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INTRODUCTION 
The Forced Ignition and Spread Test (FIST) is being used to study the 

flammability characteristics of combustible materials in forced convective flows [1]. The 
FIST methodology is based on the ASTM E-1321, Lateral Ignition and Flame Spread 
Test (LIFT) [2,3] which is used to determine the ignition and flame spread characteristics 
of materials, and to produce "Flammability Diagrams" of materials. The LIFT apparatus, 
however, relies on natural convection to bring air to the combustion zone and the fuel 
vapor to the pilot flame, and thus cannot describe conditions where the oxidizer flow 
velocity may change. The FIST on the other hand, by relying on a forced flow as the 
dominant transport mechanism, can be used to examine variable oxidizer flow 
characteristics, such as velocity, oxygen concentration, and turbulence intensity, and 
consequently has a wider applicability. Particularly important is its ability to determine 
the flammability characteristics of materials used in spacecraft since in the absence of 
gravity the only flow present is that forced by the HVAC of the space facility [4]. 

In this paper, we report work on the use of the FIST approach on the piloted 
ignition of a blended polypropylene fiberglass (PP/GL) composite material exposed to an 
external radiant flux in a forced convective flow of air.  The effect of glass concentration 
under varying external radiant fluxes is examined and compared qualitatively with 
theoretical predictions of the ignition process. The results are used to infer the effect of 
glass content on the fire safety characteristics of composites. 
 
EXPERIMENTAL HARDWARE AND PROTOCOL 

The general configuration of the problem investigated by the FIST methodology 
is shown in Figure 1. It consists of a duct where a flow of oxidizer gas of prescribed 
oxygen concentration and velocity is forced along its longitudinal direction. A 
rectangular slab of fuel is embedded flush in a plate of insulating material that forms one 
wall of the duct.  The exposed surface is impulsively subjected to an external heat flux of 
known intensity and approximately uniform distribution using an IR strip heater placed 
opposite the fuel. Ignition of fuel pyrolysates is forced with an electrically heated wire 
placed at the sample end. Ignition delay is defined as the time lapse from the instant that 
the fuel is exposed to the external radiant flux to the onset of flaming.  A sudden rise in 
surface temperature is used to determine ignition, corroborated by visual and video 
observation.   
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Figure 1. FIST apparatu
KGROUND 
In the LIFT methodology, the analytical solution to the transient heating of a 

i-infinite solid by a constant surface heat flux is used to determine the ignition time, 
alculating the time necessary for the solid surface to attain an “ignition” temperature 
.  To obtain an analytical solution to the surface temperature (TS), the convective heat 
fer coefficient is averaged and assumed constant, and surface re-radiation is treated 
eans of a linear approximation at an average surface temperature. Assuming that the 
ion temperature is constant, for large values of the external radiant flux, the 
wing expression is obtained for the ignition delay time (tig) as a function of the 
rnal radiant flux 
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re the α is the material absorptivity,  the external radiant flux, Teq ′′& ∞ the ambient 
erature, k the thermal conductivity, ρ the density and C the specific heat of the solid. 
product kρC is often referred to as the “thermal inertia” of the solid.  The 
odology followed by the LIFT standard [2,3] can be used to qualitatively analyze the 
t of glass content on the ignition characteristics of the composite. The values for 

 from the literature [5,6] confirm that the thermal inertia of the composite increases 
e percentage of glass is increased, and thus from Eq. (1) it is predicted that, for a 
n radiant flux and ignition temperature, the ignition delay should increase.   

The glass addition has two main effects on the physics governing the material 
ion delay.  One is the increase in the density of the composite, which for a given 
rnal heat flux would require a longer period to reach a certain surface temperature.  
other effect is the increase in thermal conductivity k, which favors the in-depth 
tration of the thermal wave, and consequently also requires a longer period of time to 
h a certain surface temperature for a given external heat flux.  Both effects contribute 
creased ignition times and critical heat fluxes for ignition.  

ULTS 
In Figure 2 surface temperature histories for PP/GL with glass percentages of 0%, 

, 30%, and 40%, at a constant heat flux of 20.0 kW/m2 and an air velocity of 1m/s 
resented. The results show that the glass percentage moderately affects the surface 
erature profile, but that as the percentage of glass is increased both the surface 
erature at which ignition occurs and the ignition delay increase. As explained 
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previously, these results are due primarily to the increase of the thermal inertia of the 
composite as the glass content is increased. 
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Figure 2. Surface temperature histories for different glass 
concentrations at a radiant flux of 20 kW/m2 and air velocity of 1 m/s. 

 
Figure 2 shows that ignition delay and critical heat flux for ignition (asymptotic 

value of the heat flux for large ignition times) are functions of the glass concentration in 
the composite, increasing as the glass concentration is increased. Three to four tests are 
conducted for each data point but error bars have been removed for clarity of 
presentation.  
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Figure 3. Ignition delay graph for PP/GL of different fiberglass percentages and air velocity of 1 m/s. 

 
Correlation of the ignition delay data of Fig. 3 with Eq. (1) can be used to 

experimentally determine the kρC of the composite.  It is found that calculated value of 
kρC qualitatively agrees with the values obtained from the literature, although there is 
quantitative disagreement due to fuel pyrolysis effects that are not included in Eq. (1).  

The critical heat flux for ignition obtained from Figure 3 can be used to produce 
ignition/ no ignition diagrams (Figure 4), where a  “no ignition” region can be defined 
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based on the fiberglass content of the composite under a given external heat flux.  T
has important fire safety implications. 
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CONCLUDING REMARKS 
   It has been shown that the glass volume fraction of a composite material a
its ignition characteristics, particularly near the critical heat flux range.  Whereas th
of fire-retardant matrix materials is usually the primary means for improving fire sa
in composites, the present research suggests that fire safety may also be enhanced b
using composites with high glass concentrations.  
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