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CONSTITUTIVE MODELING OF PIEZOELECTRIC POLYMER COMPOSITES 
 

Gregory M. Odegard1 
 

 
ABSTRACT 

A new modeling approach is proposed for predicting the bulk electromechanical 
properties of piezoelectric composites.  The proposed model offers the same level of 
convenience as the well-known Mori-Tanaka method.  In addition, it is shown to yield 
predicted properties that are, in most cases, more accurate or equally as accurate as the 
Mori-Tanaka scheme.  In particular, the proposed method is used to determine the 
electromechanical properties of four piezoelectric polymer composite materials as a 
function of inclusion volume fraction.  The predicted properties are compared to those 
calculated using the Mori-Tanaka and finite element methods. 

 
1. INTRODUCTION 
 
 Piezoelectric materials are excellent candidates for use in sensors and actuators because 
of their ability to couple electrical and mechanical energy.  For some applications, it is necessary 
to use composite materials in which one or more of the constituents have piezoelectric 
properties.  To facilitate the design of these piezoelectric composite systems, convenient and 
accurate structure-property relationships must be developed.   
 Numerous attempts have been made to develop models to relate bulk electromechanical 
properties of composite materials to the electromechanical properties of individual constituents.   
Simple estimates, utilizing Voigt or Reuss-type approaches, have been used to predict the 
behavior of a limited class of composite geometries [1-4].  Upper and lower bounds for the 
electromechanical moduli have been determined [5-8].  Finite element analysis has also been 
used to predict electromechanical properties [9, 10].  Even though finite element analysis has the 
best potential for accurately predicting composite properties for any composite geometry, the 
solutions can be very expensive and time-consuming. 

Several authors have extended Eshelby’s [11] classical solution of an infinite medium 
containing a single ellipsoidal inclusion to include piezoelectric constituents [12-15].  Also 
referred to as the dilute solution, this approach ignores the interactions of the inclusions that 
occur at finite inclusion volume fractions.  Other studies [14, 16-19] have focused on the 
classical extensions of Eshelby’s solution for finite inclusion volume fractions, i.e., the Mori-
Tanaka [20, 21], self-consistent [22, 23], and differential [24, 25] approaches.  Analytical 
solutions for specific composite systems have also been determined [26-32].  Even though the 
overall framework of these approaches provides estimates for a wide range of inclusion sizes, 
geometries, and orientations, each of these methods suffers from drawbacks associated with the 
tradeoff between accuracy and computational convenience. 

In this paper, a model is proposed for predicting the coupled electromechanical properties 
of piezoelectric composites.  This model is an extension of a technique originally developed for 
predicting mechanical properties of composites by generalizing the Mori-Tanaka and self-
consistent approaches [33].  It is shown that the method is as computationally convenient as the 
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Mori-Tanaka approach, and the predicted electromechanical properties of four piezoelectric 
composites computed using this model compare favorably to those obtained using the finite 
element method.  First, the overall constitutive modeling of piezoelectric materials is discussed, 
followed by a description of the proposed model.  Finally, the electromechanical properties of 
the four different piezoelectric composite systems are predicted using the proposed, Mori-
Tanaka, and finite element models.  The four piezoelectric composite systems used in this study 
were chosen to represent a wide range of practical materials: a graphite/Poly(vinylidene fluoride) 
(PVDF) composite, a Silicon Carbide (SiC)/PVDF particulate composite, a fibrous Lead 
Zirconate Titanate (PZT)/polyimide composite, and a PZT/polyimide particulate composite. 
 
2. CONSTITUENT MATERIALS 
 

The properties of constituent materials of the four piezoelectric composites are described 
below.  The four composite materials used in the current study where chosen so that both 
spherical and fiberous inclusions were modeled in composites with a piezoelectric matrix and 
non-piezoelectric reinforcement, and a piezoelectric reinforcement with a non-piezoelectric 
matrix. 
 
2.1. Polymer matrix materials 
 

PVDF is a orthotropic, semi-crystalline polymer which exhibits a piezoelectric effect 
with an electric field applied along the 3-axis.  Typical electromechanical properties of PVDF 
are given in Table 1.  LaRC-SI is a thermoplastic polyimide that was developed for aerospace 
applications.  The properties of LaRC-SI used in this study correspond to those determined at 
room temperature [34] and are also shown in Table 1. 
 
2.2. Inclusion materials 
 

In this study, the PVDF polymer was reinforced with infinitely-long graphite fibers and 
spherical SiC particles.  The fibers were unidirectionally aligned along the PVDF 1-axis.  The 
LaRC-SI polymer was reinforced with both infinitely-long PZT-7A fibers and spherical PZT-7A 
particles.  PZT-7A is a ceramic that exhibits a piezoelectric effect with electric fields applied 
along all three principle axes.  The PZT-7A fibers were unidirectionally aligned with the fiber 3-
axis as the fiber-length axis.  All of the inclusion electromechanical properties are given in Table 
1. 
 
3. MICROMECHANICS MODELING 
 
3.1. Piezoelectric materials 
 

There are three standard notation systems that are commonly used to describe the 
constitutive modeling of linear-piezoelectric materials [14].  Using the conventional indicial 
notation in which repeated subscripts are summed over the range of i,j,m,n = 1,2,3, the 
constitutive equations are 
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where �ij, �ij, Ei, and Di are the stress tensor, strain tensor, electric field vector, and the electric 
displacement vector, respectively.  Cijmn, enij, and �in are the elastic stiffness tensor, the 
piezoelectric tensor, and the permittivity tensor, respectively.  The divergence equations, which 
are the elastic equilibrium and Gauss’ law, are, respectively, 
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where the subscripted comma denotes partial differentiation.  The gradient equations, which are 
the strain-displacement equations and electric field-potential, are, respectively, 
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where ui and � are the mechanical displacement and electric potential, respectively.   

In the modeling of piezoelectric materials, it is more convenient to restate Eqn. (1) so that 
the elastic and electric variables are combined to yield a single constitutive equation.  This 
notation is identical to the conventional indicial notation with the exception that lower case 
subscripts retain the range of 1-3 and capitalized subscripts take on the range of 1-4, with 
repeated capitalized subscripts summed over 1-4.  In this notation, Eqn. (1) is 
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The piezoelectric constitutive equation can be further simplified by expressing Eqn. (4) in matrix 
notation  
 
  (8) �Σ ΕZ
 
where the boldface indicates either a 9�9 matrix (E) or a 9�1 column vector (�, Z) 
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 In Eqn. (11), C, e, and � denote the elastic stiffness matrix, the piezoelectric constant 
matrix, and the permittivity matrix, respectively.  The superscript t denotes a matrix 
transposition.  Note that �ij = 2�ij in order to keep E a symmetric matrix.  From Eqns (8) - (11), 
the constitutive equation for an orthotropic piezoelectric material is  
 

 

11 11 12 13 31

22 12 22 23 32

33 13 23 33 33

23 44 15

13 55 15

12 66

1 15 1

2 15 2

3 31 32 33 3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0

C C C e
C C C e
C C C e

C e
C e

C
D e
D e
D e e e

�� � � �
� � ��� � �
�� � �
� � ��� � �
� � �� �
� � �
�� � �
� � � ��
� � �

��� � �
� � � ��	 
 	 


11

22

33

23

13

12

1

2

3

E
E
E

�� �
� � ��� � �
�� � �

� � ��� � �
� � ��
� � �
�� � �

� � �
� � �
� � �
� � �	 


 (12) 

 
where the contracted Voigt notation is used.  In Eqn. (12), the 3-axis is aligned with the principle 
direction of polarization.   
 
3.2. Electromechanical properties of composites 
 

Using the direct approach [14, 35, 36] for the estimate of overall properties of 
heterogeneous materials, the volume-averaged piezoelectric fields of the composite with a total 
of N phases are 
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where cr is the volume fraction of phase r, the overbar denotes a volume-averaged quantity, the 
subscript r denotes the phase, and  r = 1 is the matrix phase.  The constitutive equation for each 
phase is given by Eqn. (8).  For a piezoelectric composite subjected to homogeneous elastic 
strain and electric field boundary conditions, Z0, it has been shown that 0

�Z Z [16].  The 
constitutive equation for the piezoelectric composite can be expressed in terms of the volume-
averaged fields 
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The volume-average strain and electric field in phase r is 
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where Ar is the concentration tensor of phase r, and 
 

  (17) 
1

�� A
N

r r
r=

c

 
where I is the identity tensor.  Combining Eqns. (13)-(17) yields the electromechanical modulus 
of the composite in terms of the constituent moduli  
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Various procedures exist for evaluating the concentration tensor.  The most widely used 
approaches are the Mori-Tanaka, self-consistent and differential schemes.   

For the Mori-Tanaka approach, the concentration tensor is 
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In Eqn. (20) Sr is the constraint tensor for phase r, which is analogous to the Eshelby tensor used 
in determining elastic properties of composite materials [11].  The constraint tensor is evaluated 
as a function of the lengths of the principle axes of the reinforcing phase r, , and the 
electromechanical properties of the surrounding matrix  

r
ia

 
 � 1 1 2 3, , ,�S E r r r

r �f a a a  (21) 
 
The complete expression for Eqn. (21) is given elsewhere [16].  While the Mori-Tanaka 
approach provides for a quick and simple calculation of the bulk composite electromechanical 
properties, it has been shown that it yields predicted mechanical properties that are relatively low 
and high for composites with stiffer inclusions and matrix, respectively [33].  This issue could 
possibly lead to less accurate estimations of the electromechanical moduli, especially for 
relatively large inclusion volume fractions [37-39]. 

In the self-consistent and differential schemes, the concentration tensor is 
  
 � �
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where E is the unknown electromechanical moduli of the composite, and the constraint tensor, 
Sr, is evaluated as a function of E and .  Since the electromechanical moduli of the composite 
appears in both Eqns. (22) and (18), iterative schemes or numerical techniques are ultimately 
required for the prediction of the electromechanical moduli of composites using the self-
consistent and differential approaches.  This approach results in slow and complicated 
calculations. 

r
ia

It has been demonstrated [33] that a more general form of the concentration tensor can be 
used for the prediction of mechanical properties of composites.  Extending this concept to the 
prediction of electromechanical properties results in  
 
 �

11
0 0

�
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where E0 is the electroelastic moduli of the reference medium, and the constraint tensor is 
evaluated using E0 and .  Therefore, it is assumed that the reference medium is the material 
that immediately surrounds the inclusion for the evaluation of the constraint and concentration 
tensors.  Naturally, the electroelastic moduli of the reference medium can have a wide range of 
values, however, it is most realistic to assume that they are similar to the moduli of the overall 
composite, as is the case in the self-consistent and differential methods.   

r
ia

For convenience, a simple, yet accurate, estimation of the overall electroelastic moduli 
can be chosen for the reference medium so that the overall properties of the piezoelectric 
composite can be calculated using Eqns. (18) and (23).  Thus, the straightforward computation of 
the moduli can be achieved, as with the Mori-Tanaka approach, but with an accuracy similar to 
the self-consistent and differential methods.  Even though a simple and accurate estimation of the 
reference medium means that the electroelastic moduli can be calculated without Eqns. (18) and 
(23), this framework allows for an accurate computation of the moduli for various inclusion 
sizes, geometries, and orientations.   
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The reference medium is approximated with a set of equations that are similar to the 
Halpin-Tsai relation [40], which is extended here for multiple inclusions and piezoelectric 
composites  
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Eqns. (24) and (25) indicate that as c1 � 1 and cr � 1, 0

iJKlE  � 1
iJKlE  and 0

iJKlE  � r
iJKlE , 

respectively.    
Eqns. (18) and (23)-(25) were used to calculate the electromechanical properties for the 

four composite systems for inclusion volume fractions ranging from 0% to the maximum 
theoretical limits, which are 90% and 75% for fibrous and particulate composites, respectively.  
The constraint tensor in Eqn. (23) was evaluated numerically using Gaussian quadrature [41].  
The fibers were modeled as infinitely long cylinders and the particles were modeled as spheres.  
Perfect bonding between the inclusions and matrix was assumed. 
 
4. FINITE ELEMENT ANALYSIS 
 

Another approach to estimate the electromechanical properties of piezoelectric 
composites is using finite element analysis of a representative volume element (RVE) of the 
material.  Whereas the methods of the previous section provide relatively quick predictions by 
assuming that the stress and strain fields inside the inclusions are constant, finite element 
analysis predicts these fields in the inclusion and matrix, and thus, provides a more realistic 
prediction to the overall electromechanical moduli of the composite.  This added accuracy comes 
at a price, however, since each independent property of the piezoelectric composite (16 
independent parameters are shown in Eqn. (12)) must be determined by a single finite element 
analysis.  In parametric studies where the many combinations of inclusion shape and volume 
fraction must be considered, the finite element approach can become very time-consuming and 
expensive.  Therefore, in this study, the finite element results are used to check the accuracy of 
the modeling methods discussed in the previous section. 

The finite element model was developed and executed using ANSYS� 7.0.  
Representative volume elements (RVEs) of fiber- and particulate-reinforced composites were 
meshed using 10-noded electromechanical tetrahedral elements with 40 degrees of freedom, 
three displacements and a voltage at each node (SOLID98).  The RVEs are shown in Figs. 1 and 
2.  The top portion of the two figures shows the outside mesh of the RVE, and the bottom shows 
the mesh of the inclusion with a transparent matrix.  The fibrous composite RVE simulates a 
hexagonal packing arrangement, with a maximum fiber volume fraction of about 90%.  The 
particulate composite RVE has hexagonal packing in one plane with with a maximum particle 
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volume fraction of about 60%.  For each finite element analysis, the desired volume fraction was 
obtained by adjusting the dimensions of the RVE while keeping the reinforcement size constant.  
The properties of the materials are shown in Table 1. 

For homogeneous applied elastic strains and electric fields, the displacements and 
voltages on the boundary of the RVEs were, respectively, 
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where B indicates the boundary of the RVE.  A total of 16 boundary conditions were applied to 
the finite element models for each combination of material type and volume fraction.  Each 
boundary condition was used to predict one of the independent boundary conditions shown in 
Eqn. (12).  The elastic constants and the corresponding applied strains, electric fields, and the 
boundary conditions calculated using Eqn. (26) are listed in Tables 2 to 6. All unspecified strains 
and electric fields in Tables 2 to 6 are zero.   

The elastic strain energy, dielectric energy, and electromechanical energy are, 
respectively, 
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where V is the volume of the RVE.  These quantities where calculated for the appropriate 
boundary conditions as shown in Tables 2 to 6.  The corresponding elastic constants were 
calculated using Eqn. (27) and the summation of the elastic strain energy, dielectric energy, and 
electromechanical energies for all of the elements in each finite element analysis.   
 
5. RESULTS 
 

The Young’s moduli, Y1, Y2, and Y3; shear moduli, G23, G13, and G12; piezoelectric 
constants, e15, e31, e32, e33; and dielectric constants, �1/�0, �2/�0, and �3/�0; for the four materials 
discussed in this paper are presented below.  The subscripts of these quantities indicate the 
corresponding axes, as shown in Eqn. (12), and the permittivity of free space, �0, is 8.85�10-12 
C/m2. 
 
5.1. Graphite/PVDF fiber composite 
 

The Young’s moduli of the graphite/PVDF composite are shown in Fig. 3 as a function of 
the graphite fiber volume fraction for the results obtained with the finite element analysis, the 
proposed model discussed above, and the Mori-Tanaka method.  For the Young’s modulus 
parallel to the fiber-alignment direction, Y1, all three models predict the same values for the 
entire range of fiber volume fractions.  For the two transverse moduli, Y2 and Y3, the proposed 
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and finite element models match very well for the entire range of fiber volume fractions, while 
the Mori-Tanaka under-predicts the Young’s moduli. 

The shear moduli of this material for the entire range of fiber volume fractions are shown 
in Fig. 4.  For the longitudinal shear moduli, G13 and G12, the proposed model has a closer 
agreement with the finite element model than the Mori-Tanaka model has with the finite element 
model.  The transverse shear modulus, G23, is nearly equal for all three models over the range of 
fiber volume fractions. 

The piezoelectric constants, e31, e32, and e33, are shown in Fig. 5 as a function of the fiber 
volume fraction.  The three models predict nearly equal values of e31 and e32 over the entire 
range.  For the piezoelectric constant e32, the proposed and Mori-Tanaka results over-predict and 
under-predict the finite element model, respectively.  At a fiber volume fraction of 90%, the 
proposed model shows close agreement with the finite element model. 

The dielectric constants, �1/�0, �2/�0, and �3/�0, are shown in Fig. 6.  All three models 
predict identical values for all three dielectric constants for the complete range of fiber volume 
fractions. 
 
5.2. SiC/PVDF particle composite 
 

The Young’s moduli of the SiC/PVDF composite are shown in Fig.7 as a function of 
particle volume fraction.  The trends for all three Young’s moduli are similar.  At particle 
volume fractions of about 40% and lower, all three models predict nearly identical moduli.  At 
higher particle volume fractions, the finite element model predicts moduli that are larger than the 
proposed and Mori-Tanaka models, especially at a particle volume fraction of 60%.  At the 
larger volume fractions, the proposed model predicts moduli that have closer agreement with the 
finite element results than has the predicted values from the Mori-Tanaka model. 

The three shear moduli are shown in Fig. 8 for the entire range of particle volume 
fractions.  For all three shear moduli, at volume fractions below 60%, the Mori-Tanaka and finite 
element models have close agreement, with the proposed model over-predicting the shear 
moduli.  For a volume fraction of 60%, the shear moduli of the finite element model start 
increasing dramatically, and the proposed model shows closer agreement with the finite element 
model than does the Mori-Tanaka approach. 

The piezoelectric constants are shown in Fig. 9 as a function of particle volume fraction.  
For all three piezoelectric constants, there is close agreement between all three models for the 
entire range of volume fractions. 

The three dielectric constants for the composite are shown in Fig. 10.  Similar to the 
graphite/PVDF composite, all three models predict identical values for all three dielectric 
constants for the entire range of particle volume fractions. 
 
5.3. PZT-7A/polyimide fiber composite 
 

The Young’s moduli of the PZT-7A composite are shown in Fig. 11 for the entire range 
of fiber volume fractions.  For the longitudinal Young’s modulus, Y3, all three models predict the 
same values over the complete range of volume fractions.  For the transverse Young’s moduli, Y1 
and Y2, the proposed and finite element models have close agreement, while the Mori-Tanaka 
significantly under-predicts the finite element model, especially at volume fractions above 40%. 
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The shear moduli of the composite are plotted as a function of fiber volume fraction in 
Fig. 12.  For the longitudinal shear moduli, G23 and G13, The Mori-Tanaka and finite element 
models show close agreement, particularly at low volume fractions and at 90% volume fraction.  
For the entire range of fiber volume fraction, the proposed model over-predicts the finite element 
data.  However, for the transverse shear moduli, G12, the proposed model shows good agreement 
with the finite element model while the Mori-Tanaka approach significantly under-predicts the 
finite element data. 

The piezoelectric constants of this material are shown in Fig. 13.  For the constants e31 = 
e32 and e33, all three models predict very similar values for the entire range of fiber volume 
fractions.  For e15, both the proposed and Mori-Tanaka models under-predict the finite element 
model, especially at a volume fraction of 90%.   

The dielectric constants are shown in Fig. 14 as a function of fiber volume fraction.  For 
the transverse dielectric constants, �1/�0 and �2/�0, the proposed model predicts the finite 
element model data better than does the Mori-Tanka model, especially for fiber volume fractions 
above 60%.  For the longitudinal dielectric constant, �3/�0, the three models predict identical 
values over the entire range of volume fractions. 
 
5.4. PZT-7A/polyimide particle composite 
 

The Young’s moduli of the PZT-7A/LaRC-SI particulate composite are shown in Fig. 15 
as a function of particle volume fraction.  For both the transverse Young’s moduli, Y1 and Y2, and 
the longitudinal Young’s modulus, Y3, the proposed model agrees closely with the finite element 
model up to a particle volume fraction of about 40%.  For larger particle volume fractions, the 
finite element data are significantly larger.  The Mori-Tanaka model significantly under-predicts 
the finite element data for volume fractions above 30%. 

The shear moduli of this material for the range of volume fractions are shown in Fig. 16.  
For the longitudinal shear moduli, G23 and G13, the proposed and Mori-Tanaka models both 
predict values that are close to the finite element model up to a particle volume fraction of 30%.  
For higher particle volume fractions, the proposed model has better agreement with the finite 
element data than has the Mori-Tanaka model.  For the longitudinal shear modulus, the Mori-
Tanaka model agrees very closely with the finite element model up to a particle volume fraction 
of 50%.  For higher particle volume fractions, the proposed model shows closer agreement to the 
finite element model than does the Mori-Tanaka model. 

The piezoelectric constants are shown in Fig. 17 as a function of particle volume fraction.  
For all four constants, e15, e31 = e32, and e33, all three models shown close agreement up to a 
particle volume fraction of 40%.  For larger volume fractions, the finite element data diverge 
quickly from the proposed and Mori-Tanaka models, with the proposed model showing closer 
agreement. 

The dielectric constants of the material are shown in Fig. 18.  For the transverse dielectric 
constants, �1/�0 and �2/�0, and the longitudinal dielectric constant, �3/�0, the predicted values 
from the Mori-Tanaka model agree with the finite element model up to a particle volume fraction 
of about 40%.  Above that value, the Mori-Tanaka model significantly under-predicts the finite 
element data.  The proposed exhibits better agreement with the finite element model above 
particle volume fractions of 50%. 
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6. SUMMARY 
 

A new modeling approach has been proposed for predicting the bulk electromechanical 
properties of piezoelectric composites.  The proposed model offers the same level of 
convenience as the Mori-Tanaka method, that is, it does not require iterative or numerical 
schemes for obtaining the predicted properties, as is required with the self-consistent and 
differential schemes.  In addition, it has been shown to yield predicted properties that are, in 
most cases, more accurate or equally as accurate as the Mori-Tanaka method.  In particular, the 
proposed method has been used to determine the electromechanical properties of four 
piezoelectric composite materials as a function of volume fraction: a graphite/ PVDF composite, 
a SiC/PVDF particulate composite, a fibrous PZT-7A/LaRC-SI composite, and a PZT-7A/LaRC-
SI particulate composite.  The predicted properties have been compared to those calculated using 
the Mori-Tanaka and finite element methods. 
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Table 1 

Electromechanical properties of matrix and inclusion materials 

Property PVDF LaRC-SI Graphite 
fiber 

SiC 
particle 

PZT-7A 

C11 (GPa) 3.8 8.1 243.7 483.7 148.0 
C12 (GPa) 1.9 5.4 6.7 99.1 76.2 
C13 (GPa) 1.0 5.4 6.7 99.1 74.2 
C22 (GPa) 3.2 8.1 24.0 483.7 148.0 
C23 (GPa) 0.9 5.4 9.7 99.1 74.2 
C33 (GPa) 1.2 8.1 24.0 483.7 131.0 
C44 (GPa) 0.7 1.4 11.0 192.3 25.4 
C55 (GPa) 0.9 1.4 27.0 192.3 25.4 
C66 (GPa) 0.9 1.4 27.0 1923 35.9 
�1/�0 7.4 2.8 12.0 10.0 460.0 
�2/�0 9.3 2.8 12.0 10.0 460.0 
�3/�0 7.6 2.8 12.0 10.0 235.0 

e15 (C/m2) 0.0 0.0 0.0 0.0 9.2 
e31 (C/m2) 0.024 0.0 0.0 0.0 -2.1 
e32 (C/m2) 0.001 0.0 0.0 0.0 -2.1 
e33 (C/m2) -0.027 0.0 0.0 0.0 9.5 
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Table 2 

Boundary conditions for axial stiffness components 

Property 
Applied strain 

and 
electric field 

Displacements 
and 

electric potential 
Elastic energy 

C11 11� � �  

� �

� �

� �

� �

1 1
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3

0
0
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� �

�

�
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u B x
u B
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VU C  
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2 2
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u B
u B x
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VU C  

C33 33� � �  
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3 3

0
0

0

�

�

� �

� �

u B
u B

u B x
B

 2
332

� �e
VU C  

 
 

Table 3 
Boundary conditions for plane-strain bulk moduli 

Property 
Applied strain 

and 
electric field 

Displacements 
and 

electric potential 
Elastic energy 

K23 22 33� � � � �  

� �

� �

� �

� �

1

2 2

3 3

0

0

�

� �

� �
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B

 2
122

� �e
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Table 4 

Boundary conditions for shear stiffness components 

Property 
Applied strain 

and 
electric field 

Displacements 
and 

electric potential 
Elastic energy 

C44 23 2
�

� �  

� �

� � � �

� � � �
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1

2 3

3 2

0
2
2
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0
2
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u B x
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�
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2
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B

 2
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� �e
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Table 5 
Boundary conditions for dielectric constants 

Property 
Applied strain 

and 
electric field 

Displacements 
and 

electric potential 

Dielectric 
energy 

�1/�0 1 �E E  

� �
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� �
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0
0
0
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B Ex
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Table 6 

Boundary conditions for piezoelectric constants 

Property 
Applied strain 

and 
electric field 

Displacements 
and 

electric potential 

Electromechanical 
energy 
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Figure 1. Finite element RVE of fiber composite 
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Figure 2. Finite element RVE of particle composite 
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Figure 3. Young’s moduli vs. fiber volume fraction for graphite/PVDF composite 
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Figure 4. Shear moduli vs. fiber volume fraction for graphite/PVDF composite 
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Figure 5. Piezoelectric constants vs. fiber volume fraction for graphite/PVDF composite 
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Figure 6. Dielectric constants vs. fiber volume fraction for graphite/PVDF composite 
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Figure 7. Young’s moduli vs. particle volume fraction for SiC/PVDF composite 
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Figure 8. Shear moduli vs. particle volume fraction for SiC/PVDF composite 
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Figure 9. Piezoelectric constants vs. particle volume fraction for SiC/PVDF composite 
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Figure 10. Dielectric constants vs. particle volume fraction for SiC/PVDF composite 
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Figure 11. Young’s moduli vs. fiber volume fraction for PZT-7A/LaRC-SI composite 
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Figure 12. Shear moduli vs. fiber volume fraction for PZT-7A/LaRC-SI composite 
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Figure 13. Piezoelectric constants vs. fiber volume fraction for PZT-7A/LaRC-SI composite 
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Figure 14. Dielectric constants vs. fiber volume fraction for PZT-7A/LaRC-SI composite 
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Figure 15. Young’s moduli vs. particle volume fraction for PZT-7A/LaRC-SI composite 
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Figure 16. Shear moduli vs. particle volume fraction for PZT-7A/LaRC-SI composite 
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Figure 17. Piezoelectric constants vs. particle volume fraction for PZT-7A/LaRC-SI composite 
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Figure 18. Dielectric constants vs. particle volume fraction for PZT-7A/LaRC-SI composite 
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