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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-508

ANATOG TECHNIQUES FOR MEASURING THE FREQUENCY RESPONSE
OF LINEAR PHYSICAL SYSTEMS EXCLTED
BY FREQUENCY-SWEEP INPUTS

By Wilmer H. Reed III, Albert W. Hall,
and Lawrence E. Barker, Jr.

SUMMARY

Data-reduction methods using general-purpose analog computer equip-
ment and compatible testing techniques for determining the frequency
response of linear physical systems are examined. The techniques con-
sidered may be classed as steady state or transient depending on the
method of excitation. The relative merits of periodic, slow sweep,
and transient (rapid sweep) forcing functions are discussed and applica-
tions are given that relate to dynamic-response tests of aeroelastic
systems.

Two frequency-sweep-input methods are considered in detail. In
one case the sweep rate is sufficiently slow that the response is approxi-
mately the same as that for steady-state conditions. With this input
the frequency response can be evaluated and displayed in real time while
the test is in progress. Errors due to treating sweep dats as steady
state can be eliminated, when desired, by reanslyzing tape-recorded time
histories of the input and output as transient rather than as periodic
data. 1In the second method the frequency-response function is deter-
mined from the system's transient response to a very rapid sweep input.
The purpose of frequency sweep in this case is to provide sufficient
harmonic content in the input to overcome noise while keeping the test
time as short as possible. On the basis of simulated forced-response
tests and limited flight-test data presented herein, it appears that a
transient-type rapid-sweep forcing function offers a considerable saving
in test time while preserving the accuracy possible with steady-state
sinusoidal inputs.

INTRODUCTION

Frequency-response analysis plays an important role in a variety
of problems in dynamics. The literature is replete with applications



of frequency-response methods in such diverse fields as automatic con-
trols, vibration and flutter, chemical processes, heat exchangers, and
many others. Excellent surveys of the field are provided in references 1
and 2.

Manual determination of the frequency response of a system from
vibration time histories of its input and output is, in general, a tedious
time-consuming task which often produces inaccurate results if noise is
present in the data. These difficulties have been overcome in recent
years by the application of the principle of the wattmeter as a means of
harmonic analysis of periodic data. By this method the relative phase
angle and amplitude of a data signal with respect to a simple harmonic
reference signal can be measured accurately even when the data are con-
taminated by a high level of noise. The method has been employed suc-
cessfully in such applications as wind-tunnel testing (refs. 3 and 4),
measurement of process dynamics (ref. 5), and structural response meas-
urements (ref. 6).

A requirement which sometimes precludes the use of the wattmeter
method is that the measurements be taken during steady-state response
of the system to sinusoidal excitation. Often in practice these con-
ditions cannot be satisfied, for example, because of the short duration
of a test. If the system is essentially linear and its parameters do
not vary with time during a test, it may be more feasible to evaluate
the frequency-response functions indirectly from the transient response
of the system to known arbitrary inputs. It appears desirable then to
consider other techniques applicable to transient as well as to periodic-
type frequency-response tests.

Although special-purpose analog equipment has been used for many
years for frequency analysis (electrical filters, Fourier analyzers,
special slide rules, etc.), general-purpose electronic analog computing
equipment has not been widely used. This paper will demonstrate
frequency-response data-reduction methods using general-purpose analog
computing equipment. The relative merits of sinusoidal, slow sweep,
end transient forcing functions are also discussed and application of
these techniques are illustrated for aeroelastic systems with particular
reference to flight vibration testing.

SYMBOLS

coefficients in equations of motion

An,Bp coefficients in Fourier series

\Jt Qo0



semichord of airfoil

stiffness coefficient of vertical translation spring

amplitude of reference signal voltage

Fourier transform of time function in brackets
P(t)
m.bwrh2

complex frequency-response function

normalized forcing function,

vertical displacement of elastic axis of airfoil

input to averaging circuit

moment of inertia of airfoil section about elastic axis

b
nondimensional frequency parameter, e%—

aerodynamic 1lift per unit span
Mach number
mass

aerodynamic moment per unit span about elastic axis

integral number of sinusocidal oscillations

normalized input force due to random air turbulence
pick-up noise added to response

output of averaging circuit

forcing function



Laplace operator or distance along polar-frequency-response
curve

moment of mass about elastic axis

time

time to sweep one bandwidth, &/

duration of arbitrary forcing function

fundamental period
horizontal velocity of airfoil

vertical air turbulence velocity

periodic function of time

distance in chord lengths from leading edge to elastic axis

static unbalance distance in semichords (positive for rear-
ward center of gravity)

response of system to an input

displacement of airfoil leading edge, in semichords
angular rotation of airfoil about elastic axis
bandwidth of second-order system, 2§mn

increment

damping ratio in percent of critical damping

arbitrary initial phase angle of reference signals

density ratio of airfoil section,
npb2

air density

time constant of averaging device
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) phase lag of response relative to input

¥ phase shift of averaging device

w frequency, radians/sec

wy, frequency, uncoupled vertical translation
W, uncoupled torsional frequency

wn undemped natural frequency of second-order system
Wy average frequency (eq. (B2))

I l amplitude of complex quantity

Subscripts:

f final value

i initial value

I imaginary part of complex quantity

o amplitude of oscillation

R real part of complex quantity

s frequency sﬁeep

st static deflection

T time constant

av average

max maximum

An arrow over a symbol denotes & time vector. Dots over symbols
indicate derivatives with respect to t. Primed symbols denote deriva-
tives with respect to t.



FREQUENCY- RESPONSE MEASUREMENT TECHNIQUES

General

Techniques for measuring the frequency response of physical systems
may be grouped into three categories according to the type of forcing
function used. These forcing functions are defined as (a) steady-state
periodic, (b) arbitrary transient, and (c) continuous random. If the
system is linear and its parameters do not vary with time, the measured
frequency response is, in the absence of noise, independent of the
testing technique used. In this paper the steady-state periodic and
transient test methods are considered and the system is always assumed
to be linear.

Periodic Test Methods

Steady-state (constant-frequency) method.- When the application of
the wattmeter principle as a method of measuring frequency response with
periodic excitation is considered, it is helpful to look at the Fourier
series expression for a periodic function. If x(t) is periodic in the
interval T, it may be defined over the interval by a Fourier series
expansion as follows:

[+
A
x(t) = 2?-+ }:(An cos nwt + By, sin nnt) (1)
n=1
where
T
A, = 2 L/j x(t)cos nwt dt
T Jo
5 T
B, = = k./\ x(t)sin nwt dt
T
0
and
T = 2%
w

Fach harmonic component of x(t) can be looked upon as a vector in a
complex plane. The real component is represented by A, and the imagi-

nary component by Bp (see sketch)
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Imaginary
Q) /'/
Q@ x
\aa’s Bn
Pn
> Real
Ap
The vector may be expressed in rectangular coordinates as
X(inw) = Ay + iBy (2a)

or in polar form
x(inw) = qAne + By? e%n (2p)

B
®, = tan'l n

where

A wattmeter is a device that responds to the average of the product
of two applied signals. Thus, if one of these signals is x(t) and

the other is E, cos wt, then the quantity indicated by the wattmeter

will be proportional to the Fourier coefficient A,

E
x(t)Eg cos wt] =24 (3a)
[ (+)Eq av 2 1
and similarly for the coefficient Bl
[x(t)E sin a)t] _ o g (3b)
°© av 2 1

Actually, a wattmeter indicates a product averaged over some effec-
tive averaging time which is dependent upon the time constant of the
averaging device. If the time constant is too small, the output fluc-
tuates and makes it difficult to read a mean value. On the other hand,
if the time constant is too large, the time required to establish steady-
state conditions may be prohibitive. A suitable compromise generally



results if the time constant is from 3 to 6 times greater than the
period of the signal being analyzed.

If y(t) is the steady-state response of a system due to & sinus-

oidal input P(t), the frequency-response function is determined by
the vector ratio

o) = L)
P(iw)
(ka)
yp + 1y
Giw) = _5___7_2
PI + 1PI
J
or in polar form
2
YtV -1
Gliw) = 2L 79 ()
2 2
PR + PI

where @ 1is the angle by which the response lags the input.

Figure 1 illustrates the application of the wattmeter principle
in the determination of the vector components of frequency response
for a system. For the case shown it is assumed that the input is a
pure sine wave of amplitude Po' In the more general case, where the

forcing function may be contaminated by harmonics, it would be neces-
sary to analyze the input as well as the output by using sinusoidal
reference signals the frequency of which is the fundamental of the
input.

In practical applications, the operations indicated in the figure
have been mechanized in a variety of ways. ©Some examples are thermo-
couple wattmeters, vacuum tube wattmeters (ref. 3), resolvers and
averaging circuits (ref. 4), and electronic analog computer components

(ref. 5).

Resolvers provide a particularly simple means of multiplying the
response signal by a sine and cosine reference signal in cases where
the resolver can be mechanically connected to a rotating shaft having
the same angular frequency as the excitation frequency. In other
methods (ref. 6), strain-gage transducers serve as the multiplying
device when the bridge-circuit is powered by a sinuscidal reference
signal. Averaging of the product may be accomplished by low pass

U oo
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electrical filters, or by measuring the output on a long-time-constant
D'Arsonval meter.

It should be pointed out that the accuracy of the wattmeter tech-
nique is governed by the quality of the simple harmonic reference sig-
nals. If these signals contain harmonic distortion or oscillate about
a mean value other than zero, the indicated vector components will be
in error. The magnitude of the error is shown in reference 4% to be
equal to one-half the sum of the products of harmonics (including the
zero-frequency component) common to both signals.

Quasi-steady (frequency-sweep) method.- The frequency-sweep tech-
nique provides a convenient means of measuring the frequency response
of a system when a broad band of frequencies is to be surveyed. With
this technique, instead of measuring the steady-state response at var-
ious discrete frequencies, the excitation frequency 1s varied slowly
(quasi-steady state) with time. Frequency sweep, used in conjunction
with the wattmeter method of harmonic analysis, makes it possible to
display a continuous plot of the frequency-response vectors while the
test is in progress. This not only affords a saving in test time but
also serves to point up areas of particular interest that may other-
wise have been overlooked in surveying the frequency range in discrete
steps.

Because of the time-varying nature of the input frequency, the
observed response of the system at any instantaneous frequency will
differ somewhat from the corresponding steady-state response. The
effects of frequency sweep on the response for the case of a single-
degree-of-freedom system has been investigated by Hok (ref. 7) and by
Barber and Ursell of the British Admiralty Research Laboratory (not
generally available) where it is shown that in the vicinity of reso-
nance the major effect of sweep is to make the measured maximum
response less than the corresponding steady-state maximum and to shift
the frequency of maximum response in the direction in which the fre-
quency is changing. These errors, Ays and Awg, are indicated in

figure 2 and some results of Barber and Ursell are plotted in figure 3(a)
to show the variation of these errors with a nondimensional sweep

parameter &/@gzwne.

When the wattmeter method is used as a means of analyzing frequency-
sweep data, additional errors are incurred because of the lag charac-
teristics of the averaging device. (See fig. 2.) An approximate anal-
ysis of these errors, denoted as AyT and A, 1is given in appendix A

for a single-degree-of-freedom system. In figure 3(b) the magnitude
of such errors is shown plotted against T/%b where T 1is the time

constant of the averaging device and t;, 1s the time required to sweep
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through one bandwidth (2gmn) of the system. The data points on the

figure were determined from analog-computer results to be described later
in the paper and serve to confirm the predictions of the approximate
analysis in appendix A.

Transient Test Methods

Frequency response from transient data.- As mentioned before, it is
not always feasible to use steady-state sinusoidal inputs in frequency-
response tests. Such a procedure would obviously be impractical in such
cases as Tlight tests of a missile system. Here not only is the time
available for testing short but also the dynamic characteristics and
environment of the system may be varyling with time so that a steady-
state response could never be obtained. Under these circumstances it is
necessary to abandon test methods based on steady-state concepts and
consider instead methods of determining frequency response from tran-
sient data. (It must still be assumed that the system is time-invariant.
This assumption implies that, although the system's parameters may vary
with time, the variations occurring during the transient response to an
input are insignificant.)

Just as the Fourier series provides the mathematical basis for
analyzing steady-state response measurements, the Fourier transform pro-
vides the basis for analyzing transient phenomena. The frequency-
response function for the transient-type test is determined by dividing
the Fourier transform of an arbitrary input into the Fourier transform
of the response caused by this input. If the input is applied at time
equal zero and the system is assumed to be at rest before this time,
the frequency response of the system is defined by the equation:

]

fo y(t)e~i®tat ()]

0 = (5)
f P(t)e " Wtq¢ Fle(e)]
0

G(iw) =

In order to evaluate the integrals (Fourier transforms) in equation (5),
it is necessary that the response and the input approach some final state
for which the integral can be evaluated as time approaches infinity.

A variety of numerical methods for evaluating the Fouriler transform
of arbitrary time functions have been developed. (See, for example,
refs. 8 to 10.) The approach taken in this paper will be to consider
analog methods for evaluating these integrals. Specifically, it is
desired to modify the techniques discussed previously for the analysis

\Jt Co\O H
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of periodic data so that, insofar as possible, the same equipment could
be employed for the analysis of transient time histories.

Consider first the case where the system after being disturbed
returns to its original state of static equilibrium. Let y(t) and
P(t) in equation (5) represent perturbations from static equilibrium
and ty be the time required for the transient oscillations to subside.

The upper limits of integration in equation (5) can then be replaced
by ty without affecting the results. Therefore, with the relation

e-1ot = cos ot - 1 sin wt

equation (5) becomes

~
te te
f y(t)cos wt at - i f y(t)sin wt dt
) 0 0
G(iw) = - o
fo P(t)cos wt dt - i fo P(t)sin wt dt P (6)
10 PR EL O
Fp(t)] g - FP(t]) ¢ J

The mathematical operations for evaluating the Fourier transforms
in equations (6) are illustrated by the block diagram in figure 4. Note
the similarities between these operations and those indicated in fig-
ure 1 for the case of sinusoidal forcing functions. In each case a
data signal is multiplied by a pair of sinusoidal reference signals
phased 90° apart. Whereas with sinusoidal excitation the frequency of
the reference signal is the same as the driving frequency, with transient
excitation it may be any value in the frequency range of interest. A
second difference in the two methods is that the averaging circuit used
in the periodic case is replaced by an integrating device.

From equations (6) it is seen that the frequency-response function
is determined from the complex ratio of the values of the integrated
products at the time +tp. Also, it should be pointed out that the ini-

tial phasing between the sine-cosine reference signal and the data sig-
nals (indicated by © in fig. 4) is unimportant so long as the same
pair of reference signals is used to analyze both the input and the out-
put time histories. Since phase is relative, the choice of a time base
is unimportant.
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Equations (6) were derived on the assumption that, after some finite
time interval ty, the system returns to the same static equilibrium

state that existed before the disturbance was applied. In event the
initial and final static equilibrium are different, such as with step-
function inputs, it is necessary to account for this difference in a
manner indicated in reference 8. The modified form of equations (6),
which is applicable when the final values of y(t) and P(t) are
constants other than zero, is:

_ {F [y(tﬂ .- Y(tf):’in a)tf} _ i{F Ef(t)] . . Y(tf)(:bos a)tf} (7
{%l}(tﬂ - P(tf)sin wtf} _ '{%{?(tﬂ o P(tp)cos wtf}

)

G(iw)

[éV] [4V)

With the transient testing method it is desirable, although not
essential, to record the time-history data on magnetic tape. Then, a
short burst of data from a single test is sufficient to determine the
frequency response over the range of frequencies present in the input.
The frequency response would be obtained by playing the data repeatedly
into the transient analyzer, while changing the frequency of the refer-
ence signals before each pass. Without the benefits of magnetic tape,
the test must be repeated with each change of the reference signal fre-
quency, a situation analogous to the test procedure normally used with
sinusoidal inputs.

Inputs for transient tests.- In the determination of frequency
response from transient tests, the range of frequencies that can be
analyzed with accuracy depends on the harmonic content of the input.

The frequency spectra of a half-sine-wave pulse and a step func-
tion are plotted in figure 5 and are representative of inputs often used
in practice. (See ref. 2.) DNote that the frequency content of these
functions falls off with increasing frequency. For the half-sine pulse,
and also other symmetrical pulse shapes, the frequency content even goes
to zero (bottoms) periodically. Thus, with noise present in the data
the accuracy of frequency-response measurements is likely to deteriorate
at frequencies where the harmonic content of the input is low.

In order to extend the frequency range beyond that provided by
pulse inputs, a manual frequency-sweep technique for determining air-
plane frequency response is investigated in reference 11. 1In these
tests the pilot oscillated the airplane longitudinal control system at
a continuously increasing rate so that in only 5 or 10 cycles the period
of the input control motion varied from 3 to 0.3 seconds. The harmonic
content of the input in the frequency range covered by the sweep was
found to be appreciably higher than that of a triangle input used for

\J1 O\ H
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comparison everywhere except at the natural frequency of the airplane
pitching mode. At this resonant frequency the pilot apparently reduced
the input to avoid excessive airplane pitching oscillations.

The harmonic content of & frequency-sweep input is dependent not
only on the amplitude of the input and the freguency range swept but
also on the manner in which the frequency varies with time through this
range. It should be possible, therefore, to program the variation of
frequency with time in such a way that the harmonic content of the
signal is approximately uniform over frequencies covered by the sweep.
This procedure is somewhat analogous to the use of "white noise" excita-
tion (uniform power spectral density) in tests involving random inputs.
In the present case, however, the aim is not only to achieve & uniform
spectrum but also to economize on testing time by building up the neces-
sary frequency content of ‘the input as rapidly as possible.

The problem of designing frequency-sweep inputs which have uniform
frequency spectra 1s treated in appendix B. Three variable-frequency
constant-amplitude functions are consldered: a sine wave, a sawtooth
function, and a rectangular pulse train (see sketch (b) of appendix B).
It is shown that for such functions a linear variation of frequency with
time produces a uniform spectrum. For a given frequency-sweep range
the level of the spectrum is proportional to the square root of the

sweep time. Thus if 15, 1is the time required to increase the fre-
quency of the input from an initial value w; to a final value Wp
the effective level of the spectrum over these frequencies is, from

appendix B,
tin _ KP,
o — =
(Df (Di \](—D-

where for the sine function K = Vg; for the sawtooth function K = J%;

IF[PO(t)]’ - KP (8)

and for the rectangular-pulse function K = {x.

The spectrum of a frequency-modulated sine function is shown in
figure 5. The circle data points represent the true spectrum as deter-
mined by an analog computer and shown for comparison is the effective

spectrum level predicted by equation (8) with K = Vg. Good agreement

between the true and the effective levels is indicated everywhere over

the sweep-frequency band except near the end frequencies w; and wp

where the actual spectrum is about one-half the effective value. This
difference might be expected when one considers that the end frequencies
have adjacent frequencies only on one side.
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Since the use of frequency sweep has been discussed both from the
standpoint of periodic and transient type testing, it is of interest .
to compare the criteria for selecting a sweep rate for the two cases.

For the periodic case the object is to sweep at a rate sufficiently
slow that the system behaves essentially as it would if conditions were
steady. If the system is lightly damped or if its natural frequencies
are closely spaced, this criterion may require that extremely slow sweep
rates be used.

With the transient testing technique, the major concern is simply
that there be sufficient harmonic content in the input to excite the
system above whatever noise may be present. Beating between frequencies
of closely spaced natural modes presents no difficulty so long as the
system is disturbed from and returns to steady-state conditions and the
entire transient time history is included in evaluating the Fourier
transforms. Since in the transient case it is unnecessary to establish,
or even approach, steady-state conditions during the sweep, the time
required to accomplish the sweep can be less by an order of magnitude
or so than the sweep time normally used for the quasi-periodic case.

\Jt QOO

SIMULATED FREQUENCY-RESPONSE TESTS .

. Scope -

In previous sections of the paper various techniques were discussed
for automatically determining the frequency response of physical sys-
tems. The aim of the present section is to demonstrate the application
of these techniques with a specific example, the example chosen being
the forced response of a simple aeroelastic system in supersonic flow.
For this purpose both the aeroelastic system and the harmonic analyzer
used to evaluate 1ts frequency response were simulated on an analog
computer as illustrated in figure 6. By using the data-reduction tech-
niques discussed earlier, the frequency response of the system was
evaluated for three methods of excitation: periodic, slow sweep, and
transient rapid sweep.

In order to gain some insight into the noise-rejection capabilities
of these data-reduction techniques, simulated atmospheric turbulence
and instrumentation pick-up noise were introduced in some cases. As
indicated in figure 6, the noise could be switched on or off at will
so that the effects of noise on the final result could be easily
observed.

Also, since in practical applications of the sinusoidal excita-
tion method pure sine-wave forcing functions are often not realized
because of, say, nonlinear elements in the force-generating mechanism, .
provisions were made for introducing harmonic distortion into the input.
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Simulated Aeroelastic System

The aeroelastic system simulated on the computer was a two-degree-
of -freedom flat-plate airfoil which is shown schematically in figure 7.
The equations of motion, developed in appendix C, utilize piston theory
(ref. 12) at a Mach number of 2.0 for defining the aerodynamic forces.
In all cases the forcing function was assumed to act at the leading edge
of the airfeil and the response was taken to be the vertical displace-
ment at this point. The frequency response of the system and the test
conditions are given in figure 8. In this figure the amplitude ratio
is the leading-edge displacement normalized with respect to the static
deflection of the elastic axis and the phase angle is the angle by which
the displacement lags the force. The solid curves in the figure repre-
sent the theoretical frequency response determined from the equations
of motion and the points are typical results obtained with transient
and periodic inputs. These results indicate the overall accuracy and
the repeatability of the simulation in the absence of noise.

In order to simulate atmospheric turbulence the output of a
Gaussian "white noise" generator was passed through a low-pass filter.
By adjusting the filter time constant the frequency content of the fil-
ter output was matched to that measured for atmospheric turbulence in
reference 13. Similarly, instrumentation pick-up noise was simulated
with another filter which passed considerably higher frequencies than
the filter for air turbulence. Plots of the power spectral density of
the simulated turbulence and pick-up noise used throughout the paper
are given in figure 9.

Results Obtained With Various Inputs

Periodic inputs.- Consider first the case in which the system is
driven by a periodic forcing function. Typical analog time histories
showing the input, the response, and the corresponding vector components
are given in figure 10. The forcing function for this case had a funda-
mental frequency of 1.9 radians per second plus appreciable harmonic
distortion representing nonlineariaties in the force-generating device.

For discussion purposes the figure is divided into three time
intervals. The first interval shows the behavior of the system with no
random noise present. In the second time interval atmospheric turbu-
lence was added and also the recorder speed was increased. The magni-
tude of the aerodynamic force due to turbulence, shown by the bottom
trace Np in figure 10, has a root-mean-square value some 3 times that

of the periodic forcing function. (The force scales for F(t) and Np
are the same in the figure.) Its effect on the vector components of
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response, however, is practically negligible because of the low fre- -
quency content of turbulence at the frequency being analyzed (w/wh = 1.9).

(See fig. 9.) 1In the third interval simulated pick-up noise Nz was

added to the output. The frequency content (fig. 9) and intensity of
the pick-up noise were adjusted by trial and error to make =z(t) appear
representative of "noisy" experimental data. For the case shown, the
maximum excursion of the z(iw) vector due to noise is in the imaginary
component and is approximately 15 percent of the vector length.

Quasi-periodic inputs.- Consider next a sinusoidal forcing function
of slowly varying frequency. Figure 11(a) shows the time-history
response and the vector components of the simulated system excited by
an input of linearly increasing frequency. In order to emphasize the
effects of sweep alone, random noise and harmonic distortion in the in-
put were not included here.

U o0

It is of interest to compare the vector components indicated by the
analyzer with the theoretical steady-state components which are shown
by the dashed curves. Note that the effects of sweep, previously illus-
trited in figure 2 and appendix A, are clearly evident. Subsequently,
it is shown how such errors can be eliminated by analyzing slow sweep
time histories as transient rather than as quasi-steady-state data.

Figure 11(b) shows a polar plot of the same vector components given
in figure 11(a). This curve was obtained by feeding the real and imag-
inary vector components to an X,Y plotter. The plot represents the locus
of the tip of the frequency-response vector as the input frequency varies.
The amplitude ratio is given by the vector length and the phase angle,
by the angle between the vector and the positive real axis. Again, the
theoretical steady-state values are shown for comparison.

The two natural modes of the system may be identified in figure ll(b)
by the two circular-shaped loops. The inner loop is associasted with the
vertical translation mode while the outer loop is associated with the
torsion mode. In considering ground vibration tests of airplanes,
Kennedy and Pancu (ref. 14) developed methods for evaluating damping
and natural frequencies from the near-circular shapes exhibited by the
vector polar plot of frequency response. Broadbent (ref. 15) also
applies the method to flight flutter testing as a means of determining
the damping from flight-forced-response tests.

In order to identify natural frequencies by the polar-plot method,
Kennedy and Pancu suggest use of the variation of distance along the
polar curve for equal frequency increments. Natural frequenciles occur
where ds/dn is a maximum, s being the distance along the polar curve.
For complex systems this method is found to give a better indication of
natural frequencies than do the frequencies of maximum response. Note




\J1 CoO\O

17

in figure ll(b) that, with frequency sweep, the polar plot 1s generated
by many small coil-like loops. These loops arise from a ripple passed
by the averaging filter and can serve to provide a convenient measure of
ds/dw. In order to illustrate, let As be the distance between adjacent
loops. The time At required for the vector to describe one loop is
one-half the period of the forcing frequency (there are two ripple cycles
for each input cycle); therefore,

At =L
o
and
N = dAt
These relations combine to give
dS~aAs
dow b (9)

Figure 11(c) is a duplicate of figure 11(b) except for the addition
of turbulence and electrical pick-up noise. For the noise levels used,
the two cases are in good agreement at all frequencies.

Arbitrary inputs.- For the case of arbitrary forcing functions,
the input and transient response of the system were analyzed by the
procedure shown in figure 4. In this simulated study the input was
repeated each time the reference frequency was changed. In testing an
actual physical system, however, it would be more feasible to perform
only one test and record the data on magnetic tape which would then be
played repeatedly into the transient analyzer (fig. 4) for evaluation
of the frequency response.

The transient response of the system to a half-sine-wave pulse and
a rapid-sweep input are illustrated in figure 12. Time histories such
as these were used to determine the amplitude and phase angle of fre-
quency response indicated by the circular data points in figure 8. Since
no noise was present, the pulse and the sweep data gave identical
results. With the addition of random noise, however, the accuracy of
the results depends on the ratio of the harmonic content of the signal
to that of the noise at the frequency being analyzed. Thus, as dis-
cussed previously (see fig. 5), for a given noise level the rapid sweep
input would produce more accurate results than the pulse input.

Results of the analysis of a typical transient response with noise
added is given in figure 13. In order to obtain the frequency response
(the case shown is for = 2.0 radians/sec), a complex ratio is

taken between F[z(tf)] and FEF(tf)] where the subscript f denotes
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the final value after the transient motion has damped out. Note that, .
because of the effects of simulated turbulence and pick-up noise, there

are small random fluctuations in the final values of the Fourier trans-

form of response. These errors have maximum value of about 4 percent

for the case shown. With a slower sweep rate, such as shown in figure 5,

the frequency content of the input would be greater and therefore the

percentage error would be reduced. If the half-sine pulse had been

the input, the same noise intensity would give rise to errors of the

order of 20 percent.

Simulated Flight Flutter Tests

Ut 00

Up to this point 8ll the results presented have been for a single
set of parameters. (See key in fig. 8.) Generally, one purpose of any
dynamic-response test is to examine how changing various parameters
affects the performance or stability of the system being tested. In
the case of flutter testing, for example, it is of interest to deter-
mine not only whether the system is free from flutter for a given test
condition, but also to have some indication of the degree of stability.
Since flutter is often explosive in nature and generally leads to .
catastrophic structural failures, it is highly desirable to have a means
of assessing response of the test vehicle while the test is in progress
so that tendencies toward instability can be readily observed. -

It is of interest to illustrate how some of the frequency-response
testing and automatic data-reduction techniques described in thils paper
might be applied to flight flutter tests. For this purpose, the density
ratio p in the equations of motion for the aercelastic system (see
appendix C) was varied to represent flights at various altitudes. A
slow sweep run was made at each altitude and the frequency-response
vector components were automatically plotted on an X,Y plotter while
the test was in progress. The results are shown in figure 14. The
plot in the upper left of the figure is the basic configuration
(u = 20) shown in figure 11(b). Note that, as u approaches the criti-
cal flutter value, which is 8.3, the circular shapes associated with
the two natural modes of the system tend to lose their individual iden-
tity and the response takes on the appearance of that of a single-
degree-of-freedom system.

This apparent merging of two natural modes as a flutter condition
is approached is characteristic of a large class of flutter phenomena.
In reference 16, the concept of frequency coalescence of natural modes
is used to provide a simple explanation of the mechanism of flutter.
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Elimination of Errors Due to Sweep

As discussed previously, the vector plots in figure 14 are in
error due to the effects of frequency sweep. Even though such errors
exist, plots of this type are of considerable value in that they make
possible a qualitative assessment of the data while the tests are in
progress. Often, when systematic variations of parameters are made,
it will be found that many of the runs turn out to be of little interest
and do not warrant further consideration. However, for the most signif-
icant cases it would be desirable to have a means of eliminating the
errors due to sweep. This can be done by performing a transient analysis
after the test if the sweep time histories, including transients at the
beginning and end of the sweep, are recorded on magnetic tape.

Thus, a proposed testing technique using slow-sweep excitation
would be to obtain first a qualitative "quick-look" at the frequency
response during the test by the periodic method of analysis. Then,
after completion of a series of runs, those that appear to be the most
significant would be reanalyzed at discrete frequencies by the transient
method to correct for the errors caused by analyzing sweep data as though
it were steady-state data.

FLIGHT VIBRATION TEST RESULTS

In this section of the paper the frequency-response measurement
techniques discussed earlier are applied in flight tests involving aero-
elastic response measurements of a jet airplane. The predominant sym-
metrical vibration modes of the airplane were excited by servo-controlled
inertia shakers installed in each wing tip and the resulting wing-tip
acceleration measured. A further description of the test equipment may
be found in reference 1T7.

As in the simulated forced-response tests, three types of forcing
functions were used - steady-state sinusoidal, slow sweep with fre-
quency increasing from 4.5 to 4O cycles per second in 30 seconds, and
a rapid sweep in which the same frequency range is swept in only
6 seconds. (For reasons not pertinent to this discussion, the sweep
rate was programed to increase as the square of the frequency for both
the slow- and the rapid-sweep cases.) The frequency-response function
was evaluated in each case by playing tape-recorded time histories of
the shaker force and wing-tip acceleration response into an analog com-
puter. Typical frequency-response plots for the three methods of
excitation are shown in figure 15.

The sinusoidal and slow-sweep data were analyzed by the periodic
method (fig. 1) and rapid-sweep data were analyzed as transients (fig. U4).
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For the periodic case the reference signals were obtained from the sig-
nal generator used to drive the shaker servo system. High-speed elec-
tronic multipliers were used to multiply the reference signals by the
data signals; thus, the data could be reduced in real time.

For the transient case the electronic multipliers were replaced by
an electro-mechanical device which, in addition to performing the multi-
plication operation, also. generated the reference signals. This was
accomplished by driving a pair of d-c sine-cosine potentiometers (see
ref. 18) with a constant-speed electric motor as illustrated in fig-
ure 16(a). A sine-cosine potentiometer is a device which, when rotated
at a speed w, generates the products *A cos wt and *A sin ot, where
+A and -A are analog voltage signals applied across windings of the
potentiometer. In the present case these applied voltages are propor-
tional to the shaker force P(t) and the acceleration response ¥(t).
As shown in the figure the two potentiometers are geared together and
driven by a common shaft whose rotational speed could be set at any
desired value of ® from O to 40 cycles per second. A photograph of
the actual device used is shown in figure 16(b).

A typical record showing the rapid-sweep time-history data and the
corresponding Fourier transforms for a reference signal frequency of
31.2 cycles per second is presented in figure 17. (Note similarity to
simulated transient tests shown in fig. 13.) The wing was disturbed
from static equilibrium by a sudden application of shaker force which
increased in frequency from 4.5 to 40 cycles per second in about 6 sec-
onds. At the end of thils time, the shaker was stopped and the response
was allowed to dampen out. Actually, the time required to perform the
test was governed by the maximum sweep rate of the shaker input signal
generator. With the noise level present in these tests, it is felt that
a sweep rate several times faster than the one shown could have been
used without adversely affecting the accuracy of the results. The four
upper traces in the figure are the real and imaginary components of the
Fourier transforms of the time histories P(t) and y(t). Although
the final values of the Fourier transforms are needed for evaluating
frequency response, it is of interest to note that the only time these
quantities show appreciable variation is when the frequencies of the
shaker and reference signals are close together.

When the frequency-response data in figure 15 are compared, it is
seen that the results from each of the three methods of excitation are
in reasonably good agreement. The first symmetric wing bending mode of
the airplane occurs at 6.8 cycles per second. Also a torsion mode exists
at 33 cycles per second but unfortunately the pick-up location was near
the node line so that the response of this mode is not readily apparent
in the figure.

U (oo H



21

On the basis of these results it appears that, in aerocelastic
dynamic response investigations of aircraft and missiles, a programed
transient-type rapid-sweep excitation makes possible a considerable
saving in test time while preserving the accuracy of steady-state sinus-
oidal methods.

CONCLUDING REMARKS

Data-reduction methods using general-purpose analog computing
equipment and compatible testing techniques for determining the fre-
quency response of linear physical systems were discussed. The tech-
niques considered were classified as steady state or transient depending
on the method of excitation.

When the excitation frequency is varied slowly with time, both
techniques of data reduction can be used to advantage. The data are
first analyzed by the quasi-steady-state method to permit a cursory
examination of the frequency response while the test is in progress.
Because true steady-state conditions are not realized, because of
the time-varying nature of the input frequency, these results are in
error. In order to eliminate such errors from those cases of particular
interest, the input-output time histories, having been recorded on mag-
netic tape, are reanalyzed at discrete frequencies by the transient
analysis technique.

A frequency-sweep input is also considered as a forcing function
for the transient-type tests. However, in this case the object is not
to approach steady-state sinusoidal conditions but rather to build up
high concentrations of frequency content over the frequency range of
interest while keeping the test time as short as possible. The
frequency-response function is then determined after the test by taking
the Fourier transform of the input and output time histories. It is
shown that linear variations of frequency with time produce uniform fre-
quency spectra the magnitude of which is inversely proportional to the
square root of the sweep rate.

As a means of illustrating the techniques considered in the paper,
examples are given that relate to the dynamic forced response of aero-
elastic systems. In one case the methods are demonstrated for a simple
two-degree-of -freedom system that was simulated on an analog computer.
In another case flight-test-forced dynamic-response measurements on a
Jet airplane are analyzed. These examples also serve to indicate the
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suitabllity of using conventional electronic analog computer components
in the analysis of experimental dynamic data.

Langley Research Center,
Naetional Aeronautics and Space Administration,
Langley Field, Va., June 15, 1960.
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APPENDIX A
ERRORS DUE TO AVERAGING DEVICE WHEN FREQUENCY -

SWEEP INPUTS ARE USED

In the wattmeter principle of harmonic analysis, the power or prod-
uct read by a wattmeter varies over any cycle; thus, an averaging device
is needed to secure the average or mean power over a number of cycles.
In the case of frequency sweep the mean value varies with time and the
output of the averaging device tends to lag the true mean value. This
lag, together with the frequency-sweep effects analyzed by Barber and
Ursell (not generally available) gives rise to errors in the indicated
vector components of response. The following analysis for a single-
degree-of-freedom system is presented to show the nature and approximate
magnitude of such errors due to lag of the averaging device.

The equation of motion of a single-degree-of-freedom system driven
by a sinusoidal input of slowly varying frequency is

-1 fw(t)dt

The real and imaginary vector components of the response y(t) are
determined by averaging the products

¥+ 2wy +y = ygee (A1)

y{t)cos fw(t)dt (A2)

y(t)sin fa)(t)dt (A3)

Assume that the products are averaged by devices which have the transfer
function of a first-order low-pass filter. In operational form the ratio
of output to input for such a filter is

ofs) 1
I(s) 1+ 7s

(Ak)

where T 1is the filter time constant and s the Laplace operator.



For the present purpose, assume that the mean values of the products
(eqs. (A2) and (A3)) vary with frequency in the same manner as with
steady-state excitation at constant frequency.

From the solution of equation (Al) based on steady-state considera-
tions, the real and imaginary vector components are

Tel-wef
Y(_“&)_ = -2§(ﬁ> (A6)
& D] ey

These components are plotted in figure 18 against w/mn for the case

£ = 0.05. DNote that near resonance (£§ = l.O), the major contribution

of response comes from the imaginary component.
Let the frequency vary linearly with time such that
w(t) = wy + @t

or measured from wy

o(t) - ap = at (AT)

A convenient nondimensional parameter is obtained by dividing equa-
tion (A7) by the half-power bandwidth of the system (6 = 28wy ) to give

dt ol(t) - oy )
5 2fwp
[ (A8)

O -~
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: where ty = % is the time required for the input frequency to sweep

through one bandwidth. The ratilo t/tb is also shown as an abscissa

in figure 18. The advantage in using this particular nondimensional
ratio is that it combines the sweep rate of the input and the parameters
of the system into a single variable. The following functions -were
found to be suitable approximations of the real and imaginary vector

components,
y(ia)) = - -l— sin (1( t—> W
| Yat R LE tp
L (a9)
— -
y___(ia)) = - X 1 + cos <1t -E—)
RERP: kg tp
’ S

and are indicated by the dashed curves in figure 18.

With the inputs to the filters expressed by equations (A9) the out-
puts, transients being neglected, are found to be

sin(n: Et_ - ) W
O(%>R " bT 2
1+ (rc T:;>
L (A10)
2
COS<JI X )
A
where o
¥ = tan-1n '{,T;

Consider first the error in maximum response due to filter lag. The
- maximum value of the imaginary component is a close approximation to
the maximum response
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1
2
1+ (n-1->
tp

This is.to be compared with the true maximum steady-state response of
the system which for small damping ({ << 1.0) is from equation (A6)

it (A11)

y(iw)
Yst

1
= Al2
2t ( )
I,max

Thus from equations (A6), (A1l), and (Al2) the error in maximum response
due to filter lag relative to the steady-state maximum may be expressed

a.s
\
[y(iw):l _ o
AV _ Ist I,max rax
Y(iw)l,max [?(idﬂ]
Vst I,max
‘ (a13)
___fgl____ =1l - 1
(iw) 2 2
VAL, max 1+ (n JL)
b

A plot of this error against T/tb is shown in figure 3(b).

The second error of interest is the shift in the frequency of maxi-
mum response. From equation (Al10) it is seen that the filter output
reaches a maximum value at a time

v |t - T

after the input frequency passes through resonance. Therefore, the
indicated resonant frequency is shifted by an amount &mm from the

steady-state resonant frequency. Expressed in bandwidths the resonant
frequency shift is

N Co\O
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for w2 tan—l(f_r&) (A15)

This relation is also plotted in figure 3(b). A comparison between the
predicted errors and those determined from analog-—computer results (data

points in figure) indicales good agrccment despite the approximate nature
of the analysis.

A third error which can readily be evaluated is the frequency-
response phase-angle shift associated with filter lag. The true phase
angle is by equations (A5) and (A6)

y(io) 1
= tan“l
Prrue L?(iij
_ (AL6)
-2t ﬁi
= -1
Prrue = tan — 3
F- (&)
B Wn
The indicated phase angle is - % when the real component given

by equation (A10) passes through zero. This occurs when t =T or,
in terms of frequency, when

]

Fle
£

\ (A17)

1}

Lo+ eg_gt

The true phase angle at this frequency is

= tan”

(A18)

CPtrue

When € and T/tb are small relative to unity, equation (A18) becomes

~ X 27
Prrue ¥ 3 - Eg
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Therefore, in the vicinity of resonance, the phase-angle error due to
filter lag is

AP = Ptyrye - Pindicated
(A19)

0 o\ H
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APPENDIX B

FREQUENCY-SWEEP INPUTS DESIGNED TO PRODUCE

UNIFORM FREQUENCY SPECTRA

The problem considered is that of controlling the sweep rate of a
constant-amplitude variable-frequency time function P(t) such that in

the frequency plane its Fourier transform IF[?(tﬁ
uniform over the band of frequencies covered by the sweep. (See sketch a.)

is approximately

|7 o]l

D4 ®f

Frequency

Sketch (a).- Desired uniform frequency spectrum.

Although there are many possible forms of the function P(t) which
could be tailored to produce an approximate uniform spectrum, the present
analysis will consider as typical examples those functions shown in
sketch (b).
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Pl(t) POV\ —R innA A /\M Sine wave
| UAIL
“ //\ /\ /\ /\ M Sawtooth

O ‘
l s H] !
’ b
f Pulse train

P3(t) B
- L

Time —>

Sketch (b).- Time histories of transient forcing functions.

It is assumed that in the time duration t;,, over which the forcing

function acts, the "instantaneous" fundamental frequency varies con-
tinuously from an initial value ®; to a final value Wp - The aim of

the present analysis is first to find the form of the variation of
with time required to generate a uniform spectrum, and second to esti-
mate the level of the spectrum.

First consider the sine wave of variable frequency shown at the
top of sketch (b). The equation for this function is

Il

t
P,(t) = P, sin j;) o(t) at (0 <t < tg

(1)

Py(t) =0 (t<0 and t> tg)

Assume that the variation of w(t) with time is sufficiently slow
that over an interval At equation (Bl) may be approximated by a sine
wave of constant frequency

P (t) =P, sin gt (t1 < t <ty +4t) (B2)

N O\O H
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where o is the average frequency over the interval At. The total
energy contained in Pl(t) over this interval can be expressed as

T, +At 5 S ,
Py (t)dt = P J sin“w,t dt (B3)
0

Y
If Pl(t) undergoes n oscillations in time At such that

uh_At

en

n =

(n = integer), the integration of equation (B3) gives

At P_°At
P2 f sin o)t dt = 02 (B4)
0

The assumption of n being an integer was made in order to simplify
equation (B4). The effects of n being other than an integer become
negligible as n increases. Equation (B4) shows that the total energy
in Pl(t) is simply proportional to the duration of At and is inde-
pendent of frequency. In order to achieve a uniform spectrum, it is
required that the energy per 2w (Aw Dbeing the frequency increment
in At seconds) remain constant over the frequency band covered by the
sweep. Thus, when equation (B4) is divided by Aw and the result is
set equal to a constant, it is seen that the ratio Aw/Am must be held
constant during the sweep; that 1s, a linear variation of frequency with
time is required to produce a uniform spectrum.

The second point of interest is the relationship between the level
of the spectrum and the frequency-sweep rate. Parseval's theorem, which
relates the total energy of an arbitrary time function to the area under
the square of 1ts frequency spectrum, provides the basis of finding an
effective spectrum level.

\
dw

Parseval's theorem for Fourier integrals states
© ' 2

f_m P2(t)dt = él-; ) F[P(t)]]
> (BS)

f_: Pe(t)dt = = fow lF[P(t)} °

dw
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The left-hand side of equation (B5) for the case of a variable-frequency
sine wave has been shown to depend only on the time over which Pl(t)

acts and not on the frequency (see eq. (B4)); therefore,

2
©0 P t
f p,2(t)at = —0—2—1-’_’ (B6)

Since the shape of the frequency spectrum is assumed to be rectangular,
the right-hand side of the equation may be defined as the product of an
"effective" spectrum height times the frequency band covered in the

sweep.
f
0

When equation (B6) is equated to (B7), the effective spectrum level
is found to be

o 2 2
F[Pl(t)]l dw = lF[Pl(t)]

eff((Df ") =7

lF[Pl(t)]

~

tin (B8)
P
IF[Pl(t)}l R
Vs b
By a similar procedure the effective spectrum level of the two
other functions shown in sketch (b) are:
For the sawtooth funotion:
P
’F[Pz(t)] - \[‘% 2 (89)
eff w;
and for the pulse train:
Po
IF[PB(t)] = Vi 2 (B10)
eff A

Ul 0\0
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As stated previously, this analysis is based on the assumption
that the variation of w(t) is sufficiently slow for it to be approxi-
mated by a series of constant-frequency intervals. Experience has indi-
cated that this is not a severe assumption. The spectrum level of sweep
inputs as rapid as that shown in figure 12(b) can be estimated with
reasonable accuracy by equation (B8).

It is interesting to note that of the three functions considered
the pulse train not only is richest in frequency content but also would
be the simplest to generate in many practical applications.
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APPENDIX C
EQUATIONS OF MOTION FOR TEE SIMULATED AEROELASTIC SYSTEM

The equations .of motion for the vertical translation and torsion
degrees of freedom for the airfoil shown in figure T are:

mh + S8 + Cyh = 1+ P(t)
(c1)
I, + Sgh + Coqa = my - 2bxP(t)

Structural properties of the system are represented by the left-hand
side of the equations and the external forces and moments, originating
from aerodynamic and wing shaker forces, are on the right-hand side.
The aerodynamic forces and moments are from piston theory (ref. 13).

1= 'L‘;Ub [B+ Ua + B(L - 2x0)d + vy
) - (c2)
ma= -)'I';Z[Ib {l" 2Xo)1:l+ U(l - 2XO)Q' +b[%—+ (l" 2Xo)2] G.,"’ (l - 2XO)WII}

where Wi is a random vertical velocity' component of &ir turbulence.

For convenience the equations were put into a nondimensional form
by making the following substitutions:

- ) _ whb
b= onts g =
m hred w
H = ’U_)z__._
1pb2 ®y
= p(g) = B8
mbwh2
c c
2 _’h, 2 _ Yo
®h T O T T
[0/
I
re =%
a

o\
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The final form of the equations of motion used are:

=1 ' 'y " ' _ N
B" + aph' + b+ Dyga” + byjal + by = F(t) Ny l
(c3)

\
~n - " _ - T
ah" + ay b+l + by’ + by = -C{F(t) - C2(_U_)J
where
a = al
11 sy
b12 = X
b1 - 2x
b1 = ( o)
Itp.Mkh
N
ban =
10
stpMky, 2
x
- _
8pp T 75
Tq,
l+(1 - 2xo)
N
T(lJ.MkhI‘a
4[5 # (1 - 2x0)]
Do =
21
atpl\llkhrcm2

b2o _ <(-D_d,>2 + Ll-(l - 2}(0)
“h I[“Mkh ra?
2%
Cq = —2
1 I‘a,2
4(1 3 2xo)
C2 = 5
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Np = blO(T?)
cal)
O man
" 2
() -2

(%)

In terms of h and o the deflection of the leading edge in semichords
is

z(t) = h(t) - 2x a(t) (ck)

All results given in this paper are for the following set of conditions
(p is varied in fig. 14)

M= 2.0
kh = 0.2
Xg = 0.5
Xy = 0.2
L - k.0
ra2

w

& =2.0
W

p o= 20

w, = 1.0 radians/sec (machine time)

U1 oo
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Steady state
Sweep (system alone)

—_ Sweep (system and wattmeter)

Response amplitude

Frequency

Figure 2.- Illustration of the effects of frequency sweep on the forced
response of a system measured by the wattmeter technique.
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(a) Errors due to sweep alone.

frequency sweep.
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