB, opens the control model then runs it to
process the data. The control model processes the
data for one time step and then stores the data in the
NPSS data structure. The control model data is

NASA/TM�2004-212945 5

received by a postexecute function, and applies
it to the NPSS model. The NPSS engine model
runs the next time step then passes the data back
to the control model via GenControls. These
last few steps are repeated until the model stop
time is reached. When the run is complete,
NPSS closes MATLAB.

Using the ExtControl interfacing method, a
script M-file is used to pass data and triggers
between the two systems, as opposed to the
array of data storage structures used in the
GenControls. In addition, ExtControl does not
run MATLAB; therefore, a working MATLAB
environment must be opened in the standard way
in the directory where the control model, the file
passing script M-file, and the NPSS model are
located. Before the NPSS model is run, the file
passing script M-file must be running in
MATLAB. At the start-up of NPSS, the
definition file will be parsed in the same manner
as the GenControls interface, and then it will
find a declared instance of the control model in
the NPSS model file. The instance is a reversed
version of the one described in GenControls.
Figure 5 is an example of defining an instance of
ExtControl in an NPSS model file. In this
example, the name of the control model is
xcontrol.

After completing the steady state runs, NPSS
will enter the transient run mode. After the first
time step in this mode NPSS will then pause and
wait for the values from the controller to be
returned. The postexecute function, in the
ExtControl instance, prepares the NPSS model
data to be used by the control model.
ExtControl saves the data in an input file and
places it and a trigger file into the working
directory. The trigger file tells the file passing
script in MATLAB that an input file is ready to
be processed. Both files are picked up by the
file passing script M-file. The script then runs
the control model; saves the output values in an
output file, and then save it along with another
trigger file into the same working directory. The
second trigger file tells ExtControl that the
output is ready to be processed. The preexecute
function, also in the ExtControl instance, picks

up the output data and passes it to the NPSS model
so that it can run the next time step. This process is
continued until the model run has completed.

To create a transient NPSS model, dynamic data,
such as the inertias for the low- and high-pressure
spools, was added to the steady-state model of the
NPSS model of the generic, military-type engine
that was described above. The information for the
third state (average metal temperature) was not
added because the thermal inertias could not be
properly extracted from the baseline engine model.
To demonstrate the use of the interface, the
transient model was run in a closed-loop with the
control model from MAPSS. The interface used in
this test was GenControls. The operating conditions
for the run consisted of a PLA ramp from 35° to
45° at sea level static conditions. At the same
operating point the closed-loop results were
compared to results from MAPSS and open-loop
results of the NPSS engine model, using input data
tables generated from MAPSS. Because MAPSS
closely models the dynamics of the baseline
FORTRAN model, it was used as a reference model
for this comparison. A standard method for
running transients with NPSS models is to use input
data tables; so, it was used as the other reference
model. This was done because it was desirable to
see how the NPSS model behaved when it was
being controlled by a control model and following
an input table. The data tables that the NPSS
engine model used included actuator commands for
combustor fuel flow, nozzle throat exit area, bypass
duct exit area, ambient temperature and pressure,
and fan inlet temperature and pressure. The NPSS
engine model was not expected to produce perfect
transient results in comparison to MAPSS.
However, it was hoped that the transients of the
NPSS model would follow the trends of the
MAPSS results. Figure 6 shows some selected
results. From the results, one can see that the
selected performance indicators achieved
expectations, as all three models were very close to
the same ending steady state point and, for the most
part, followed the MAPSS trend nicely. Other
performance indicators showed similar results.
Overall, however, it is shown that the interface is
capable allowing the necessary communication

NASA/TM�2004-212945 6

between an NPSS engine model and an external
control software platform.

A salient challenge in performing this transient
run was aligning the time steps between NPSS
and MATLAB/Simulink. The MAPSS
controller block models both the engine control
system and the actuators, of which run at two
different update rates of 50 Hz and 2500 Hz,
respectively. As stated before, the NPSS model
runs one time step before sending data to the
controller for calculation of the next control
signal. The issue was that each time the
controller would run, it would not maintain a
time history of all the data received so that it
could give the NPSS model the proper control
signal. The solution used was to archive the
time history inside the interface then run the
control model based on the time history. The
results shown in Figure 6 were produced using
this approach. Although it worked, this is not a
viable solution because the time to run the
simulation increases factorially. A more viable
solution must be found.

Linear Model Generator
Numerous linear analysis tools have been
developed in classical and modern control
theory. The conventional control system design
approach is to base it upon a single linear model
of a plant system, or a series of linear models
connected in a piecewise continuous fashion. In
order to further enhance the NPSS control
development capabilities, a linear model
generator (LMG) has been developed and
implemented into the NPSS environment. The
LMG was used to generate several linear models
of the NPSS generic military-type CLM.

The LMG is able to create a single linear
approximation of a full nonlinear NPSS model
about a base operating point. The linear
approximations consist of four Jacobian
matrices, generated by using small perturbation
theory, and are defined as:

The matrices represent a change in the state
derivative variables (x&) and selected output
variables (y) with respect to small perturbations in
the state variables (x) and model input variables (u).
The default perturbation size for the LMG is 0.5%.
These matrices are implemented as a linear model
using the following state-space equations:

 BuAxx +=& (State Equation) (1)

 DuCxy += (Output Equation) (2)

A comparison was conducted to show how
accurately the LMG modeled the dynamics of the
nonlinear NPSS generic military-type CLM. A
linear model was created of the NPSS model at the
base operating point of PLA = 45°, at sea level
static conditions. The nonlinear NPSS generic
military-type CLM was run transiently, starting at
PLA = 45° then increasing the fuel flow by 3%.
The same input was then applied to the generated
linear model. The comparison results between the
linear and nonlinear models are shown in Figure 7
for selected parameters. The figure shows that the
linear model created is a very close approximation
of the nonlinear model for the given operating
conditions. Other parameters for this and other
operating conditions showed similar results.

Conclusion
This paper presented two control development tools
that have been developed and integrated into the
NPSS environment. The study was conducted
using an NPSS model of a generic military-type
engine CLM. This engine model had known
limitations, such as how the dynamics of the
variable geometries were modeled. In spite of this,
results from steady state runs showed that the
model was sufficient to use.

∂
∂=
x
xA
&

∂
∂=
u
xB
&

∂
∂=
x
yC

∂
∂=
u
yD

NASA/TM�2004-212945 7

The generic controller interface allows
communication between NPSS and a control
development platform. It was found that the
interface was able to provide communication
between NPSS and control development
platforms allowing a NPSS engine model to
responded to given control demands. It was
found, that Simulink was not able to maintain a
time history of all input received, which caused
the control model to produce incorrect demands.
A means of archiving the input was found;
however, a more permanent solution is currently
being looked at. The other control design tool
integrated into NPSS was a linear model
generator (LMG), which can create a linear
model of a nonlinear NPSS model about a given
operating point. It was found that the LMG was
able to closely approximate a nonlinear model
for a given operating point.

In an effort to continue increasing the ability of
NPSS for use in control development, more
tools should be added, such as the ability to
create bode, Nyquist, and root locus plots.

References
1. Veres, J.P., “Overview of High-Fidelity

Modeling Activities in the Numerical
Propulsion System Simulation (NPSS)
Project,” NASA/TM—2002-211351, June
2002.

2. Lytle, J.K., “The Numerical Propulsion System
Simulation: A Multidisciplinary Design System
for Aerospace Vehicles,” NASA/TM—1999-
209194, July 1999.

3. Reed, J.A., Afjeh, A.A., “An Interactive

Graphical System for Engine Component
Zooming in a Numerical Propulsion System
Simulation,” AIAA 95–0118, 33rd Aerospace
Sciences Meeting and Exhibit, Reno, NV,
January 1995.

4. Veres, J.P., Lavelle, T.M., “Mean Line Pump

Flow Model in Rocket Engine System
Simulation,” NASA/TM—2000-210574,
November 2000.

5. Adibhatla, S., Gastineau, Z., “Tracking Filter

Selection and Control Mode Selection for
Model Based Control,” AIAA 94–3204, 30th
Joint Propulsion Conference and Exhibit,
Indianapolis, IN, June 1994.

6. Adibhatla, S., Johnson, K.L., “Evaluation of

Nonlinear PSC Algorithm on a Variable Cycle
Engine,” AIAA 93–2077, 29th Joint Propulsion
Conference and Exhibit, Monterey, CA, June
1993.

7. Parker, K.I., Guo, T.-H., “Development of a

Turbofan Engine Simulation in a Graphical
Simulation Environment,” NASA/TM—2003-
212543, August 2003.

NASA/TM�2004-212945 9

Appendix: Figures

Figure 1: Schematic of CLM.

0.2

0.4

0.6

0.8

1
Burner Fuel Flow vs. PLA

0.6

0.7

0.8

0.9

1
Fan Air Flow vs. PLA

30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1
Net Thrust vs. PLA

PLA

30 40 50
0.6

0.7

0.8

0.9

1
CDF Pressure Ratio vs. PLA

PLA
30 40 50

1

1.05

1.1
Nozzle Throat Exit Area vs. PLA

PLA

Baseline Model
NPSS

Figure 2: Normalized steady state results of selected performance parameters.

Fan

Core Driven
Fan

HPC

Combustor LPT

HPT Mixer

Afterburner

Nozzle

NASA/TM�2004-212945 10

Figure 3: Example Definition file.

Figure 4: GenControls interface instance declaration in an NPSS model file.

//---
// Controller
//---

Element GenControls xcontrol{

 void preexecute (){

GCsetInputValue("pc", PC);
GCsetInputValue("alt", Ambient.alt);
GCsetInputValue("dtamb", Ambient.dTamb);
GCsetInputValue("sfc", PERF.TSFC);
GCsetInputValue("sm27d", CDF.SMN);
GCsetInputValue("sm27", HPC.SMN);
GCsetInputValue("xn2c", LP_Shaft.Nmech);
GCsetInputValue("xn25c", HP_Shaft.Nmech);
GCsetInputValue("xm", Ambient.MN);

 }

 void postexecute(){

Nozzle.Ath = GCgetOutputValue("Nozzle.Ath");
Duct16a.Fl_I.Aphy = GCgetOutputValue("Duct16a.Aphy");
Splitter1.Fl_I.Aphy = GCgetOutputValue("Splitter1.Aphy");

 }
}

ML
<Modelname>.mdl
10
5
0

Input:
 real xm Ambient.MN
 real pc PC
 real alt Ambient.alt
 real dtamb Ambient.dTamb
 real sfc PERF.TSFC
 real sm27d CDF.SMN
 real sm27 HPC.SMN
 real xn2c LP_Shaft.Nmech
 real xn25c HP_Shaft.Nmech
 real pcn2

Output:
 real wf36n_ic Burner.Wfuel
 real a8act_ic Nozzle.Ath
 real a16act_ic Duct16a.Aphy
 real a14act_ic Splitter1.Aphy
 real stp2act_ic

NPSS model
name

Control platform
designator

No corresponding
NPSS variable

defined.

NASA/TM�2004-212945 11

Figure 5: ExtControl interface instance declaration in an NPSS model file.

1

1.1

1.2

1.3

1.4

1.5

Thrust

1

1.01

1.02

1.03

1.04

1.05

1.06

Low-Pressure Spool Speed

1

1.01

1.02

1.03

1.04

1.05

High-Pressure Spool Speed

Closed-Loop NPSS
MAPSS
Open-Loop NPSS

0 1 2 3 4 5

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

HPC Inlet Tempearature

time
0 1 2 3 4 5

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

HPC Exit Temperature

time
0 1 2 3 4 5

1

1.05

1.1

1.15

1.2

1.25

LPT Exit Temperature

time

Figure 6: Normalized transient results of selected performance parameters.

//---
// Controller
//---

Element ExtControl xcontrol{

 void postexecute (){

GCsetInputValue("pc", PC);
GCsetInputValue("alt", Ambient.alt);
GCsetInputValue("dtamb", Ambient.dTamb);
GCsetInputValue("sfc", PERF.TSFC);
GCsetInputValue("sm27d", CDF.SMN);
GCsetInputValue("sm27", HPC.SMN);
GCsetInputValue("xn2c", LP_Shaft.Nmech);
GCsetInputValue("xn25c", HP_Shaft.Nmech);
GCsetInputValue("xm", Ambient.MN);

 }

 void preexecute(){

Nozzle.Ath = GCgetOutputValue("Nozzle.Ath");
Duct16a.Fl_I.Aphy = GCgetOutputValue("Duct16a.Aphy");
Splitter1.Fl_I.Aphy = GCgetOutputValue("Splitter1.Aphy");

 }
}

NASA/TM�2004-212945 12

0.975

0.98

0.985

0.99

0.995

1

1.005
Thrust

0.99

0.995

1

1.005

1.01
TSFC

0.995

0.996

0.997

0.998

0.999

1

1.001
LP Spool Speed

Nonlinear output
State-space output

0.996

0.997

0.998

0.999

1

1.001
HP Spool Speed

0.995

0.996

0.997

0.998

0.999

1

1.001
% Corr. LP Spool Speed

0.99

0.995

1

Fan Exit Static Pressure

0 5 10 15 20
0.985

0.99

0.995

1
CDF Inlet Pressure

time
0 5 10 15 20

0.996

0.997

0.998

0.999

1

1.001
CDF Inlet Temperature

time
0 5 10 15 20

0.985

0.99

0.995

1
HPC Inlet Pressure

time

Figure 7: Linear to Nonlinear Model Comparision.

This publication is available from the NASA Center for AeroSpace Information, 301–621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified Unclassified

Technical Memorandum

Unclassified

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135–3191

1. AGENCY USE ONLY (Leave blank)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546–0001

Available electronically at http://gltrs.grc.nasa.gov

February 2004

NASA TM—2004-212945

E–14385

WBS–22–765–10–05

17

Integrated Control Modeling for Propulsion Systems Using NPSS

Khary I. Parker, James L. Felder, Thomas M. Lavelle, Colleen A. Withrow,
Albert Y. Yu, and William V.A. Lehmann

Digital simulation; Dynamic system; Models; Computer aided design; Control system
design; Engine control; NPSS

Unclassified -Unlimited
Subject Categories: 07 and 08 Distribution: Nonstandard

Prepared for the 39th Combustion/27th Airbreathing Propulsion/21st Propulsion Systems Hazards/3rd Modeling and Simulation Joint
Subcommittee Meeting sponsored by the Joint-Army-Navy-NASA-Air Force Interagency Propulsion Committee (JANNAF),
Colorado Springs, Colorado, December 1–5, 2003. Khary I. Parker, James L. Felder, Thomas M. Lavelle, Colleen A. Withrow, and
Albert Y. Yu, NASA Glenn Research Center; and William V.A. Lehmann, Modern Technologies Corporation, Middleburg Heights,
Ohio 44130. Responsible person, Khary I. Parker, organization code 5530, 216–433–8442.

The Numerical Propulsion System Simulation (NPSS), an advanced engineering simulation environment used to design
and analyze aircraft engines, has been enhanced by integrating control development tools into it. One of these tools is a
generic controller interface that allows NPSS to communicate with control development software environments such as
MATLAB and EASY5. The other tool is a linear model generator (LMG) that gives NPSS the ability to generate linear,
time-invariant state-space models. Integrating these tools into NPSS enables it to be used for control system development.
This paper will discuss the development and integration of these tools into NPSS. In addition, it will show a comparison
of transient model results of a generic, dual-spool, military-type engine model that has been implemented in NPSS and
Simulink. It will also show the linear model generator’s ability to approximate the dynamics of a nonlinear NPSS
engine model.

http://gltrs.grc.nasa.gov

