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ANALOG TECHNIQUES FOR MEASURING THE FRFQUENCY RESPONSE 

OF LINEAR PHYSICAL SYSTEMS EXCI'TED 

BY FmQUENCY-SWEEP INPUTS 

By Wilmer H. Reed 111, Albert W. Hall, 
and Lawrence E. Barker, Jr. 

SUMMARY 

Data-reduction methods using general-purpose analog computer equip- 
ment and compatible testing techniques for determining the frequency 
response of linear physical systems are examined. The techniques con- 
sidered may be classed as steady state or transient depending on the 
method of excitation. The relative merits of periodic, s l o w  sweep, 
and transient (rapid sweep) forcing functions are discussed and applica- 
tions are given that relate to dynamic-response tests of aeroelastic 
systems. 

Two frequency-sweep-input methods are considered in detail. 
one case the sweep rate is sufficiently slow that the response is approxi- 
mately the same as that for steady-state conditions. With this input 
the frequency response can be evaluated and displayed in real time while 
the test is in progress. Errors due to treating sweep data as steady 
state can be eliminated, when desired, by reanalyzing tape-recorded time 
histories of the input and output as transient rather than as periodic 
data. In the second method the frequency-response function is deter- 
mined from the system's transient response to a very rapid sweep input. 
The purpose of frequency sweep in this case is to provide sufficient 
harmonic content in the input to overcome noise while keeping the test 
time as short as possible. 
tests and limited flight-test data presented herein, it appears that a 
transient-type rapid-sweep forcing function offers a considerable saving 
in test time while preserving the accuracy possible with steady-state 
sinusoidal inputs. 

In 

On the basis of simulated forced-response 

INTRODUCTION 

Frequency-response analysis plays an important role in a variety 
of problems in dynamics. The literature is replete with applications 
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of frequency-response methods in such diverse fields as automatic con- Y 

trols, vibration and flutter, chemical processes, heat exchangers, and 
many others. 
and 2. 

Excellent surveys of the field are provided in references 1 

Manual determination of the frequency response of a system from 
vibration time histories of its input and output is, in general, a tedious 
time-consuming task which often produces inaccurate results if noise is 
present in the data. 
years by the application of the principle of the wattmeter as a means of 

These difficulties have been overcome in recent 

harmonic analysis of periodic data. By this method the relative phase 
angle and amplitude of a data signal with respect to a simple harmonic 
reference signal can be measured accurately even when the data are con- 
taminated by a high level of noise. The method has been employed suc- 
cessfully in such applications as wind-tunnel testing (refs. 3 and 4), 
measurement of process dynamics (ref. 5), and structural response meas- 
urements (ref. 6). 

L 
9 
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A requirement which sometimes precludes the use of the wattmeter 
method is that the measurements be taken during steady-state response 
of the system to sinusoidal excitation. Often in practice these con- 
ditions cannot be satisfied, for example, because of the short duration 
of a test. If the system is essentially linear and its parameters do 
not vary with time during a test, it may be more feasible to evaluate 
the frequency-response functions indirectly from the transient response 
of the system to known arbitrary inputs. 
consider other techniques applicable to transient as well as to periodic- 
type frequency-response tests. 

It appears desirable then to 

Although special-purpose analog equipment has been used for many 
years for frequency analysis (electrical filters, Fourier analyzers, 
special slide rules, etc.), general-purpose electronic analog computing 
equipment has not been widely used. 
frequency-response data-reduction methods using general-purpose analog 
computing equipment. The relative merits of sinusoidal, slow sweep, 
and transient forcing functions are also discussed and application of 
these techniques are illustrated for aeroelastic systems with particular 
reference to flight vibration testing. 

This paper will demonstrate 

SYMBOLS 

aj,bj coefficients in equations of motion 

An ,Bn coefficients in Fourier series 
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semichord of airfoil 

stiffness coefficient of vertical translation spring 

amplitude of reference signal voltage 

Fourier transform of time function in brackets 

normalized forcing function, P(t) - 
m%* 

complex frequency-response function 

vertical displacement of elastic axis of airfoil 

input to averaging circuit 

moment of inertia of airfoil section about elastic axis 

nondimensional frequency parameter, * u 
aerodynamic lift per unit span 

Mach number 

mass 

aerodynamic moment per unit span about elastic axis 

integral number of sinusoidal oscillations 

normalized input force due to random air turbulence 

pick-up noise added to response 

output of averaging circuit 

forcing function 

2 - 'a ra - - 
mb2 
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P 
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Laplace operator or distance along polar-frequency-response L 

curve 

moment of mass about e l a s t i c  axis 

time 

t i m e  t o  sweep one bandwidth, 6/& L 

durat ion of a r b i t r a r y  forc ing  funct ion 
5 

fundamental period 

hor izonta l  ve loc i ty  of a i r f o i l  

v e r t i c a l  air turbulence ve loc i ty  

per iodic  funct ion of t i m e  

dis tance i n  chord lengths  from leading edge t o  e l a s t i c  ax is  

* 

.. 
s t a t i c  unbalance dis tance i n  semichords (pos i t i ve  f o r  rear- 

w a r d  center  of grav i ty)  

response of system t o  an input 

displacement of a i r f o i l  leading edge, i n  semichords 

angular ro t a t ion  of a i r f o i l  about e l a s t i c  axis 

bandwidth of second-order system, 2Q3, 

increment 

damping r a t i o  i n  percent of c r i t i c a l  damping 

arbitrary i n i t i a l  phase angle of reference s igna ls  

dens i ty  r a t i o  of a i r f o i l  sect ion,  m - 
r[ pb2 

a i r  densi ty  

time constant of averaging device 
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w 

phase lag of response r e l a t ive  t o  input 

phase s h i f t  of averaging device 

frequency, radians /sec 

frequency, uncoupled v e r t i c a l  t r a n s l a t i o n  

uncoupled to r s iona l  frequency 

undamped na tu ra l  frequency of second-order system 

average frequency (eq. (B2) ) % 

amplitude of complex quantity I I  
Subscripts : 

f f i n a l  value 
w 

i i n i t i a l  value 

I imaginary p a r t  of complex quantity 

0 amplitude of o s c i l l a t i o n  

R real p a r t  of complex quantity 

S frequency sweep 

s t  s t a t i c  def lec t ion  

I 7 time constant 

av average 

m a x  m a x i m u m  

An arrow over a symbol denotes a t i m e  vector .  Dots over symbols 
ind ica te  der iva t ives  w i t h  respect  t o  t. Primed symbols denote deriva- . t i v e s  with respec t  t o  t .  

. 
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FREQUENCY- RESPONSE MEASUREMENT TECHNIQUES 

General 

Techniques for measuring the frequency response of physical systems 
may be grouped into three categories according to the type of forcing 
function used. These forcing functions are defined as (a) steady-state 
periodic, (b) arbitrary transient, and (c) continuous random. If the 
system is linear and its parameters do not vary with time, the measured 
frequency response is, in the absence of noise, independent of the 
testing technique used. 
transient test methods are considered and the system is always assumed 
to be linear. 

In this paper the steady-state periodic and 

Periodic Test Methods 

Steady-state (constant-frequency) method. - When the application of 
the wattmeter principle as a method of measuring frequency response with 
periodic excitation is considered, it is helpful to look at the Fourier 
series expression for a periodic function. If x(t) is periodic in the e 

interval T, it may be defined over the interval by a Fourier series 
expansion as follows: 

x(t) = A. + (An cos u t  + B, sin rut> 
2 

n=l 

where 

T 
Bn = S, x(t)sin rut dt 

and 

2r( T = -  
w 

Each harmonic component of x(t) 
complex plane. 
nary component by Bn (see sketch) b 

can be ,looked upon as a vector in a 
The real component is represented by and the imagi- 
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Imaginary 

Real 

The vector may be expressed in rectangular coordinates as 
A 
x(ilu) = A, + iBn 

or in polar form 

where 
B 

'pn = tan-' Tl 
A wattmeter is a device that responds to the average of the product 

of two applied signals. Thus, if one of these signals is x(t) and 
the other is 
will be proportional to the Fourier coefficient 

Eo cos ut, then the quantity indicated by the wattmeter 
A1 

[x(t)Eo cos 

and similarly for the coefficient B1 

[x(t)Eo sin 

Actually, a wattmeter indicates a product averaged over some effec- 
tive averaging time which is dependent upon the time constant of the 
averaging device. 
tuates and makes it difficult to read a mean value. On the other hand, 
if the time constant is too large, the time required to establish steady- 
state conditions may be prohibitive. 

If the time constant is too small, the output fluc- 

A suitable compromise generally 
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results if the time constant is from 3 to 6 times greater than the 
period of the signal being analyzed. 

If y(t) is the steady-state response of a system due to a sinus- 
oidal input 
the vector ratio 

P(t) , the frequency-response function is determined by 

or in polar form 

where cp is the angle by which the response lags  the input. 

Figure 1 illustrates the application of the wattmeter principle 
in the determination of the vector components of frequency response 
for a system. For the case shown it is assumed that the input is a 
pure sine wave of amplitude In the more general case, where the 
forcing function may be contaminated by harmonics, it would be neces- 
sary to analyze the input as well as the output by using sinusoidal 
reference signals the frequency of which is the fundamental of the 
input. 

Po. 

In practical applications, the operations indicated in the figure 
have been mechanized in a variety of ways. 
couple wattmeters, vacuum tube wattmeters (ref. 3 ) ,  resolvers and 
averaging circuits (ref. 4), and electronic analog computer components 
(ref. 3 ) .  

Some examples are thermo- 

Resolvers provide a particularly simple means of multiplying the 
response signal by a sine and cosine reference signal in cases where 
the resolver can be mechanically connected to a rotating shaft having 
the same angular frequency as the excitation frequency. In other 
methods (ref. 6), strain-gage transducers serve as the multiplying 
device when the bridge-circuit is powered by a sinusoidal reference 
signal. Averaging of the product may be accomplished by low pass 

L 
9 
8 
5 
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electrical filters, or by measuring the output on a long-time-constant 
D'Arsonval meter. 

It should be pointed out that the accuracy of the wattmeter tech- 
nique is governed by the quality of thz siaple hammic reference sig- 
nals. If these signals contain harmonic distortion or oscillate about 
a mean value other than zero, the indicated vector components will be 
in error. 
equal to one-half the sum of the products of harmonics (including the 
zero-frequency component) comon to both signals. 

The magnitude of the error is shown in reference 4 to be 

Quasi-steady (frequency-sweep) method. - The frequency-sweep tech- 
nique provides a convenient means of measuring the frequency response 
of a system when a broad band of frequencies is to be surveyed. With 
this technique, instead of measuring the steady-state response at var- 
ious discrete frequencies, the excitation frequency is varied slowly 
(quasi-steady state) with time. Frequency sweep, used in conjunction 
with the wattmeter method of harmonic analysis, makes it possible to 
display a continuous plot of the frequency-response vectors while the 
test is in progress. This not only affords a saving in test time but 
also serves to point up areas of particular interest that may other- 
wise have been overlooked in surveying the frequency range in discrete 
steps. 

Because of the time-varying nature of the input frequency, the 
observed response of the system at any instantaneous frequency will 
differ somewhat from the corresponding steady-state response. The 
effects of frequency sweep on the response for the case of a single- 
degree-of-freedom system has been investigated by Hok (ref. 7) and by 
Barber and Ursell of the British Admiralty Research Laboratory (not 
generally available) where it is shown that in the vicinity of reso- 
nance the major effect of sweep is to make the measured maximum 
response less than the corresponding steady-state maximum and to shift 
the frequency of maximum response in the direction in which the fre- 
quency is changing. These errors, Ays and hu,, are indicated in 
figure 2 and some results of Barber and Ursell are plotted in figure 3(a) 
to show the variation of these errors with a nondimensional sweep 
parameter b f 2 ~  2 2  % . 

When the wattmeter method is used as a means of analyzing frequency- 
sweep data, additional errors are incurred because of the lag charac- 
teristics of the averaging device. An approximate anal- 
ysis of these errors, denoted as MT and Lku, is given in appendix A 

for a single-degree-of-freedom system. In figure 3(b) the magnitude 
of such errors is shown plotted against T/tb where T is the time 
constant of the averaging device and 

(See fig. 2 . )  

is the time required to sweep 
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.. through one bandwidth (2s~)~) of the system. The data points on the 
figure were determined from analog-computer results to be described later 
in the paper and serve to confirm the predictions of the approximate 
analysis in appendix A. 

Transient Test Methods 

Frequency response from transient data.- A s  mentioned before, it is 
not always feasible to use steady-state sinusoidal inputs in frequency- 
response tests. Such a procedure would obviously be impractical in such 
cases as flight tests of a missile system. 
available for testing short but also the dynamic characteristics and 
environment of the system may be varying with time so that a steady- 
state response could never be obtained. 
necessary to abandon test methods based on steady-state concepts and 
consider instead methods of determining frequency response from tran- 
sient data. 
This assumption implies that, although the system's parameters may vary 
with time, the variations occurring during the transient response to an 
input are insignificant . ) 

Here not only is the time 

Under these circumstances it is 

(It must still be assumed that the system is time-invariant. 

. 
Just as the Fourier series provides the mathematical basis for L 

analyzing steady-state response measurements, the Fourier transform pro- 
vides the basis for analyzing transient phenomena. 
response function for the transient-type test is determined by dividing 
the Fourier transform of an arbitrary input into the Fourier transform 
of the response caused by this input. If the input is applied at time 
equal zero and the system is assumed to be at rest before this time, 
the frequency response of the system is defined by the equation: 

The frequency- 

In order to evaluate the integrals (Fourier transforms) in equation ( 5 ) ,  
it is necessary that the response and the input approach some final state 
for which the integral can be evaluated as time approaches infinity. 

A variety of numerical methods for evaluating the Fourier transform 
of arbitrary time functions have been developed. 
refs. 8 to 10.) 
analog methods for evaluating these integrals. Specifically, it is c 

desired to modify the techniques discussed previously for the analysis 

(See, for example, L 

The approach taken in this paper will be to consider 

L 
9 
8 
5 

I 
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of periodic da ta  so  that ,  insofar  as possible, the  same equipment could 
be employed f o r  the  analysis  of t ransient  time h i s t o r i e s .  

C m o i d e r  first. the case where the system after being disturbed 
returns  t o  i t s  o r i g i n a l  state of s t a t i c  equilibrium. L e t  y ( t j  and 
P(  t )  
and 
The upper l i m i t s  of in tegra t ion  i n  equation ( 5 )  can then be replaced 
by tf without a f fec t ing  the  results. Therefore, with the r e l a t i o n  

i n  equation ( 5 )  represent perturbations from s t a t i c  equilibrium 
tf be the time required f o r  the t rans ien t  o s c i l l a t i o n s  t o  subside. 

e-iat = COS cot - i s i n  ut  

equation ( 5 )  becomes 

htf y ( t ) s i n  u t  

Iotf P ( t ) s i n  cot  ( 6 )  

y ( t ) c o s  cot  d t  - i 

Iotf P ( t ) c o s  ut  d t  - i 

G ( b )  = Ltf 

The mathematical operations f o r  evaluating the Fourier transforms 
i n  equations (6) are i l l u s t r a t e d  by the block diagram i n  f igure  4. 
the  similarities between these operations and those indicated i n  f i g -  
ure  1 f o r  the case of s inusoidal  forcing functions.  In  each case a 
data s i g n a l  i s  multiplied by a p a i r  of s inusoidal  reference s igna ls  
phased wo apar t .  
t h e  reference s igna l  is  the  same as the dr iving frequency, with t r a n s i e n t  
e x c i t a t i o n  it may be any value i n  the frequency range of i n t e r e s t .  
second difference i n  the two methods i s  t h a t  the averaging c i r c u i t  used 
i n  the periodic case i s  replaced by an in tegra t ing  device. 

Note 

Whereas with sinusoidal e x c i t a t i o n  the frequency of 

A 

From equations (6)  it i s  seen t h a t  the frequency-response function 
i s  determined from the  complex r a t i o  of the  values of the integrated 
products a t  t h e  t i m e  tf .  Also, it should be pointed out t h a t  the i n i -  
t i a l  phasing between the  sine-cosine reference s i g n a l  and the d a t a  s ig-  
na ls  ( indicated by 0 
p a i r  of reference s ignals  i s  used t o  analyze both the  input and the out- 
put t i m e  h i s t o r i e s .  Since phase i s  r e l a t i v e ,  the choice of a tine base 
i s  unimportant. 

i n  f i g .  4)  i s  unimportant so  long as the  same 
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Equations (6) were derived on the assumption t h a t ,  a f t e r  some f i n i t e  
time i n t e r v a l  tf ,  the system returns  t o  the  same s t a t i c  equilibrium 
s t a t e  t h a t  exis ted before the disturbance w a s  applied.  I n  event the 
i n i t i a l  and f i n a l  s t a t i c  equilibrium are d i f f e r e n t ,  such as with s tep-  
function inputs,  it i s  necessary t o  account f o r  t h i s  difference i n  a 
manner indicated i n  reference 8. 
which i s  applicable when the f i n a l  values of y ( t )  and P ( t )  are 
constants other than zero, i s :  

L 

The modified form of equations ( 6 ) ,  

L 
9 
8 
5 

(F r.(tfl R - 0 - i[F F(ti] I + 
y(tf)s in  ut'] 

P -1 t s i n  cu t  - i fp( t ) j  I + G ( i c u )  = 

cu cu 

With the t r a n s i e n t  t e s t i n g  method it i s  desirable ,  although not 
essent ia l ,  t o  record the  time-history data  on magnetic tape.  Then, a 
short  burst  of data  from a s ingle  tes t  i s  s u f f i c i e n t  t o  determine the 
frequency response over the range of frequencies present i n  the input.  
The frequency response would be obtained by playing the d a t a  repeatedly 
i n t o  the t r a n s i e n t  analyzer, while changing the frequency of the  re fer -  
ence signals before each pass.  Without the  benef i t s  of magnetic tape,  
the  t e s t  must be repeated with each change of t h e  reference s igna l  f r e -  
quency, a s i t u a t i o n  analogous t o  the  test  procedure normally used with 
sinusoidal inputs.  

Inputs f o r  t r a n s i e n t  t e s t s . -  In  the determination of frequency 
response from t r a n s i e n t  t e s t s ,  the range of frequencies t h a t  can be 
analyzed with accuracy depends on the harmonic content of the  input .  

The frequency spectra  of a half-sine-wave pulse and a s t e p  func- 

Note t h a t  the frequency content of these 
t i o n  are p lo t ted  i n  f igure  5 and are representat ive of inputs of ten  used 
i n  pract ice .  (See ref.  2.)  
functions f a l l s  off  with increasing frequency. For the half-s ine pulse, 
and a l s o  other  symmetrical pulse shapes, the  frequency content even goes 
t o  zero (bottoms) per iodical ly .  
the  accuracy of frequency-response measurements i s  l i k e l y  t o  de te r iora te  
at frequencies where t h e  harmonic content of the  input i s  low. 

Thus, with noise present  i n  the d a t a  

In order t o  extend the frequency range beyond t h a t  provided by 
pulse inputs, a manual frequency-sweep technique f o r  determining air- 
plane frequency response i s  invest igated i n  reference 11. I n  these 
t e s t s  the p i l o t  o s c i l l a t e d  the airplane longi tudinal  cont ro l  system at 
a continuously increasing r a t e  so  t h a t  i n  only 5 o r  10 cycles the  period 
of the input control  motion var ied from 3 t o  0.3 seconds. The harmonic 
content of the  input i n  the frequency range covered by the sweep w a s  
found t o  be appreciably higher than t h a t  of a t r i a n g l e  input used f o r  

. 



comparison everywhere except a t  the n a t u r a l  frequency of the airplane 
pi tching mode. 
the  input t o  avoid excessive airplane pitching o s c i l l a t i o n s .  

A t  t h i s  resonant frequency the p i l o t  apparently reduced 

The harmonic content of a frequency-sweep input i s  dependent not 
only on the amplitude of the iiipit a i  the freqixncy range swept but 
a l s o  on tne manner i n  which the frequency var ies  with time through t h i s  
range. It should be possible ,  therefore, t o  program the v a r i a t i o g  of 
frequency with t i m e  i n  such a way t h a t  the harmonic conteiit of the 
s igna l  i s  approximately uniform over frequencies covered by the sweep. 
This procedure i s  somewhat analogous t o  t h e  use of "white noise" exci ta-  
t i o n  (uniform power s p e c t r a l  densi ty)  i n  tests involving random inputs.  
In  the present case, however, the a i m  i s  not  only t o  achieve a uniform 
spectrumbut  a l s o  t o  economize on tes t ing  t i m e  by building up the neces- 
sary frequency content of the input as rap id ly  as possible .  

The problem of designing frequency-sweep inputs which have uniform 
frequency spectra  i s  t rea ted  i n  appendix B. Three variable-frequency 
constant-amplitude functions a re  considered: a s ine wave, a sawtooth 
function, and a rectangular pulse t r a i n  (see sketch (b)  of appendix B ) .  
It i s  shown t h a t  f o r  such functions a l i n e a r  var ia t ion  of frequency with 
time produces a uniform spectrum. For a given frequency-sweep range 
the  l e v e l  of the  spectrum i s  proportional t o  the square root  of the 
sweep time. Thus i f  tin i s  t h e  time required t o  increase the f r e -  
quency of the input from an i n i t i a l  value mi t o  a f i n a l  value of 
the  e f f e c t i v e  l e v e l  of the spectrum over these frequencies i s ,  from 
appendix B, 

where f o r  the  s i n e  function K = E, f o r  the  sawtooth funct ion K = 6, 
and f o r  the  rectangular-pulse function K = fi. 

The spectrum of a frequency-modulated s i n e  funct ion i s  shown i n  
figure 5 .  
mined by an analog computer and shown f o r  comparison i s  the  e f f e c t i v e  

spectrum l e v e l  predicted by equation (8) with K = E. Good agreement 

between the  true and the  e f fec t ive  levels  i s  indicated everywhere over 
the  sweep-frequency band except near t h e  end frequencies cui and of 
where the a c t u a l  spectrum i s  about one-half the  e f f e c t i v e  value. This 
difference might be expected when one considers t h a t  the end frequencies 
have adjacent frequencies only on one s ide .  

The c i r c l e  da ta  points  represent the  t r u e  spectrum as deter-  
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Since the use of frequency sweep has been discussed both from the 
standpoint of periodic and transient type testing, it is of interest 
to compare the criteria for selecting a sweep rate for the two cases. 
For the periodic case the object is to sweep at a rate sufficiently 
slow that the system behaves essentially as it would if conditions were 
steady. If the system is lightly damped or if its natural frequencies 
are closely spaced, this criterion may require that extremely slow sweep 
rates be used. 

With the transient testing technique, the major concern is simply 
that there be sufficient harmonic content in the input to excite the 
system above whatever noise may be present. Beating between frequencies 
of closely spaced natural modes presents no difficulty so long as the L 
system is disturbed from and returns to steady-state conditions and the 9 
entire transient time history is included in evaluating the Fourier 8 
transforms. 5 
or even approach, steady-state conditions during the sweep, the time 
required to accomplish the sweep can be less by an order of magnitude 
or so than the sweep time normally used for the quasi-periodic case. 

Since in the transient case it is unnecessary to establish, 

SIMULAmD FRFQUENCY-RFSPONSE TESTS 

Scope - 
In previous sections of the paper various techniques were discussed 

for automatically determining the frequency response of physical sys- 
tems. The aim of the present section is to demonstrate the application 
of these techniques with a specific example, the example chosen being 
the forced response of a simple aeroelastic system in supersonic f l o w .  
For this purpose both the aeroelastic system and the harmonic analyzer 
used to evaluate its frequency response were simulated on an analog 
computer as illustrated in figure 6. By using the data-reduction tech- 
niques discussed earlier, the frequency response of the system was 
evaluated for three methods of excitation: periodic, slow sweep, and 
transient rapid sweep. 

In order to gain some insight into the noise-rejection capabilities 
of these data-reduction techniques, simulated atmospheric turbulence 
and instrumentation pick-up noise were introduced in some cases. As 
indicated in figure 6, the noise could be switched on or off at will 
so that the effects of noise on the final result could be easily 
observed. 

Also, since in practical applications of the sinusoidal excita- 
tion method pure sine-wave forcing functions are often not realized 
because of, say, nonlinear elements in the force-generating mechanism, ' 
provisions were made for introducing harmonic distortion into the input. 
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Simulated Aeroelastic System 

. 

The aeroelastic system simulated on the computer was a two-degree- 
of-freedom flat-plate airfoil which is shown schematically in figure 7. 
The equations of motion, developed in appendix C, utilize piston theory 
(ref. 12) at a Mach number of 2.0 for defining the aerodjr;nmic fsrces 
In all cases the forcing function was assumed to act at the leading edge 
of the airfcil m d  the response was taken to be the vertical displace- 
ment at this point. The frequency response of the system and the test 
conditions are given in figure 8. In this figure the amplitude ratio 
is the leading-edge displacenent normalized with respect to the static 
deflection of the elastic axis and the phase angle is the angle by which 
the displacement l ags  the force. The solid curves in the figure repre- 
sent the theoretical frequency response determined from the equations 
of motion and the points are typical results obtained with transient 
and periodic inputs. These results indicate the overall accuracy and 
the repeatability of the simulation in the absence of noise. 

In order to simulate atmospheric turbulence the output of a 
Gaussian "white noise" generator was passed through a low-pass filter. 
By adjusting the filter time constant the frequency content of the fil- 
ter output was matched to that measured for atmospheric turbulence in 
reference 13. Similarly, instrumentation pick-up noise was simulated 
with another filter which passed considerably higher frequencies than 
the filter for air turbulence. 
the simulated turbulence and pick-up noise used throughout the paper 
are given in figure 9. 

Plots of the power spectral density of 

Results Obtained With Various Inputs 

Periodic inputs.- Consider first the case in which the system is 
Typical analog time histories driven by a periodic forcing function. 

showing the input, the response, and the corresponding vector components 
are given in figure 10. The forcing function for this case had a funda- 
mental frequency of 1.9 radians per second plus appreciable harmonic 
distortion representing nonlineariaties in the force-generating device. 

For discussion purposes the figure is divided into three time 
intervals. The first interval shows the behavior of the system with no 
random noise present. 
lence was added and also the recorder speed was increased. The magni- 
tude of the aerodynamic force due to turbulence, shown by the bottom 
trace in figure 10, has a root-mean-square value some 3 times that 
of the periodic forcing function. (The force scales for F(t) and NT 
are the same in the figure.) 

In the second time interval atmospheric turbu- 

NT 

Its effect on the vector components of 
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response, however, is practically negligible because of the low fre- . 
quency content of turbulence at the frequency being analyzed a//% = 1.9). 
(See fig. 9.) In the third interval simulated pick-up noise NE was 
added to the output. The frequency content (fig. 9) and intensity of 
the pick-up noise were adjusted by trial and error to make 
representative of "noisy" experimental data. For the case shown, the 
maximum excursion of the 
component and is approximately 15 percent of the vector length. 

( 

z(t) appear 

vector due to noise is in the imaginary z(icu) 

Quasi-periodic inputs.- Consider next a sinusoidal forcing function L 

8 
5 

of slowly varying frequency. Figure ll(a) shows the time-history 9 
response and the vector components of the simulated system excited by 
an input of linearly increasing frequency. In order to emphasize the 
effects of sweep alone, random noise and harmonic distortion in the in- 
put were not included here. 

It is of interest to compare the vector components indicated by the 
analyzer with the theoretical steady-state components which are shown 
by the dashed curves. Note that the effects of sweep, previously illus- 
tfited in figure 2 and appendix A, are clearly evident. 
it is shown how such errors can be eliminated by analyzing slow sweep 
time histories as transient rather than as quasi-steady-state data. 

Subsequently, 

- 
Figure ll(b) shows a polar plot of the same vector components given 

in figure ll(a). 
inary vector components to an X,Y plotter. 
of the tip of the frequency-response vector as the input frequency varies. 
The amplitude ratio is given by the vector length and the phase angle, 
by the angle between the vector and the positive real axis. 
theoretical steady-state values are shown for comparison. 

This curve was obtained by feeding the real and imag- 
The plot represents the locus 

Again, the 

The two natural modes of the system may be identified in figure ll(b) 
by the two circular-shaped loops. The inner loop is associated with the 
vertical translation mode while the outer loop is associated with the 
torsion mode. In considering ground vibration tests of airplanes, 
Kennedy and Pancu (ref. 14) developed methods for evaluating damping 
and natural frequencies from the near-circular shapes exhibited by the 
vector polar plot of frequency response. 
applies the method to flight flutter testing as a means of determining 
the damping from flight-forced-response tests. 

Broadbent (ref. 15) a lso  

In order to identify natural frequencies by the polar-plot method, 
Kennedy and Pancu suggest use of the variation of distance along the 
polar curve for equal frequency increments. Natural frequencies occur 
where ds/dw is a maximum, s being the distance along the polar curve. 
For complex systems this method is found to give a better indication of 
natural frequencies than do the frequencies of maximum response. Note 



i n  f igu re  l l ( b )  t h a t ,  with frequency sweep, t he  polar  p l o t  is  generated 
by many s m a l l  co i l - l i ke  loops. 
by the  averaging f i l t e r  and can serve t o  provide a convenient measure of 
ds,/du. I n  order t o  i l l u s t r a t e ,  l e t  As be the  dis tance between adjacent 
loops.  The time A t  required f o r  tie vec to r  t o  descr ibe me loo? i s  
one-half the  period of t he  forc ing  frequency ( the re  are two r i p p l e  cycles 
for each input cycle) ;  therefore ,  

These loops arise from a r i p p l e  passed 

at = 9 
w 

and 

hu = &!It 

These r e l a t i o n s  combine t o  give 

Figure l l ( c )  i s  a dupl icate  of f igure l l ( b )  except f o r  t h e  addi t ion 
of turbulence and e l e c t r i c a l  pick-up noise .  
the  two cases are i n  good agreement at all frequencies.  

For the  noise l eve l s  used, 

Arbi t rary inputs . -  For the  case of a r b i t r a r y  forcing funct ions,  
t he  input  and t r ans i en t  response of the system were analyzed by the  
procedure shown i n  f igu re  4.  I n  t h i s  simulated study the  input  w a s  
repeated each t i m e  t he  reference frequency w a s  changed. I n  t e s t i n g  an 
a c t u a l  physical  system, however, it would be more f eas ib l e  t o  perform 
only one t e s t  and record the  da t a  on magnetic tape which would then be 
played repeatedly i n t o  the  t r ans i en t  analyzer ( f i g .  4)  f o r  evaluat ion 
of t h e  frequency response. 

The t r ans i en t  response of t he  system t o  a half-sine-wave pulse and 
a rapid-sweep input  a r e  i l l u s t r a t e d  in f igu re  12. Time h i s t o r i e s  such 
as these  were used t o  determine the  amplitude and phase angle of f r e -  
quency response indicated by the  c i rcu lar  da ta  poin ts  i n  f igu re  8. 
no noise w a s  present,  the  pulse and the sweep d a t a  gave i d e n t i c a l  
r e s u l t s .  With the  addi t ion of random noise,  however, t h e  accuracy of 
t h e  r e s u l t s  depends on the  r a t i o  of the harmonic content of t h e  s igna l  
t o  t h a t  of the noise at  the  frequency being analyzed. 
cussed previously (see f i g .  ?), f o r  a given noise  l e v e l  t he  rapid sweep 
input  would produce more accurate resu l t s  than the  pulse input .  

Since 

Thus, as d i s -  

Results of t he  analysis  of a typical  t r ans i en t  response with noise 
added i s  given i n  f igure  13. In order t o  obtain the  frequency response 
( the  case shown i s  f o r  w f i  = 2.0 radians/sec),  a complex r a t i o  i s  

taken between F[z(tf)] and F[F(tf)] where the  subscr ip t  f denotes 
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the  f i n a l  value a f t e r  the  t r a n s i e n t  motion has damped out.  
because of the  e f f e c t s  of simulated turbulence and pick-up noise, there  
a r e  small random f luc tua t ions  i n  the f i n a l  values of the Fourier t rans-  
form of response. These e r r o r s  have m a x i m u m  value of about 4 percent 
f o r  the case shown. With a slower sweep r a t e ,  such as shown i n  f i g u r e  5 ,  
the  frequency content of the  input would be grea te r  and therefore  the  
percentage e r r o r  would be reduced. If the half-s ine pulse had been 
the  input, the  same noise i n t e n s i t y  would give r i s e  t o  e r r o r s  of the 
order of 20 percent. 

Note t h a t ,  

Simulated F l i g h t  F l u t t e r  Tests 
L 
9 
8 
5 Up t o  t h i s  point  a l l  t h e  r e s u l t s  presented have been f o r  a s ingle  

s e t  of parameters. 
dynamic-response t e s t  i s  t o  examine how changing various parameters 
a f f e c t s  the performance or s t a b i l i t y  of the  system being tes ted .  In  
the  case of f l u t t e r  tes t ing ,  f o r  example, it i s  of i n t e r e s t  t o  deter-  
mine not only whether the  system i s  f r e e  from f l u t t e r  f o r  a given t e s t  
condition, but a l so  t o  have some indicat ion of the  degree of s t a b i l i t y .  
Since f l u t t e r  i s  of ten  explosive i n  nature and general ly  leads t o  
catastrophic s t r u c t u r a l  f a i l u r e s ,  it i s  highly des i rab le  t o  have a means 
of assessing response of the  t e s t  vehicle while t h e  t e s t  i s  i n  progress 
so  t h a t  tendencies toward i n s t a b i l i t y  can be readi ly  observed. 

(See key i n  f i g .  8.)  Generally, one purpose of any 

. 
It i s  of i n t e r e s t  t o  i l l u s t r a t e  how some of the  frequency-response 

t e s t i n g  and automatic data-reduction techniques described i n  t h i s  paper 
might be applied t o  f l i g h t  f l u t t e r  tests.  
r a t i o  i n  the  equations of motion f o r  t h e  a e r o e l a s t i c  system (see 
appendix C )  w a s  varied t o  represent f l i g h t s  a t  various a l t i t u d e s .  A 
slow sweep run w a s  made at  each a l t i t u d e  and the frequency-response ’ 
vector  components were automatically p l o t t e d  on an X,Y p l o t t e r  while 
the test  w a s  i n  progress. 
p l o t  i n  the upper l e f t  of the  f igure  i s  the  basic  configuration 
(p = 20) shown i n  f igure  l l ( b ) .  Note t h a t ,  as p approaches the  c r i t i -  
c a l  f l u t t e r  value, which i s  8.3, the c i r c u l a r  shapes associated with 
the two natural modes of the  system tend t o  lose  t h e i r  individual  iden- 
t i t y  and the response takes on the appearance of t h a t  of a single- 
degree-of-freedom system. 

For t h i s  purpose, the densi ty  
p 

The r e s u l t s  a r e  shown i n  f i g u r e  14. The 

This apparent merging of two n a t u r a l  modes as a f l u t t e r  condition 
i s  approached i s  c h a r a c t e r i s t i c  of a l a r g e  c l a s s  of f l u t t e r  phenomena. 
In  reference 16, the concept of frequency coalescence of n a t u r a l  modes 
i s  used t o  provide a simple explanation of the mechanism of f l u t t e r .  . 



Elimination of Errors Due to Sweep 

4 

As discussed previously, the vector plots in figure 14 are in 
error due to the effects of frequency sweep. Even though such errors 
exist, plots of this type are of considerable value in that they make 
possible a qualitative assessment of the data while the tests are in 
progress. Often, when systematic variations of parameters are made, 
it will he found that many of the rims turn out to be of little interest 
and do not warrant further consideration. However, for the most signif- 
icant cases it would be desirable to have a means of eliminating the 
errors due to sweep. 
after the test if the sweep time histories, including transients at the 
beginning and end of the sweep, are recorded on magnetic tape. 

This can be done by performing a transient analysis 

Thus, a proposed testing technique using slow-sweep excitation 

Then, 
would be to obtain first a qualitative "quick-look" at the frequency 
response during the test by the periodic method of analysis. 
after completion of a series of runs, those that appear to be the most 
significant would be reanalyzed at discrete frequencies by the transient 
method to correct f o r  the  errors caused by analyzing sweep data as though 
it were steady-state data. 

In this section of the paper the frequency-response measurement 
techniques discussed earlier are applied in flight tests involving aero- 
elastic response measurements of a jet airplane. 
metrical vibration modes of the airplane were excited by servo-controlled 
inertia shakers installed in each wing tip and the resulting wing-tip 
acceleration measured. 
be found in reference 17. 

The predominant sym- 

A further description of the test equipment may 

A s  in the simulated forced-response tests, three types of forcing 
functions were used - steady-state sinusoidal, slow sweep with fre- 
quency increasing from 4.5 to 40 cycles per second in 30 seconds, and 
a rapid sweep in which the same frequency range is swept in only 
6 seconds. 
rate was programed to increase as the square of the frequency for both 
the slow- and the rapid-sweep cases.) The frequency-response function 
was evaluated in each case by playing tape-recorded time histories of 
the shaker force and wing-tip acceleration response into an analog com- 
puter. Typical frequency-response plots for the three methods of 
excitation are shown in figure 15. 

(For reasons not pertinent to this discussion, the sweep 

The sinusoidal and slow-sweep data were analyzed by the periodic 
method (fig. 1) and rapid-sweep data were analyzed as transients (fig. 4). 
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For the periodic case the reference signals were obtained from the sig- .I 

nal generator used to drive the shaker servo system. High-speed elec- 
tronic multipliers were used to multiply the reference signals by the 
data signals; thus, the data could be reduced in real time. 

For the transient case the electronic multipliers were replaced by 
an electro-mechanical device which, in addition to performing the multi- 
plication operation, also. generated the reference signals. This was 
accomplished by driving a pair of d-c sine-cosine potentiometers (see 
ref. 18) with a constant-speed electric motor as illustrated in fig- 
ure 16(a). A sine-cosine potentiometer is a device which, when rotated L 
at a speed co, generates the products fA cos cot and hl sinwt, where 9 
+A and -A are analog voltage signals applied across windings of the 8 
potentiometer. In the present case these applied voltages are propor- 5 
tional to the shaker force P(t) and the acceleration response y(t). 
As shown in the figure the two potentiometers are geared together and 
driven by a common shaft whose rotational speed could be set at any 
desired value of co from 0 to 40 cycles per second. A photograph of 
the actual device used is shown in figure 16(b). 

Atypical record showing the rapid-sweep time-history data and the 
corresponding Fourier transforms for a reference signal frequency of 
31.2 cycles per second is presented in figure 17. 
simulated transient tests shown in fig. 13 . )  The wing was disturbed L' 

from static equilibrium by a sudden application of shaker force which 
increased in frequency from 4.5 to 40 cycles per second in about 6 sec- 
onds. At the end of this time, the shaker was stopped and the response 
was allowed to dampen out. Actually, the time required to perform the 
test was governed by the maximum sweep rate of the shaker input signal 
generator. With the noise level present in these tests, it is felt that 
a sweep rate several times faster than the one shown could have been 
used without adversely affecting the accuracy of the results. The four 
upper traces in the figure are the real and imaginary components of the 
Fourier transforms of the time histories P(t) and y(t). Although 
the final values of the Fourier transforms are needed for evaluating 
frequency response, it is of interest to note that the only time these 
quantities show appreciable variation is when the frequencies of the 
shaker and reference signals are close together. 

(Note similarity to 

When the frequency-response data in figure 15 are compared, it is 
seen that the results from each of the three methods of excitation are 
in reasonably good agreement. The first symmetric wing bending mode of 
the airplane occurs at 6.8 cycles per second. Also a torsion mode exists 
at 33 cycles per second but unfortunately the pick-up location was near 
the node line so that the response of this mode is not readily apparent 
in the figure. 
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c On the basis of these results it appears that, in aeroelastic 
dynamic response investigations of aircraft and missiles, a programed 
transient-type rapid-sweep excitation makes possible a considerable 
saving in test time while preserving the accuracy of steady-state sinus- 
oidai me tiids . 

CONCLUDING FGMARKS 

Data-reduction methods using general-purpose analog computing 
equipment and compatible testing techniques for determining the fre- 
quency response of linear physical systems were discussed. The tech- 
niques considered were classified as steady state or transient depending 
on the method of excitation. 

When the excitation frequency is varied slowly with time, both 
techniques of data reduction can be used to advantage. The data are 
first analyzed by the quasi-steady-state method to permit a cursory 
examination of the frequency response while the test is in progress. 
Because true steady-state conditions are not realized, because of 
the time-varying nature of the input frequency, these results are in 
error. 
interest, the input-output time histories, having been recorded on mag- 
netic tape, are reanalyzed at discrete frequencies by the transient 
analysis technique. 

In order to eliminate such errors from those cases of particular 

A frequency-sweep input is also considered as a forcing function 
for the transient-type tests. However, in this case the object is not 
to approach steady-state sinusoidal conditions but rather to build up 
high concentrations of frequency content over the frequency range of 
interest while keeping the test time as short as possible. The 
frequency-response function is then determined after the test by taking 
the Fourier transform of the input and output time histories. 
shown that linear variations of frequency with time produce uniform fre- 
quency spectra the magnitude of which is inversely proportional to the 
square root of the sweep rate. 

It is 

As a means of illustrating the techniques considered in the paper, 
examples are given that relate to the dynamic forced response of aero- 
elastic systems. In one case the methods are demonstrated for a simple 
two-degree-of-freedom system that was simulated on an analog computer. 
In another case flight-test-forced dynamic-response measurements on a 
jet airplane are analyzed. These examples also serve to indicate the 
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suitability of using conventional electronic analog computer components 
in the analysis of experimental dynamic data. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va., June 13, 1960. 
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APPENDIX A 

ERRORS DUE TO AVERAGING DEVICE WHEN FRF:QUENCY- 

SWEEP INPUTS ARE USED 

In  the  wattmeter pr inc ip le  of harmonic analysis ,  the  power or  prod- 
u c t  read by a wattmeter var ies  over any cycle; thus,  an averaging device 
i s  needed t o  secure the  average or mean power over a number of cycles. 
I n  the case of frequency sweep the mean value var ies  with t i m e  and the 
output of the averaging device tends t o  l a g  the  t r u e  mean value. This 
lag ,  together with the  frequency-sweep e f f e c t s  analyzed by Barber and 
Urse l l  (not  generally ava i lab le)  gives r ise t o  e r r o r s  i n  the  indicated 
vector components of response. The following ana lys i s  f o r  a s ingle-  
degree-of-freedom system i s  presented t o  show the nature and approximate 
magnitude of such e r r o r s  due t o  l a g  of the averaging device. 

The equation of motion of a single-degree-of-freedom system driven 
by a s inusoidal  input of slowly varying frequency i s  

The r e a l  and imaginary vector components of the response 
determined by averaging the  products 

y ( t )  a r e  

y ( t ) c o s  J u ( t ) d t  

y ( t ) s i n  J u ( t ) d t  

Assum? t h a t  the products are averaged by devices which have the t r a n s f e r  
function of a f i r s t - o r d e r  low-pass f i l t e r .  
of output t o  input f o r  such a f i l ter  i s  

I n  operat ional  form the  r a t i o  

where T i s  the  f i l t e r  time constant and s the  Laplace operator.  
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For the present purpose, assume that the mean values of the products 
(eqs. ( A 2 )  and (A3)) vary with frequency in the same manner as with 
steady-state excitation at constant frequency. 

From the solution of equation (Al) based on steady-state considera- 
tions, the real and imaginary vector components are 

These component s 

1 - 

are plotted 

-25 (e) 

in figure 18 against for the 

(A6) 

case 

= 0.05. Note that near resonance (-& x l.O), the major contribution 

of response comes from the imaginary component. 

L 

5 

. 

Let the frequency vary linearly with time such that 

o(t) = % + ;st 

or  measured from cu, 

w(t) - w, = &t (A71 

A convenient nondimensional parameter is obtained by dividing equa- 
tion (A7) by the half-power bandwidth of the system (6 = 2 [ % )  to give 
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where t b  = 8 i s  the time required fo r  the input frequency t o  sweep 
w 

through one bandwidth. The r a t i o  t / t b  i s  a l s o  shown as an abscissa  
i n  figure 18. 
r a t i o  i s  tha t  it combines the sweep ra te  of the  input and t h e  parameters 
of the  system i n t o  a s ingle  var iable .  
found t o  be su i tab le  approximations of the r e a l  aEd imaginary vector 
components, 

The advzr,tage in lusing t h i s  p a r t i c u l a r  nondimensional 

The following functions .were 

and are indicated by the dashed curves i n  f igure  18. 

With the inputs t o  the f i l t e r s  expressed by equations (Ag)  the out- 
puts,  t r a n s i e n t s  being neglected, a r e  found t o  be 

where 

o($)R = - 

0(tJI = - 

Consider f i r s t  the  e r r o r  i n  maximum response due t o  f i l t e r  lag .  The 
mximum value of the imaginary component i s  a close approximation t o  
the  maximum response 
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T h i s  i s  t o  be compared with the  t r u e  m a x i m u m  steady-state response of 
the  system which f o r  small damping ( c  << 1.0) i s  from equation (A6)  

Thus from equations ( A 6 ) ,  ( A l l ) ,  and (Al2) the  
due t o  f i l t e r  l a g  r e l a t i v e  t o  the steady-state 
as 

4Y-r 

e r r o r  i n  maximum response 
m a x i m u m  may be expressed 

A p l o t  of t h i s  e r r o r  against  T / t b  i s  shown i n  f igure  3(b) .  

The second error of i n t e r e s t  i s  the  s h i f t  i n  the frequency of maxi- 
mum response. 
reaches a maximum value a t  a time 

From equation (A10)  it i s  seen t h a t  the  f i l t e r  output 

after the input frequency passes through resonance. Therefore, the  
indicated resonant frequency i s  s h i f t e d  by an amount Cttm from the 
steady-state resonant frequency. Expressed i n  bandwidths the  resonant 
frequency s h i f t  i s  

L 
9 

5 
a 
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This r e l a t i o n  i s  a l s o  p lo t ted  i n  figure 3(b). 
predicted e r r o r s  and those determined from analog-computer r e s u l t s  (da ta  
points  i n  f igure)  indicates  good agreement desp i te  t.he approximate nature 
of the  ana lys i s .  

A comparison beiweeii the 

A t h i r d  e r r o r  which can readi ly  be evaluated i s  the frequency- 
response phase-angle s h i f t  associated with f i l t e r  l ag .  
angle i s  by equations (A5)  and ( A 6 )  

The t r u e  phase 

Ttrue 

The indicated phase angle i s  - when the  r e a l  component given 2 
by equation (A10)  passes through zero. This occurs when t = T or ,  
i n  terms of frequency, when 

(I) = 1 t 2 5 . 7  

tb J w, 

The t r u e  phase angle a t  t h i s  f'requency i s  

'Ptrue = tan- 1 (A181  

When 1; and T/tb a r e  small r e l a t i v e  t o  uni ty , .  equation ( A 1 8 )  becomes 
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Therefore, in the vicinity of resonance, the phase-angle error due to 
filter lag is 

@ = %rue - Tindicated 

&I=-- 27 
tb 
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8 
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APPENDIX B 

FREQUENCY-SWEEP INPUTS DESIGNED TO PRODUCE 

UNIFORM FmQUENCY SPECTRA 

The problem considered i s  t h a t  of cont ro l l ing  the  sweep rate of a 
constant-aiiplitude variable-frequency t i m e  funct ion P ( t )  such t h a t  i n  

t h e  frequency plane i t s  Fourier transform IF [P(t]l is  approximately 
uniform over t h e  band of frequencies covered by the  sweep. (See sketch a. ) 

("i uf 
Frequency 

Sketch (a) .- Desired uniform frequency spectrum. 

Although there  are many possible  forms of t he  funct ion P ( t )  which 
could be t a i l o r e d  t o  produce an approximate uniform spectrum, the present 
ana lys i s  w i l l  consider as typ ica l  examples those funct ions shown i n  
sketch (b).  
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Time __f 

Sketch (b) . - Time h i s t o r i e s  of t r ans i en t  forc ing  funct ions.  

It is  assumed tha t  i n  the time durat ion tin over which the  forcing 
function ac t s ,  the  "instantaneous" fundamental frequency v a r i e s  con- 
tinuously from an i n i t i a l  value ai t o  a f i n a l  value *. The a i m  of 
t h e  present analysis  i s  f i r s t  t o  f i n d  t h e  form of the va r i a t ion  of 
w i t h  time required t o  generate a uniform spectrum, and second t o  es t i -  
mate the l e v e l  of t he  spectrum. 

u) 

F i r s t  consider the s ine  wave of va r i ab le  frequency shown a t  the  
The equation f o r  t h i s  funct ion i s  top  of sketch (b). 

P l ( t )  = 0 (t < 0 and t > tf) 

Assume t h a t  the va r i a t ion  of u ( t )  w i t h  time i s  s u f f i c i e n t l y  slow 
tha t  over an i n t e r v a l  A t  
wave of constant frequency 

equation ( B l )  may be approximated by a s ine  
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- 
where al i s  the  average frequency over t h e  i n t e r v a l  A t .  The t o t a l  
energy contained i n  P l ( t )  over t h i s  i n t e r v a l  can be expressed as 

t ,+At  
2 2 

J, P1 ( t ) d t  = Po 

If Pl ( t )  undergoes n osc i l la t ions  

( n  = in teger ) ,  the  in tegra t ion  of equation 

Po2 LAt s i n  cult d t  

i n  time A t  such t h a t  

(B3)  gives 

2 Po A t  

2 
- - -  

The assumption of n being an integer  w a s  made i n  order t o  simplify 
equation ( B 4 ) .  The e f f e c t s  of n being other  than an in teger  become 
negl igible  as n increases.  Equation (B4) shows t h a t  the  t o t a l  energy 
i n  P l ( t )  i s  simply proportional t o  the durat ion of A t  and i s  inde- 
pendent of frequency. In  order t o  achieve a uniform spectrum, it i s  
required t h a t  the energy per ho (Cro being the frequency increment 
i n  
sweep. Thus, when equation (B4) i s  divided by & and the  r e s u l t  i s  
s e t  equal t o  a constant, it i s  seen t h a t  the  r a t i o  
constant during the sweep; t h a t  is, a l i n e a r  var ia t ion  of frequency with 
t h e  i s  required t o  produce a uniform spectrum. 

A t  seconds) remain constant over the frequency band covered by the  

&/At must be held 

The second point  of i n t e r e s t  i s  the  re la t ionship  between the l e v e l  
of the  spectrum and the  frequency-sweep r a t e .  Parseval ' s  theorem, which 
r e l a t e s  the t o t a l  energy of an a rb i t ra ry  t i m e  function t o  the  area under 
the square of i t s  frequency spectrum, provides the  b a s i s  of f inding an 
e f f e c t i v e  spectrum l e v e l .  

Parseva l ' s  theorem f o r  Fourier i n t e g r a l s  s t a t e s  
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The left-hand s ide of equation (B5) f o r  the case of a variable-frequency 
s i n e  wave has been shown t o  depend only on t h e  time over which 
a c t s  and not on the frequency (see eq. ( B 4 ) ) ;  therefore ,  

P l ( t )  

Since the shape of the  frequency spectrum i s  assumed t o  be rectangular,  
t h e  right-hand s ide  of t h e  equation may be defined as the  product of an 
"effective" spectrum height  times t h e  frequency band covered i n  t h e  
sweep. 8 

L 
9 

5 

When equation (B6) i s  equated t o  (B7) ,  the  e f f e c t i v e  spectrum l e v e l  
i s  found t o  be 

J 
By a similar procedure the e f f e c t i v e  spectrum l e v e l  of the two 

other  functions shown i n  sketch (b) are: 

For the sawtooth funotion: 

and f o r  the pulse t r a i n :  
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As stated previously,  t h i s  analysis  i s  based on the  assumption 
t h a t  t he  va r i a t ion  of u ( t )  i s  su f f i c i en t ly  slow f o r  it t o  be approxi- 
mated by a s e r i e s  of constant-frequency i n t e r v a l s .  Experience has indi- 
cated t h a t  t h i s  i s  not a severe assumption. The spectrum l e v e l  of sweep 
inputs  as rap id  as that diGiv? i  i n  f i g w e  12(b)  can be estimated with 
reasonable accuracy by equation ( B 8 ) .  

It i s  i n t e r e s t i n g  t o  note t h a t  of the th ree  funct ions considered 
the  pulse  t r a i n  not only i s  r i c h e s t  i n  frequency content bu t  a l so  would 
be the  simplest  t o  generate i n  many p r a c t i c a l  appl ica t ions .  

L 
9 
8 
5 

. 
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APPENDIX C 

EQUATIONS OF MOTION FOR THE SIMULATED AEROELASTIC SYSTEM 

The equations.of motion for the vertical translation and torsion 
degrees of freedom for the airfoil shown in figure 7 are: 

L 
9 
8 

(c1) i 5 

+ SUE + Chh = 2 + P(t) 
.. 

I,% + S,h + Cuu = ma - 2bxoP(t) 

Structural properties of the system are represented by the left-hand 
side of the equations and the external forces and moments, originating 
from aerodynamic and wing shaker forces, are on the right-hand side. 
The aerodynamic forces and moments are from piston theory (ref. 1 3 ) .  

. 
where wT is a random vertical velocity<component of air turbulence. 

For convenience the equations were put into a nondimensional form 
by making the following substitutions: 

2 - ICL r - -  
mb2 U 
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The final form of the equations of motion used are: 
- - - 

5'' + allh' + h + bud1 + bllu' + blOa = F ( t )  - NT 
- - 

a22h'1 + a 21 h' + d' + b21u' + b20u = -CIF(t) - C2 

where 
- 4 

"11 - - *% 
bE = Xu 

4(1 - 2x0) 
b l l  = 

- xu 

r U 
"22 - - 2 

4 (1  - 2x0) 

fi-r,2 "21 = 

23 4 c + (1- - 2x0) 

.W;h.,' 
[: 

b21 = 

4(1 - 2x0) 

' W h  ru 
b20 2 2  

2x0 c1 = - 2 
r, 

4(1 - 2x0) 
fimh 

2 2  c2 = 



NT = blO($) 

In terms of h and a, the  def lec t ion  of the leading edge i n  semichor 
i s  

1s 

Z ( t )  = h ( t )  - 2xoa,(t) (c4) 

A l l  r e s u l t s  given i n  t h i s  paper are f o r  the  following s e t  of conditions 
(p i s  varied i n  f i g .  14 )  

M = 2.0 

kh = 0.2 

xo = 0.5 

xa = 0.2 

L 
9 
8 
5 

w 
2 = 2.0 
Wh 

p = 20 

f% = 1.0 radians/sec (machine t i m e )  
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Steady state 
-- Sweep (system alone) 
--- Sweep (system and wattmeter) 

F’r equenc y 

Figure 2.- I l l u s t r a t i o n  of the  e f f ec t s  of frequency sweep on the forced 
response of a system measured by t h e  wattmeter technique. 
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(a) Er ro r s  due t o  sweep alone. 

Figure 3 . -  Errors i n  frequency and amplitude of maximum response due t o  
frecpency sweep. 
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(b) Errors due to lag of averaging device. 

Figure 3.- Concluded. 



43 

. 

. 

n 
0)  

+ 
iJ 3 

C 
rl 
W 

iJ 

A 

W 

h 

W 



44 

2 
m 

a aJ 
c, 
cd 
rl 
I a 
0 

? 
5 
fi 
& 
ill 
k 
k 

c'! 
m 

'9 
cu 

=! 
cu 

.rl 
m 
I 
k 
rl 
cd 
A 9 cu 

u 
(Li 

9 
rl 

0 
Q) 
rn 

U k  

X 
" ? I  

c'! 
l-l 

0 

0 '  

ri 

I IJ" k 
0 

0 

d 
_I- 

I I I I I I 
0 0 co \o -f (u d 

I 

L n  

0 



. 45 

A A  

$ 1  + 



46 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

P 
(u 

c 



7M 

I 
I4 



48 

I I I 1  I I \  I I 
2 L 6 8 1 0  

. "... 
01 .@ .dr .ob *08.10 .2 *h .5 .8 1.0 

- 
Frequency ra t io ,  w 

Figure 9.- Power spectral density of simulated atmospheric turbulence 
and electrical pick-up noise. 
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Figure 10.- Periodic forced response of the simulated system illustrating 
the effects of introducing turbulence and pick-up noise. W = 1.9; 
%T = 40; NT = o . m  WS; N~ = 0.006 Y-IDS. 
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(a) Half-sine wave pulse. (%tin = d .) 

Figure 12 . -  Transient response of the simulated system t o  a pulse and a 
rap id  frequency- sweep input .  
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F igure 13.- Evaluation of Fourier transforms at - w = 2.0 f o r  rapid 
wh 

sweep input with random noise added. 
Nr = 0.OOb ITIS; NE = 0.001 rms.) 

(Input same as f i g .  l2(b); 
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180 r 0 - Sweep increase 

- - - Sweep decrease 
0 Steady s t a t e  

Transient  
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0 

Frequency, Cps 

Figure 13.- Wing frequency-response d a t a  obtained by three nethods of 
e x c i t a t i o n  during f l i g h t  t e s t s  a t  
of 20,000 f e e t .  

M = 0.83 f 0.03 and ax a l t i t u d e  



c 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

p: H 
1;1;1 
t, 
V 

F 
CJ 

U I 

+.' .- .x 

. 

. 



I 
GI 0 

PI 

k 
0 



H 

r? - 
4 

U - 
?P. 

-e 

' I  

% 
0 



59 

0.8 0.9 1.0 1.1 1.2 1.3 

u h l  
I I I I 

-2.0 -1.0 0 1.0 2.0 3.0 
t/$ \ 

Figure 18.- Vector components of response of a single-degree-of-freedom 
system. t; = 0.05. 
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