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A Survey of Collectives 
Kagaii Turner and David WoIpert 

ABSTR4CT Due to the increasing sophistication and miniaturization 
of computational components, complex, distributed systems of interact- 
ing agents are becoming ubiquitous. Such systems, where each agent aims 
to optimize its own performance, but where there is a well-defined set of 
system-level performance criteria, are called collectives. The fundamen- 
tal problem in ana,lyzing/designing such systems is in determining how the 
combined actions of self-interested agents leads to “coordinated7 behavior 
on a iarge scale. Examples of artifkid systems which exhibit such behavior 
include packet routing across a data network, control of an array of commu- 
nication satellites, coordination of multiple deployables, and dynamic job 
scheduling a o s s  a distributed compctei grid. Examples of natural  systems 
include ecosystems, economies, and the organelles within a living cell. 
No current scientific discipline provides a thorough understanding of the 
relation between the structure of collectives and how well they meet their 
overall performance criteria. Although still very young, research on collec- 
tives has resulted in successes both in understanding and designing such 
systems. It is eqected that as it matures and draws upon other disciplines 
related to collectives, this field will greatly expand the range of computa- 
tionally addressable tasks. Moreover, in addition to drawing on them, such 
a fully developed field of collectire intelligence may proride insight into 
already established scientific fields, such as mechanism desi,=, economics, 
game theory, and population biolog7- This chapter provides a surrej- to the 
emerging science of collectives. 

1.1 Just What is a ‘Collective”? 

-4s computing power increases, becomes cheaper . - - __ and - is . packed into smaller 
and smaller units, a new computational paradigm, one based on adaptive 
distributed computing is emerging. Thether used for control or optimiza- 
tion of complex engineered systems, or the analysis of natural systems, 
this new paradigm offers new and exciting solutions to  the problems of 
the twenty first century. However, before the full strength of this powerful 
computational paradigm can be harnessed; some fundamental issues need 
to be addressed. 

In this chapter a-e proride a survey of approaches t o  large distributed 
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systems called collectives. -4 collective is a large system of agents’. x-here 
each agent has a private utility function it is trying to optimize adap- 
tive utility-maximizing algorithms, called ”agents“. along a world util- 
i ty  function that measures the full system’s performance2. Though system 
that meet this definition have been investigated in various field, no current 
discipline provides a general framework with which to design and study 
collectives. 

Mechanism design, a subfield of economics, is perhaps the closest field 
addressing the “design“ question posed in a collective [82, 871. Mechanism 
design aims at finding the right “mxket mechanism” that will induce a 
set of agents to act in a manner specified by the system designer. Though 
this seems like a close match for what we expect a collective to achieve, 
conrentional mechanism design is specifically designed for human agents 
and therefore is not meant to  deal with arbitrary private and world utilities. 
illso. some issues essential to collectives (e.g., learning in agents) do not 
play a central role in it (see Section 1.2.3 for details). 

Game theory, on the other hand, provides a good basis for the malysis 
of collectives [ll, 19, 30, 871. However, the principal focus of game the- 
ory is on the equilibrium behavior of fully rational agents. Unfortunately, 
large adaptive real world systems seldom operate at (or near) equiiibrium, 
and due to the uncertainty in the agents’ decision making; are rarely com- 
posed of fully rational agents. Furthermore practical issues fundamental to 
collectives (e.g., scaling) are not generally addressed in game theory (see 
Section 1.2.2 for details). 

In the computer science domain, Reinforcement Learning (RL) [123, 
2211 and in particular, reinforcement learning in a Multi-Agent System 
(MAS) 153, 56, 112: 1921 addresses the question of how in a large dynamic 
environment, one can learn to take actions to optimize a reward function. 
In general however, RL in a hL4S does not address how the rem-ard func- 
tions have to be crafted so that agents collectively act to optimize a world 
utility is not addressed. As a consequence, in traditional RL approach to 
multi-agent systems, each agent receix-es the full world reward as its private 
utility. Though this LLsolutiony’ bypasses the incentive compatibility issue, it 
ignores the scalability issue. .4s such, though such systems work well where 
there are a small number of agents [56], they do not scale to  system with 
hundreds or thousands of agents (see Section 1.2.1 for detaiis). 

Though mechanism design, game theory and reinforcement learning in 
multi-agent systems prwide some of the ingredients required for a full 
fledged field of collectives, they fall short of providing a suitable starting 
point for the development of such a field. Furthermore, merging concepts 

Iwe use the term “agent” to refer to the components of the system, though the various 

’The world utility can be provided as part of the specifications of the system, or 
fields surveyed use different terminology (i.e., player in game theory) 

“constructed” by the designer, as discussed below. 
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from one of these fields to  another is in general cumbersome due to the 
various assumptions - rarely explicit - deeply rooted in each field. What 
is needed for the field of collectives to develop and mature is a common 
language describing the various properties of col!ectives, a set of desirab!e 
properties, a theoretical framework, and a set of problems that will provide 
good testing grounds for new ideas in this field. 

1.1 .l 
Collectives can be characterized through many different distinguishing char- 
acteristics. In design problems there are many decisions (either explicit or 
implicit) that greatly affect the type of collective with which one ends up. 
Similarly, there are many decisions that determine what types of problems 
can be analyzed as collectives. 

Since the chapters in this volume will focus on various design and analysis 
aspects of collectives, we briefly synopsize some distinguishing character- 
istics of collectives. These include the presencelabsence of a well-defined 
world utilit,y function; the forwardlinverse approa.ch; the presencelneed 
hr centralized cootml and/or communications; the presencelabsence of a 
model; and scalability /robustness/a2aptivity. 

Distinguishing Characteristics of Collectives 

World Utility Function 

Having a well-defined world utility function that concerns the behavior of 
the entire distributed system is crucial in the study of Collectives. Such 
a world utility function provides an objective quantification of how well 
the system is performing. In that light, in a collective, we are not con- 
cerned with an unquantifiable “emergent” behavior of the system. Rather 
we are interested in how the system meets the pre-specified world utility (of 
course, nothing precludes the world utility from depending on the emergent 
behavior of the system, assuming such behavior can be quantified). 

The most natural type of world utility is a provzded utiIit17, one that 
comes as part of the problem definition and specifies the overall perfor- 
mance criteria that the collectives needs to meet. Examples of such world 
utilities include total throughput in a data network, total scientific informa- 
tion gathered by a team of deployables, total information downloaded by 
a constellation of satellites, the valuation of a company, or the percentage 
of adah!e  free energy exploited by an ecosystem. 

based approach to a problem. In such a case, assuming the agents have some 
utility functions associated with them, a world utility can be constructed 
(e.g., construct a social welfare function in economics). Examples of such 
world utilities include sum of agent utilities, sum of agent utilities and 
variances, and the utility of the worst-off agent. Note that optimizing each 
of these constructed world utilities would result in different system behav- 

However, the lack of a provided world utility does not preclude a collective- 
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ior. What is particularly interesting in such problems is the relationship 
betu-een the agents’ initial utility functions and the utility functions that 
they ought to pursue in order to optimize the constructed world utility 
function. 

Forward (Analysis) vs. Inverse (Design) Problem 

Whether it has a provided or constructed world utility, a collective can be 
approached from m-o very different perspectives. Analysis or the forward 
problem, and design or the inverse problem. 

The forward problem focuses on how the localized attributes of a col- 
lective induce global behavior and thereby determine system performance. 
Generally, this problem arises in the study of already existing complex sys- 
tems; and is most naturally applicable to  biological systems, or systems 
that can be liewed as such. Examples of such systems include ecosystems, 
or a living cell, m-here in each case; the local interactions (species and or- 
ganelles, respectively) lead to complex emergent behavior at a large scale. 

Engineered systems such as processes (e.g.. the space shuttle maintenance 
and refurbishment process) or (economic) organizations can also be viewed 
as forv-ard problems in collectiucs. L7 those cases, the analysis approach 
can lead to predictive models and detect interactions among :omponents 
of the system that may lead to breakdowns (e.g., determining whether a 
component considered “safe7’ can cause a critical malfunction when it is 
put in interaction with another usafe” component). 

The inverse problem on the other hand, arises when we wish to design 
a system to induce behavior which optimizes the world utility- Here, the 
designer either has the freedom to assign the pril-ate utility functions of 
the agents (e.g., determine n-hat each satellite or router should be dping) 
or needs to design incentives that will be added to  the pre-existing private 
utilities of the agents (e.g., economics, where agents are humans). In either 
caSe though, the focus is OE ,qiding towards states where the world utility 
is high. 

Centralized communication or control 

1 hough not in the formal definition of a collective, many collectives are de- 
centralized systems. With few exceptions, it %ill be difficult, if not impos- 
sible, to  halie centralized control in a collective, not only because reaching 
each agent may be problematic, but more fundamentally: because in many 
cases a centralized algorithm may not be able to determine what each agent 
should do. 

Similarly, though some amount of global communication ( e g ,  broad- 
casting) may be possible, in general there will be little to no centralized 
communication, where a small subset of agents not only communicates 
with all the other agents, but communicates differently with each one of 
those other agents. Establishing the amount of allowed (or possible) cen- 

7- 
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tralized communication and control will be one of the fundamental issues 
in a collective. 

Model-Based r s .  Mode!-l?ree 

-4nother important characteristic of a collective is the presence/absence of a 
model describing the dynamics of the system. A model-based approaches 
consist of 

1. Constructing a detailed model of the dynamics governing the collec- 
tive; 

2. Learning the function which maps the parameters of the model to the 
resulting dynamics of the system (in practice, this step can involve 
significant hand-tuning); and 

3. a) Drawing conclusions about this system based on the model (for- 
ward problem): 
b) Determining parameters of the model that will yield desired be- 
havior (inverse problem). 

A fundamentally different approach howerer, is to dispense with build- 
ing a model altogether. on the grounds that large, complex systems are 
generally noisy, faulty, and often operate in non-stationary environments. 
In such cases, coming up with a detailed model that captures the dynamics 
in an accurate manner is often extraordinarily difficult. 

A model-free approach hand relies on the agents “reacting” to the 
environment (e.g . , through a reinforcement learning mechanism). As sucli 
they avoid explicitly modeling the system in which they operate, and in 
particular. avoid the potentially infinite regress when one agent tries to 
model another’s behavior and that other agent is itself modeling the first 
agent’s behavior. 

The model-based ITS. model-free choice has significant consequences in 
how the system can adapt, scale up, and how lessons learned from one 
domain can map to another one. A model-based approach may be the choice 
for domains where the designers can develop detailed models and have a 
zoderate degree of contro! over the environment. Eomever, in domains 
where detailed models are not available, or where there is reason to believe 
changes in the em-ironment can lead to significant deviations from any 
model, a model-free approach is preferabie. 

Scalability 

One of the implicit defining properties of a collective is that it is a large 
system of distributed agents. -4s such, scalability is a fundamental property 
of any approach that aims to study/design a collective. Though this does 
not preclude extending extant analysis/design tools appropriate for single 
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(or small) systems to large systems, it does suggest that in most instances, 
new ways of approaching the problem are likely t o  be more appropriate 
(e-g., a game theoretic equilibrium analysis for a million nano-devices is 
d i k e l y  to pro\ride r?sefu! insight into the behavior of the co!!ective.) 

Adaptivity 

Though scalability does not require that the system be adaptive, it  pro- 
vides a strong impetus to  move in that direction. Any approach that allows 
adaptivity, or learning, will have a significant advantage over one that does 
not, simply because the larger a system, the more difficult it nil1 be to  
know a priori all the “right moves” for each agent. 

Furthermore, the need for adapti-t-ity extends beyond each agent in the 
collective. Indeed the structure of the collective itself (e.g., the communica- 
tion channels among the agents, the agents’ utility function) in many cases 
is adaptive. In natural collectiyes this system-level adaptivity is generally 
implicit (e.g., the interaction among species in an ecosystem or the rela- 
tionship among employees in a company), whereas in artificial systems it  
must be built in. 

Robustness 

-4nother desirable property of a collective is that it be robust, Le., that the 
collective not require that many details (e.g., parameters) be set just right 
it to perform well. Clearly, as the number of agents in a collective goes 
up, it m i l l  become increasingly difficult t o  ensure failure-free operation of 
each agent. It is therefore imperative that the structure of the collective be 
insensitive to the specific operation of a small subset of its agents (e.g., in 
general the poor performance of one employee does not bring a company 
down, or the demise of a single individual does not result in the exzinction 
of a species). 

1.1.2 Canonical Experimental Domains 
The previous section provided a iist of ciistinguising characteristics of collec- 
tives. The usefulness of these characteristics is in their providing a common 
language for a field of collectives. For example, a particular instance of data 
routing in a telecommunications netwod can be characterized as “a model- 
free inverse problem involi-ing a provided world utility function where there 
is limited broadcast information but no form of global control.” 

We now provide examples of both engineered and natural systems which 
are ideally suited to be studied as collectives. For each, we provide one 
or more world utility functions, discuss how it can be approached (e.g., 
forn-ard/inverse problem), and what assumptions (e.g., is it model-based?) 
and restrictions (e.g., is global communication possible?) are present. 
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Control system for constellations of communication satellites: A can- 
didate world utility for this problem is a measure of (potentially im- 
portance weighted) information transferred. It is an example of an 
ifiverse problem, where centialized coxmunication or ccctrcl is likely 
to be difficult or impossible due to physical constraints (e.g., time 
lag), and where a model of the data flow is likely to be inadequate. 

Control system for constellations of planetary exploration vehicles: A 
potential world utility for such a problem is a measure of the quality 
of scientific data collected. Though this can be viewed as an example 
of an inverse design problem (as with constellations of satellites), it 
can also be approached as a forward problem, particularly if the vehi- 
cles have have characteristics which cannot be altered (e.g., vehicles 
are built and we are confronted with the problem of predicting the 
behavior of the collective). 

Control system for routing over a comrnunication network: An obvi- 
ous world utility for this problem is the total throughput of the com- 
munication network. Centralized communication or control in such a 
netwxk Is all buf impossible; but some amount of broadcast infor- 
mation can filter its n-ay to all the agents at regular time intervals. 
As an inverse problem, one would be required to design the private 
utility functions of the agents. As a forward problem on an already 
functioning network, one could determine the stress points of the sys- 
tem, or the states which would cause the largest congestions in the 
network. 

Air Space Management: Given a problem specification where there is 
some leeway in modifying the course and speed of airplanes, a poten- 
tial world utility is minimizing delays at airports. The system design- 
ers are fa.ced with the inverse problem of determining the incentives 
for the agents (whether they be pilots or air tract controllers) so that 
their behavior (e.g., arrival times to the airport’s airspace) optimizes 
the world utility. This is a case n-here though global communication 
is possible, global control is not. 

Xanagin.g a power grid: k world utility based on the eZciericj; of the 
grid would be a good starting point for an inverse problem, involving 
some degree of centralized communication or control. .4n alternative 
world utiiity may be robustness. In such a case a forward problem 
would involve finding how quickly the system responds to certain 
disturbances, and how the system interactions can be modified so as 
to limit the propagation of those disturbances. 

Job scheduling across a computational grid: A candidate world utility 
is the efficiency in processing the jobs entering the system. This prob- 
lem is very similar to managing a power grid, but provides a glimpse 
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at the inverse problem: how should one set the rewards of the com- 
putational nodes so that they process the most number of jobs collec- 
tively? A model-fcee solution involving learners at the computational 
nodes would be based on h-ted global communication. 

Control of the elements of a nanocomputer: A potential world utility 
for this problem is how well certain computations are carried out 
by the nanocomputer. In an inverse problem, one would focus on 
det.ermining the structure of the adaptive system which would lead 
the agents to perform the desired computations. A particular instance 
of an inverse problem of this nature is the selection of subsets of faulty 
devices, where the ~ o r l d  utility is total aggregate error of the selected 
devices. 

S t d y  of a protocell: -4 pckential world utiitj- for this problem is the 
length of time the protocell maintains its functionality. -4s a forward 
problem, this problem consists of modeling the behavior of the system 
based on the organelles and their functionsjinteractions. With more 
leeway in the definition of the functions the organelles perform, one 
can viex- this as an interesting inverse problem: What should the 
organelles try to achieve to maintain the structure and functionality 
of the protocell? 

Study/Design of an ecosystem: One world utility for the study of an 
ecosystem is the total biemass of the ecosystem. In a model-based 
forward problem, one can study the effect of yarious interactions on 
the world utility. Alternatively, as an inverse problem, one can in- 
vestigate how to design an ecosystem which will provide the best 
sustainable bio-diversity for a given mass (e.g., for a long term space 
mission). 

Design of incentives in a Company: A “simple” world world utility 
for a company is the valuation of the company (share price times 
the number of outstanding shares). The inverse problem consists of 
determining how to design incentives that will induce the companies 
x-aluation to  go up (e.g., what set of salaries/benefits/stock options 
x-X iI;dr;ce the emphyees to  take actions that dl benefit the c ~ r p o -  
ration). 

All of these problem share the property that they are inherently dis- 
tributed systems n-here the interactions among the agents leads to  complex 
behavior. Though each one can be approached by conventional methods, 
how those methods need to  be modified to  suit the particular application 
myill be different in each case. The aim of this chapter is to both accentuate 
the similarities among these problems and also to highlight the need for a 
general approach which would address all these problems within the same 
framework. 
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Multi-Agent Systems 

The field of Multi-Agent Systems (MAS) is concerned with the interactions 
among the members of such a set of agents [40, 92, 121, 204, 2221, as 
well as the inner workings of each agent in such a set (e.g., their learning 

i ~~ 

1.2 Review of Lit,era.ture Related to  Collectives 

There are many approaches to analyzing and designing collectives that do 
not exactly meet the needs of 2 “field of colkctives” yet provide smze part 
of the equation. The rest of this section consists of brief presentations of 
some of these approaches, and in particular characterizes them in terms of 
the properties of collectives discussed above. 

1.2.1 AI  and Machine Learning I 
There is an extensive body of work in AI and machine learning that is 
related to the design of collectives. Indeed, one of the most famous specu- 
lative works in the field can be viewed as an argument that AI should be 
approached as a design of collectives problen [163]. Below, we discuss mme 
topics relevant to collectives from this domain. 

Distributed Artificial Intelligence I 
The field of Distributed Artificial Intelligence (D-41) has arisen as more and 
more trz,ditional Artificial Intelligence (AI) tasks havz mlgraid towxd par- 
allel implementation. The most direct approach to such implementations 
is to  directly parallelize -41 production systems or the underlying program- 
ming languages [79, 1891. An alternative and more challenging approach 
is to  use distributed computing, where not only are the individual reason- 
ing, planning and scheduling AI tasks parallelized, but there are dzflerent 
modules with different such tasks, concurrently working toward a common 
goal [11S, 119, 1431. 

In a D.41, one needs to ensure that the task has been modularized in a 
way that improves efficiency. Unfortunately, this usually requires a central 
controller whose purpose is to allocate tasks and process the associated 
resdts. Moreover, designing that controller in a traditional AI fashion of- 
ten results in brittle solutions. Accordingly, recently there has been a move 
towad both more autonomous modules and fewer restrictions on trhe in- 
teractions among the modules [194]. 

Despite this evolution, 0.41 m ~ n t a i n s  the traditional -41 concern with 
a prefixed set of p a r t i c ~ l a r  aspects of inteiiigent behavior (e.g. reasoning, 
understanding, learning etc.) rather than on their cumulative character. AS 
the idea that intelligence may have more to  do with the interaction among 
components started to  take shape [41, 421, focus shifted to concepts (e.g., 
multi-agent systems) that better incorporated that idea [121]. 
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algorithms) [36, 37, 381. -4s in computational ecologies and computational 
markets (see below), a well-designed MAS is one that achieves a global 
task through the actions of its components. The associated design steps 
involve [121]: 

1. Decomposing a global task into distributable subcomponents , yield- 
ing tractable tasks for each agent; 

2. Establishing communication channels that provide sufficient informa- 
tion to each of the agents for it to achieve its task. but are not too 
unwieldly for the overall system to sustain; and 

3. Coordinating the agents in a way that ensures that they cooperate 
on the global task, or at the very least does not allow them to pursue 
conflicting strategies in trying to achiere their tasks. 

Step (3) is rarely trivial; one of the main difficulties encountered in XIAS 
design is that agents act selfishly and artificial cooperation structures have 
to be imposed on their behavior to enforce cooperation 1131. -4n active area 
of research, which holds promise for addressing parts the design of col- 
lectives problem, is to determine how selfish agents’ “incentives” have to 
be engineered in order to avoid prob!ems such as the tragedy of the com- 
mons (TOG) [209]. (This work draws on the economics literature, which 
we review separately below.) When simply providing the right incentives 
is not suf€icient, one can resort to strategies that actively induce agents to 
cooperate rather than act selfishly. In such cases coordination [205], nego- 
tiations 11351, coalition formation [193, 195, 2491 or contracting [3] among 
agents may be needed to ensure that they do not work at cross purposes. 

hfortunately, all of these approaches share with D.41 and its offshoots 
the problem of relying on hand-tailoring, a i d  therefore being difficult to 
scale and often nonrobust. In addition, except 2s noted in the next sub- 
section, they involve little to no adzptixity, and therefore the constituent 
computational elements are usually not as robust as they n7ould need to be 
to provide the foundation for the field of collectives. 

Reinforcement Learning 

The maturing field of Reinforcement Learning (RL) pr0.i-ides a much needed 
tool for the types of problems addressed by collectives. The goal of an 
RL algorithm is to  determine how, using those reward signals, the agent 
should update its action policy t o  maximize its utility [123, 220, 221, 2321. 
Because RL generally prorides model-free3 and “online” learning features; 
it is ideally suited for the distributed em-ironment where a L‘teacher‘’ is 
not available and the agents need to learn successful strategies based on 

3There exist some model-based xariamts of traditional XU. See for example [8]. 
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“rewards” and “penalties” they receive from the overall system at various 
intervals. It is even possible for the learners to use those rewards to modify 
how they learn [199, 2001. 

atively recent theoretical [232] and empirical results [56, 2241 have made 
RL one of the most active areas in machine learning. Many problems rang- 
ing from controlling a robot’s gait to controlling a chemical plant to al- 
locating constrained resource have been addressed with considerable suc- 
cess using RL [97, 114, 166, 186, 2471. In particular, the RL algorithms 
TD(X)  (which rates potential states based on a value functzon) [220] and 
Q-learning (which rates action-state pairs) [232] have been investigated 
extensively. A detailed investigation of RL is available in [123, 221, 2321. 

Intuitively, one might hope that RL would help us solve the distributed 
control problem, since RL is adaptive, and, in general mode-free. HOT- 
ever, by itself, conventional single-agent RL does not pro\-ide a means for 
controlling large, distributed systems. The problem is that the space of pos- 
sible action policies for such systems is too big to be searched. So although 
powerful and m-idely applicable, solitary RL algorithms will not generally 
perform well on large distributed heterogeneous problems. It is however 
natural to consider deploying many RL algorithms rather than a single one 
for these large distributed problems. 

Alih,o.& -.--17 wuln  GE RL dates back to Samuel’s checker player [191], re!- 

Reinforcement Learning-Based Multi- Agent Systems 

Because it neither requires explicit modeling of the environment nor having 
a that provides the “correct” actions, the approach of having the 
individual agents in a MAS use RL is well-suited for MAS’S deployed in 
domains where one has little knowledge about the em-ironment and/or 
other agents. There are two main approaches to designing such M-4S’s: 
(i) One has ‘solipsistic agents’ that don’t know about each other and whose 
RL rewards are given by the performance of the entire system (so the joint 
actions of all other agents form an “inanimate background” contributing 
to the reward signal each agent receives); 
(ii) One has ‘social agents‘ that explicitly model each other and take each 
others’ actions into account. 
Both (i) and (ii) can be viewed as ways to (try to) coordinate the agents 
in a MAS in a robust fashion. 
So!ipsistic Agents: M-4S’s with solipsistic agents have been successfully 
applied to a multitude of problems [56, 96, 107, 192, 1981. However’ scaling 
to large systems is a major issue with solipsistic agents. The problem is 
that each agent must be able to discern the effect of its actions on the 
overall performance of the system, since that performance constitutes its 
reward signal. As the number of agents increases though, the effects of any 
one agent’s actions (signd) will be swamped by the effects of other agents 
(noise), making the agent unable to learn well, if at all. In addition, of 
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course; solipsistic agents cannot be used in situations lacking centralized 
calculation and broadcast of the single global reward signal. 
Social agents: h4-4S‘s n-hose agents take the actions of other agents into 
account synthesize R T  n-ith game theoretic concepts (e.g., Wash ecpilib- 
rium). They do this to try to ensure that the overall system both moves 
towad achieving the overall global goal and avoids often deleterious oscil- 
latory behavior [53, 85, 111, 113, 1121. To that end, the agents incorporat,e 
internal mechanisms that actively model the behavior of other agents. In 
general this approach involves hand-tailoring for the problem, and there are 
some well-studied domains (El Faro1 Bar problem) in n-hich such modeling 
is self-defeating [5 ,  2381. 

1.2.2 Game Theory 
Game theory is the branch of mathematics concerned n-ith formalized ver- 
sions of ”games”. in the sense of chess, poker, nuclear arms races. and the 
like [ll, 19; 30, 73, 8’7. 148, 66, 2071. It is perhaps easiest to describe it by 
loosely defining some of its terminoloD, n7hich we do here and in the nex% 
subsection. 

The simplest form of a game is that of ‘non-cooperative single-stage 
extensive-form’ game, which involves the following situation: There are 
two or more agents (called ‘players’ in the literature), each of x-hich has a 
pre-specified set of possible actions that it can follow. (-4 ‘finite‘ game has 
finite sets of possible actions for all the players.) In addition, each agent i 
has a utility function (also called a ‘payoff matrix’ for finite games). This 
maps any ‘profile’ of the action choices of all agents to an associated utility 
d u e  for agent i. (In a ‘zero-sum’ game, for every profile, the sum of the 
payoffs to all the agents is zero.) 

The agents choose their actions in a sequence. one after the other. The 
structure determining what each agent knows concerning the action choices 
of the preceding agents is knoxn as the ’information set’.4 Games in n-hich 
each agent knows exactly what the preceding (‘leader’) agent did are knon-n 
as ‘Stackelberg games’. 

In a ‘multi-stage’ game, after all the agents choose their first action, 
e& q e E t  is prcviided some icform&ion ccacernng -iiThzit the other zgents 
did. The agent uses this information to choose its next action. In the usual 
formulation, each agent gets its payoff at the end of all of the game’s stages. 

AE ageat‘s ‘strategy’ is the rtle it elects to  foUm- =?2ppkg the infcma- 
tion it has at each stage of a game to its associated action. It is a ‘pure 
strategy‘ if it is a deterministic rule. If instead the agent’s action is chosen 

4U%ile stochastic choices of actions is central to game theory, most of the work in 
the field assumes the information in information sets is in the form of definite facts, 
rather than a probability distribution. Accordingly, there has been relatively iittle work 
incorporating Shannon information theory into the analysis of information sets. 
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by randomly sampling from a distribution, that distribution is known a 
‘mixed strategy‘. Note that an agent’s strategy concerns all possible se- 
quences of provided information, even any that cannot arise due to the 
strategies of the other agents. 

Any multi-stage extensive-form game can be converted into a ‘normal 
form’ game, which is a single-stage game in which each agent is ignorant 
of the actions of the other agents, so that all agents choose their actions 
“simultaneously”. This conversion is achieved by having the “actions” of 
each agent in the normal form game correspond to an entire strategy in the 
associated multi-stage extensive-form game. The payoffs to all the agents 
in the normal form game for a particular strategy profile is then given by 
the associated payoff matrices of the multi-stage extensive form-game. 

Nash Equilibrium 

A ‘solution’ to a game, or an ‘equilibrium’, is a profile in which every agent 
behaves “rat.ionally” . This means that every agent‘s choice of strategy opti- 
mizes its utility subject to a pre-specified set of conditions. In conventional 
game theory those conditions involve, at a minimum, perfect knowledge of 
the payoff matrices of all other players, and often also involve specificaticn 
of what strategies the other agents adopted and the like. In particular, 
a ‘Nash equilibrium’ is a a profile where each agent has chosen the best 
strategy it can, given the choices of th.e oth.er agents. A game may have no 
Nash equilibria, one equilibrium, or many equilibria in the space of pure 
strategies. A beautiful and seminal theorem due to  Kash proves that every 
game has at least one Nash equilibrium in the space of mixed st.rategies 
[171]. 

There are several different reasons one might expect a game to result 
in a Nash equilibrium. One is that it is the point that perfectly ratio- 
nal Bayesian agents would adopt, assuming the probability distributions 
they used to calculate expected payoffs were consistent with one another 
[lo, 1241. A related reason, arising even in a non-Bayesian setting, is that 
a Nash equilibrium prorides “consistent” predictions, in that if all parties 
predict that the game will converge to a Nash equilibrium, no one will ben- 
efit by changing strategies. Having a consistent prediction does not ensure 
that all agents’ pay9Es are naiimized though. The study of small pertur- 
bations around Nash equilibria from a stochastic dynamics perspective is 
just one example of a ‘refinement? of Nash equilibrium, that is a criterion 
for selecting a single equilibrium state when more than one is present [i54]. 

Cooperative Game Theory 

In cooperative game theory the agents are able to  enter binding contracts 
with one another, and thereby coordinate their strategies. This allows the 
agents to avoid being “stuck” in Nash equilibria that are Pareto inefficient,, 
that is being stuck at equilibrium profiles in uhich all agents would benefit 
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if only they could agree to all adopt different strategies, n-ith no possibility 
of betrayal. The charucterzstic functaon of a game involves subsets (‘coali- 
tions’) of agents playing the game. For each such subset, it gives the sum 
of the payofis of the agents in that subset that those agents can guarantee 
if they coordinate their strategies. i l n  imputation is a division of such a 
guaranteed sum among the members of the coalition. It is often the case 
that for a subset of the agents in a coalition one imputation dominates 
another, meaning that under threat of leaving the coalition that subset 
of agents can demand the first imputation rather than the second. So the 
problem each agent i is confronted with in a cooperative game is which set 
of other agents to form a coalition with, given the characteristic function 
of the game and the associated imputations i can demand of its partners. 
There are several different kinds of solution for cooperative games that have 
received detailed study; varying in how the agents address this problem of 
who to form a coalition with. Some of the more popular are the ‘core’, the 
‘Shapley value’, the ‘stable set solution’, and the ‘nucleolus’. 

In the real n-orld, the actual underlying game the agents are playing 
does not only involve the actions considered in cooperative game theory’s 
analysis of coalitions and imputations. The strategies of that underlying 
game also involve bargaining behavior, considerations of trying co cheat 
on a given contract, blufiing and threats, and the like. In many respects, 
by concentrating on solutions for coalition formation and their relation 
a-ith the characteristic function, cooperative game theory abstracts away 
these details of the true underlying game. Conversely though, progress has 
recently been made in understanding how cooperative games can arise from 
non-cooperative games. as they must in the real world [ll]. 

Evolution and Learning in Games 

Xot surprisingly, game theory has come to play a large role in the field of 
multi-agent systems. In addition, due to Darwinian natural selection, one 
might expect game theory to be quite important in population biology. in 
Khich the “utility functions” of the individual agents can be taken to be 
their reproductive fitness. There is an entire subfield of game theory con- 
cerned with this connection with population bioloQ. called ‘evolutionary 
game theory-’ jlS5, 1571. 

To introduce evolutionary game theory, consider a game in which all 
players share the same space of possible strategies, and there is an ad- 
ditional space of possible ‘attribute vectors’ that characterize an agent, 
along with a probability distribution g across that new space. (Examples 
of attributes in the physical world could be things like size, speed, etc.) TVe 
select a set of agents to play a game by randomly sampling g. Those agents’ 
attribute vectors jointly determine the payoff matrices of each of the indi- 
vidud Zgents. (Intuitively, what benefit accrues to  an agent for taking a 
particular action depends on its attributes and those of the other agents.) 
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However each agent i has limited information concerning both its at,tribute 
vector and that of the other players in the game, information encapsulated 
in an ‘information structure’. The information structure specifies how much 
ea.& agent knows concerniiig the gaize it is playing. 

In this context, we enlarge the meaning of the term “stra.tegf’ to not just, 
be a mapping from information sets and the like to actions; but from entire 
information structures to actions. In addition to the distribution g over 
attribute vectors, we also have a distribution over strat.egies; h. -4 stra.tegy 
s is a ‘population strategy’ if h is a delta function about s. Intuitively, we 
have a population strategy when each animal in a population “follows the 
same behavioral rules”, rules that take as input what the animal is able to 
discern about its strengths and weakness relative to  those other members 
of the population, and produce as output how the animal will a.ct in the 
presence of such animals. 

Given g, a population strategy cent,ered about s ,  and its own attribute 
vector, any player i in the support of y has an expected payoff for any 
strategy it might adopt. Khen i’s payoff could not improve if it  n’ere to 
adopt any strategy other than s, we say that s is ‘evolutionary stable’. 
Intuitively, an evolutionary stable strategy is one that is stable with respect 
to t,he introduction of mutants int.0 the population. 

Now consider a sequence of such evolutionary games. Interpret the pay- 
off that any agent receives after being involved in such a game as the 
‘reproductive fitness‘ of that agent, in the biological sense. So the higher 
the payoff the agent receives, in comparison to the fitnesses of the other 
agents, the more “offspring” it has that get propagated to  the next game. 
In the continuum-time limit,, where games are indexed by the real number 
t ,  this can be formalized by a differential equation. This equation specifies 
the derivative of gt evaluated for each agent. i’s attribute vector, as a mono- 
tonically increasing function of the relative difference between the payoff of 
i and the average payoff of all the agents. (We also have such an equation 
for h.) The resulting dynamics is known as ‘replicator dynamics’, with an 
evolutionary stable population stra.tegy, if it exists, being one particular 
k e d  point of the dynamics. 

Now consider removing the reproductive aspect of evolutionary game 
theory, and instea.d have each agent propagate to  the next game, with 
“memory” of the events of the preceding game. Furthermore, allow each 
agent to modify its strategy from one game to  the nex% by “learning” from 
its. memory of past  games, in a. bounded rational manner. The field of 
learning in games is concerned with exactly such situations [86, 12, 17, 26, 
70, 126, 178, 1731. Most of the formal work in this field involves simple 
models for the learning process of the agents. For example, in ‘fictitious 
play’ [86], in each successive game, each agent i adopts what would be 
its best strategy if its opponents chose their strategies according to the 
empirical frequency distribution of such strategies that i has encountered in 
the past. h4ore sophisticated versions of this work employ simple Bayesian 
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learning algorithms: or re-inventions of some of the techniques of the RL 
community 11901. Typically in learning in games one defines a payoff to 
the agent for a sequence of games, for example as a discounted sum of the 
payeffs in e x h  of the constituer?t games. n‘ithlr? this framework one c a ~  
study the long term effects of strategies such as cooperation and see if they 
arise na tu rdy  and if so, under what circumstances. 

Many aspects of real world games that do not occur very naturally oth- 
erwise arise spontaneously in these kinds of games. For example. when the 
number of games to be played is not pre-ked, it may behoove a particular 
agent i to treat its opponent better than it would otherwise, since i m a y  
have to rely on that other agent’s treating it well in the future, if they end 
up playing each other again. This framework also allows us to investigate 
the dependence of evolving strategies on the amount of information ax-ail- 
able t o  the agents [159]; the effect of communication on the evolution of 
cooperation [160, 1621; and the parallels between auctions and economic 
theory [108. 1611. 

In many respects, learning in games is even more relevant to the study 
of collectives than is traditional game theory. Hon-ever in general, it la& a 
well defined world utility and is almost exclusively focused on the forward 
problem. making it a difficuit starting point for a field of collectives. 

1.2.3 Other Social Science-Inspired Systems 
Some human economies provides examples of naturally occurring systems 
that can be viewed as a (more or less) well-performing collectives. The field 
of economics prorides much more though. Both empirical economics (e.g., 
economic history. experimental economics) and theoretical economics (e-g.. 
general equilibrium theory [4], theory of optimal taxation [164]) pro\-ide 
a rich literature on strategic situations where many parties interact. In 
fact, much of economics c m  be viewed as concerning how to maximize 
certain constrained kinds of ~ o r l d  utilities‘ when there are certain (very 
strong) restrictions on the individual agents and their interactions. and in 
particular u-hen n-e have limited freedom in setting the utility functions of 
those agents. 

Mechanism Design 

One way to try to in&.ice a krge  co!lectiiTe to i e x h  a eqiibiiucm point 
without centralize control is via an a ~ c t i o n . ~  (This is the approach usu- 

5We do not discuss general equilibrium theory here in detail, because though it deals 
with the interaction among multiple markets to  set the market “clearing” price for the 
goods. it is not appropriate for the study of collectives: it requires centralized control 
(Walrasian auctioner), does not allow for dynamic interactions and in general, there is 
no reason to believe that having the markets clear optimizes a world utility. 
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ally employed in computational markets - see below.) -4long with optimal 
taxation and public good theory [137]; the design of auctions is the sub- 
ject of the field of mechanism design. Broa.dly defined, mechanism design 
is concerned with the ii;centi;:es that must be applied tc ‘ J  set cf zgents 
that interact and exchange goods [87, 164, 2291 in order to get those agents 
to  exhibit desired behavior. Usually the desired behavior concerns pre- 
specified ‘inherent’ utility functions of some sort for each of the individual 
agents. In particular, mechanism design is often concerned with the incen- 
tives that must be superimposed on such inherent utility functions to guide 
the agents to  a ‘(Pareto) efficient’ (or ‘Pareto optimal’) point, that is to a 
point in which no agent’s inherent utility can be improved without hurting 
another agent’s inherent utility [SS, 871. 

One particularly important type of such an incentive scheme is an auc- 
tion. When many agents interact in a common environment often there 
needs to be a structure that supports the exchange of goods or information 
among those agents. Auctions proride one such (centralized) structure for 
managing exchanges of goods. For example: in the English auction all the 
agents come together and ‘bid’ for a good, and the price of the good is 
increased until only one bidder remains, who gets the good in exchange for 
the resource bid. -4s another example, in the Dutch auction the price of a 
good is decreased until one buyer is willing to pay the current price. 

All auctions perform the same task: match supply and demand. -4s such, 
auctions are one of the ways in which price equilibration among a set of 
interacting agents can be achieved. However very few world utilities have 
their maximum occur at a point that is Pareto optimal for the pre-set in- 
herent utility functions. Accordingly, unless we are very fortunate in the 
relation between those inherent utility functions and (in general separately 
specified) world utility; knowing how to induce such a Pareto optimal point 
is of little value. For example; in a transaction in an English auction both 
the seller and the buyer benefit. They may even have arrived at an allo- 
cation which is efficient. However, in that the.n-inner may m7ell have been 
willing to pay more for the good, such an outcome may confound the goal 
of the market designer, if that designer’s goal is t,o maximize revenue. This 
point is returned to below; in the context of computational economics. 

Another, perhaps more intuitive perspective, is to view the restrictions 
of mechanism design as concerning the private utility functions of the in- 
dividual agents. Typically in mechanism design the private utility function 
for each agent. 7 ,  which maps st.a.tes of the entire world (including the in- 
ternal state of the agent itself) to 72, is of the form yv ( zq ,1 ,xv ,2 ,  ...,xg,n, 
Tv(y,~l,yg,2, _.., yv:-)), where m(.) is agent 7:s pre-fixed inherent utility 
function, the x v , ~ ,  x ~ , ~ ,  ..., x ? , ~  constitute the first n of the n + IC Yariables 
that that function depends on, and T,,(,) is the Rk--valued ‘[mechanism” 
function the designer can set, the yv,l , yg.2, .-., yg,m being the variables mak- 
ing up its arguments. Unlike the private utility world utility can depend on 
all of the x,,,1, ..., x ~ , ~ ,  Y ~ , ~ ,  ..., yv,m directly (as well as depend on other 
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entirely different x-ariables) -4s an example,‘the yo.l. y,,,’. .... y,,.- could be 
a set of all agents’ bids at an auction. T,,(.) could be 2’-valued, giving 
the amount of change in 77’s omed quantities of both money and the item 
up for bid, and tKe zq,:, ..., xli+ could parameterize 7’s happiness trade-off 
relating owned quantities of the good and of money. 

Typically -y,,(.) and the choice of what variables make up the arguments 
y,,.~. y,,.2, ..., y,,.,,, to T,, are fixed a pnori,  with only the function T,,(-) al- 
lowed to vary in the design. In addition. often there are a priori restrictions 
on the functional form of the T,,. For example, often the T,, are not allon-ed 
to 1m-y with 7. More precisely. usually they must be invariant under the 
transformation 77 + q’ in both the index to the function and the indices 
to its arguments. This meam in particular that the designer can’t “cheatn 
and have the functional forms of the Tli vary from one 77 to another in a 
n-ay that reflects the variations across the (of3en predetermined) associ- 
ated vectors (z,,,~, .... z ~ . ~ ) .  For example, typically an auction mechanism 
determines m-ho gets what goods for .a-hat price in a manner that is inde- 
pendent of the identities of the bidding agents, and in particular does not 
directly reflect any internal happiness trade-off parameters of the agents 
that aren’t reflected in their bids. 

From tlie perspective of a collective, these kinds of restrictions on private 
utilities only hold in a small subset of the potential computational prob- 
lems, and constitute a severe handicap in other scenarios. dnother limita- 
tion of most of the work on mechanism design is that either it assumes a 
particular computational model for the agent. or (more commonly) focuses 
on (game-theoretic) equilibria. This limited nature of the treatment of off- 
equilibrium scenarios is intimately related to the restrictions on the form of 
the privake utility. If there are no restrictions on the private utilities. then 
there is a trivial solution for how to set such utilities to maximize the world 
utility at equilibrium: Have each such utility simply equal the world utility, 
in a so-called “team game”. To have the analysis be non-trivial. restrictions 
like those on the private utilities are needed. 

In practice though, no real system is at a game-theoretic equilibrium, 
due to bounded rationality. In particular, it means that if one considers 
mechanism design in the limiting case of no restrictions on ?(.), the associ- 
ated “mechanism design solution” of a team game often will result in poor 
performance 12381. Team theory [105, 1531 is one approach that has been 
tried to  circumvent this problem. The idea there is to remove all notions of 
a private or inherent utility, and solve directly for the strategy profile that 
will maximize the world utility. Il’eedless to  say though, such an approach 
becomes extraordinarily difficult for all but the simplest problems, and 
requires centralized, completely personalized control and communication, 
and exact modeling of the system’s dynamics. 
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Computational Economics 

‘Computational economies’ are schemes inspired by economics, and more 
specifically by general equilibrium theory and mechanism design theory, 
for managing the components of a distributed computational system. They 
work by having a ‘computational market‘, akin to an auction, guide the 
interactions among those components. Such a market is defined as  any 
structure that allows the components of the system to exchange information 
on relative valuation of resources (as in an auction), establish equilibrium 
states (e.g., determine market clearing prices) and exchange resources (ie., 
engage in trades). 

Such computational economies can be used to investigate real economies 
and bioIogica1 systems [31, 34, 35,  1281. They can also be used to de- 
sign distributed computational systems. For example, such computational 
economies are well-suit.ed to some distributed resource allocation prob- 
lems; where each component of the system can either directly produce the 
“goods” it needs or acquire them through trades with other components. 
Computational markets often allow for far more heterogeneit,\; in the com- 
ponents than do conventional resource allocation schemes. Furthermore, 
there is both theoretical and eriipir 1 eridcilce suggesting that such mar- 
kets are often able to settle to  equilibrium states. For example, auctions find 
prices that satisfy both the seller and the buyer which resuIts in an increase 
in the utility of both (else one or the other would not have agreed to the 
sale). Assuming that all parties are free to  pursue trading opportunities, 
such mechanisms move the system to a point where all possible bilateral 
trades that could improve the utility of both parties are exhausted. 
Now restrict attention to the case, implicit, in much of computational 

market work; with the following characteristics: First, world utility can be 
expressed as a. monot,onicallg increasing function F where each argument 
i of F can in turn be interpreted as the value of a pre-specified utility 
fiinction f j  for agent i. Second, each of those fi is a function of ag z- 
indexed ‘goods vector’ xi of the non-perishable goods “ou-ned” by agent i. 
The components of that vector are xi,?, and the overall system dynamics is 
restricted to conserve the vector xi xi,j. (There are also some other, more 
technical conditions.) 4-s an examp!e, the resource allnca.tion problem can 
be viewed as concerning such vectors of “owned” goods. 

Due to  the second of our two conditions, one can integrate a market- 
clearing mechanism into any system of this sort. Due to the first condition, 
since in a market equilibrium with non-perishable goods no (rational) agent 
ends up with avalue of its utility function lower than the one it started with, 
the value of the world utility function must be higher at equilibrium than 
it was initially. In fact, so long as the individual agents are smart enough 
to avoid all trades in which they do not benefit, any computational market 
can only improve this kind of world utility, even if it does not achieve the 
market equilibrium. 
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This line of reasoning provides one of the main reasons to use computa- 
tional markets in those situations in which they can be applied. Conversely. 
it underscores one of the major limitations of such markets: Starting nith 
m arbitrary n-or!d t?ti!ity h x t i o n  with ahitrLTy dy-na?-ical restrictions, it 
may be quite difficult to cast that function as a monotonically increasing 
F taking as arguments a set of agents’ goods-vector-based utilities fz, if 
we require that those fz be well-enough behaved that we can reasonably 
expect the agents to optimize them in a market setting. 

One example of a computational economy being used for resource al- 
location is Huberman and Clearwater‘s use of a double-blind auction to  
solve the complex task of controlling the temperature of a building. In this 
case, each agent (individual temperature controller) bids to buy or sell cool 
or n-arm air. This market mechanism leads to an equitable temperature 
distribution in the system 11161. Other domains where market mechanisms 
were successfully applied include purchasing memory in an operating sys- 
tems [50], allocating virtual circuits [75], ‘‘stealingy unused CPU cycles 
in a network of computers [69, 2301; predicting option futures in financial 
markets [185] , and numerous scheduling and distributed resource allocation 
problems 1138, 142, 210, 218, 234, 2351. 

Computational economics can also be used for tasks not tightly coupled 
to resource allocation. For example, following the work of Maes [151] and 
Ferber [74], Baum shows how by using computational markets a large 
number of agents can interact and cooperate to solve a variant of the blocks 
world problem 122, 231. However, market-based computational economics 
relies on both centralized communication and centralized control to some 
degree, raising scalability issues. Furthermore, in practice, the applicability 
of computational economies depends greatly on the domain i225], making 
it a difficult starting point for a field of collectives. 

1.2.4 Biologically Inspired Systems 
Properly speaking, biological systems do not involve utility functions and 
searches across them with learning algorithms. Howex-er it has long been 
appreciat.ed that there are many ways in which viewing biological systems 
as in~olving searches over such functions can lead to  deeper understanding 
of them 1203, 2441. Conversely, some have argued that the mechanism 
underlying biological systems can be used to help design search algorithms 

These kinds of reasoning which relate utility functions and biological sys- 
tems have traditionally focussed on the case of a single biological system 
operating in some ex-ternal environment. If we estend this kind of reason- 

6See 1150, 2361 though for some counter-arguments to the particular claims most 
commonly made in this regard. 
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ing, to a set of biological systems that are co-evolving with one another, 
then we have essentially arrived at biologically-based collectives. This sec- 
tion discusses some of horn- previous work in the literature bears on this 
relationship beheeii collectives and biology. 

Population Biology and Ecological Modeling 

The fields of population biology and ecological modeling are concerned with 
the large-scale “emergent” processes that govern the systems that consist 
of many (relatively) simple entities interacting with one another [24; 991. 
-4s usually cast, the “simple entities” are members of one or more species. 
and the interactions are some mathematical abstraction of the process of 
natural selection as it occurs in biological systems (involving processes like 
genetic reproduction of various sorts; genotype-phenotype mappings, in- 
ter and intra-species competitions for resources, etc.). Population Biology 
and ecological modeling in this contex* addresses questions concerning the 
dynamics of the resultant ecosystem, and in particular how its long-term 
behavior depends on the details of the interactions bebeen the constituent 
entities. Broadly construed. the paradigm of ecological modeling can even 
be broadened to  study how natural selection and self-regulating feedback 
creates a stable planet-ride ecological environment-Gaia [144]. 

The underlying mathematical models of other fields can often be use- 
fully modified to  apply to  the kinds of systems population biology is in- 
terested in [14]. (See also the discussion in the game theory subsection 
above.) Conversely, the underlying mathematical models of population 
biology and ecological modeling can be applied to other non-biological 
systems. In particular, those models shed light on social issues such as 
the emergence of language or culture, warfare, and economic competition 
[71, 72, 881. They also can be used to investigate more abstract issues 
concerning the behavior of large complex systems with many interacting 
components [89, 98, 156, 1‘76; 1841. 

Going a bit further afield, an approach that is related in spirit to eco- 
logical modeling is ‘computational ecologies‘. These are large distributed 
systems xhere each component of the system’s acting (seemingly) indepen- 
dently results in complex global behavior. Those components are viewed as 
constituting an ‘(ecology” in an abstract sense (although much of the math- 
ematics is not derived from the traditional field of ecological modeling). In 
particulx, one can i~vestigate how the dynamics of the ecology is influenced 
by the information ax-ailable to each component and how cooperation and 
communication among the components affects that dynamics [115, 11‘71. 

Although in some ways the most closely related to collectives of the cur- 
rent ecology-inspired research; the fields of population biology and compu- 
tational ecologies do not provide a full science of collectives. These fields 
are primarily concerned with the “forrn-ard problem” of determining the 
dynamics that arises from certain choices of the underlying system. Un- 
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less one's desired dynamics is sufficiently close to some dynamics that n-as 
previously catalogued (during one's investigation of the forward problem), 
one has ~7ery little information on how to set up the components and their 
interactions to achieve t h t  desired dyiiaiiics. 

Sn-arm Intelligence 

The field of 'swarm intelligence' is concerned xith systems that are modeled 
after social insect colonies. so that the different components of the system 
are queen; worker, soldier, etc. It can be vien~ed as ecological modeling in 
which the individual entities have ex3remely limited computing capacity 
and/or action sets, and in which there are very few types of entities. The 
premise of the field is that the rich behavior of social insect colonies arises 
not from the sophistication of any individual entity in the colony. but from 
the interaction among those entities. The objective of current research is 
to uncover kinds of interactions among the entity types that lead to pre- 
specsed behaT-ior of some sort. 

More speculatively, the study of social insect colonies may also provide 
insight into hoa- to achieve learning in large distributed systems. This is 
because at the leT,rel of the izdividual insect in a colony; very little (or no) 
learning takes place. However across evolutionary time-scales the social 
insect species as a whole functions as if the various individual types in a 
colony had "learned" their specifk functions. The "learning" is the direct 
result of natural selection. (See the discussion on this topic in the subsection 
on ecological modeling.) 

Sa-arm intelligences have been used to adaptively allocate tasks [33,136], 
solve the traveling salesman problem [62, 631 and route data efficiently in 
dynamic networks (32, 201,2191 among others. However, there is no general 
framework for adapting swarm intelligences to maximize particular world 
utility functions. Accordingly. such intelligences generally need to be hand- 
tailored for ea,& zpp!ication. 

1.2.5 Physics-Based Systems 
St2tisticd Physics 

Equilibrium statistical physics is concerned with the stable state character 
of large numbers of very simple physical objects, interacting according to 
TsdLspecSed local deterninisti'c ~ ~ F I S ,  -5th probabilistic noise processes 
superimposed [6,188]. Typically there is no sense in which such systems can 
be said to have centralized control, since all particles contribute comparably 
to the overall dynamics. 

-4side from mesoscopic statistical physics, the numbers of particles con- 
sidered are usually huge (e.g., and the particles themselves are ex- 
traordinarily simple, typicdlj~ having only a few degrees of freedom. More- 
over, the noise processes usually considered are highly restricted, being 
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those that are formed by “baths”, of heat, particles, and the like. Simi- 
larly. almost all of the field restricts itself to deterministic laws that are 
readily encapsulated in Hamilton’s equations (Schrodinger’s equation and 
its fieid-theoretic rariants for quantum statistical physics). In fact, rniich of 
equilibrium statistical physics isn‘t even concerned with the dynamic laws 
by themselves (as for example is stochastic Markov processes). Rather it is 
concerned with invariants of those l a m  (e.g.. energy), invariants that relate 
the states of all of the particles. Deterministic laws without such readily- 
discoverable invariants are outside of the purview of much of statistical 
physics. 

One potential use of statistical physics for collectives involves taking the 
systems that statistical physics analyzes, especially those analyzed in its 
condensed matter variant (e.g., spin glasses [213, 2141): as simplified mod- 
els of a class of collectives. This approach is used in some of the analyses of 
the El Faro1 Bar problem, also called the minority game (see belon-) [5, 483. 
It is used more overtly in (for example) the work of Galam [go]. in which 
the equilibrium coalitions of a set of “countries” are modeled in terms of 
spin glasses. This approach cannot provide a general collectives framework 
though. This is due to its not providing a general solution to arbitrary col- 
lectives inversion problems, being only concerned with the kinds of systc ms 
discussed above, and to its not employing RL  algorithm^.^ 

A4nother contribution that statistical physics can make is with the math- 
ematical techniques it has developed for its own purposes, like mean field 
theory. self-averaging approximations, phase transitions, R4onte Carlo tech- 
niques, the replica trick, and tools to analyze the thermodynamic limit in 
which the number of particles goes to infinity. -4lthough such techniques 
have not yet been applied to collectives, they have been successfully ap- 
plied to  related fields. This is exemplified by the use of the replica trick 
to analyze two-player zero-sum games with random payoff matrices in the 
thermodynamic limit of the number of strategies in [27]. Other examples 
are the numeric investigation of iterated prisoner’s dilemma played on a 
lattice [223], the analysis of stochastic games by expressing of devistion 
from rationality in the form of a “heat bath” [l54], and the use of topo- 
logical entropy to  quantify the complexity of a voting system studied in 

Other quite recent n7ork in the statistical physics literature is formally 
identical to that in other fields, but presents it from a novel perspective. 

[?58]. 

71n regard to  the latter point however, it’s interesting to speculate about recasting 
statistical physics as a collective, by viewing each of the particles in the physical system 
as running an ‘‘FC algorithm” that perfectly optimizes the “utility function” of its 
Lagrangian, given the “actions?’ of the other particles. In this perspective, manyparticle 
physical systems are multi-stage games that are at Nash equilibrium in each stage. S O  

for example, a frustrated spin glass is such a system at a Nash equilibrium that is not 
Pareto optimal 
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-4 good example of this is [211], which is concerned with the problem of 
controlling a spatially ex-tended system with a single controller, by using an 
algorithm that is identical to a simpleminded proportional RL algorithm 
(in essence, a rediscovery of RL). 

Action Ex-tremization 

Much of the theory of physics can be cast as solving for the extremization of 
an actional, which is a functional of the worldline of an entire (potentially 
man>--component) system across all time. The solution to that extremiza- 
tion problem constitutes the actual Forldline followed by the system. In 
this way the calculus of variations can be used to solve for the worldline 
of a dynamic system. As an example, simple Yen-tonian dynamics can be 
cast as solving for the worldline of the system that ex-tremizes a quantity 
called the ‘Lagrangian’. ti-hich is a function of that worldline and of certain 
parameters (e-g., the ‘potential energ’) governing the system at hand. In 
this instance, the calculus of variations simply results in Kewton‘s laws. 

If we take the dynamic system to be a collective, we are assured that its 
worldline automatically optimizes a “global goal” consisting of the value of 
the associated actional. If we change physical aspects of the sjsteri t h t  
determine the functional form of the actional (e.g., change the system’s 
potential energy function), then we change the global goal, and we are 
assured that our collective optimizes that new global goal. Counter-intuitive 
physical systems, like the stringsand-springs systems that exhibit Braess’ 
paradox [20], are simply systems for which the ‘‘world utiliq-’, implicit in 
our human intuition is extremized at a point different from the one that 
extremizes the system’s actional. 

The challenge in exqdoiting this to solve the design of collectives problem 
is in translating an arbitrary prox-ided global goal for the collective into a 
parameterized actional. Xote that that actional must govern the dynam- 
ics of the collective, a d  the pzaiieters of the actiocal must be physical 
mriables in the collective, variables whose d u e s  we can modify. 

.Active Walker Models 

The field of active m-dser models [21, 100, 1011 is concerned with model- 
ing “n-alkers” (be they human walkers or instead simple physical objects) 
crossing fields along trajectories, where those trajectories are a function 
of several factors, including in pxticulu the t r d s  &ready worn into the 
field. Often the kind of trajectories considered are those that can be cast 
as solutions to actional ex%remization problems so that the m-alkers can be 
explicitly viewed as agents optimizing a private utility. 

One of the primary concerns m-ith the field of active walker models is hoa- 
the trails worn in the field change with time to reach a final equilibrium 
state. The problem of hoK to design the cement path-ivays in the field 
(and other physical features of the field) so that the final paths actually 
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followed by the walkers  ill have certain desirable characteristics is then 
one of solving for parameters of the actional that will result in the desired 
worldline. This is a special instance of the inverse problem of how to design 
a coliective. 

Using active walker models this way to  design collectives, like action 
extremization in general, probably has limited applicability. -41~0, it is not 
clear hoK robust such a design approach might be, or whether it would be 
scalable and exempt from the need for hand-tailoring. 

1.2.6 Other Related Subjects 
This subsection presents a “catch-all” of other fields that have little in 
common with one another and n-hile either still nascent or not ex3remely 
closely related to collectives, bear some relation to collectives. 

Stochastic Fields 

An extremelj- well-researched body of work concerns the mathematical and 
numeric behavior of systems for which the probability distribution over 
possibie future states conditioned on preceding states is explicitly pro- 
vided. This work involves many aspects of Monte Carlo numerical algo- 
rithms [172], all of h/larkov Chains [SO, 177, 2153, and especially Markov 
fields, a topic that encompasses the Chapman-Kolmogorov equations (911 
and its variants: Liouville’s equation, the Fokker-Plank equation, and the 
Detailed-balance equation in particular. Non-linear dynamics is also related 
to this body of work (see the synopsis of iterated function systems below 
and the synopsis of cellular automata above) as is Markov competitive 
decision processes (see the synopsis of game theory above). 

Formally. one can cast the problem of designing a collective as how to fix 
each of the conditional transition probability distributions of the individual 
elements of a stochastic field so that the aggregate behavior of the orerall 
system is of a desired form.8 

Amorphous computing and Cont,rol of Smart Matter 

Amorphoils computing grew out zf the idez. of rep!acing traditional corn- 
puter design, with its requirements for high reliability of the components of 

81n contrast, in the field of Markov decision processes, discussed in [45], the full SJ’S- 

tem may be a Markov field, but the system designer only sets the conditional transition 
probability distribution of a fern of the field elements at most, to the appropriate “deci- 
sion rules”. Unfortunately, it is hard to imagine how to use the results of this field to  de- 
sign collectives because of major scaling problems. .4ny decision process must accurately 
model likely future modifications to its own behavior - often an extremely daunting 
task [150]. What’s worse, if multiple such decision processes are running concurrently in 
the system, each such process must also model the others, potentially needing t o  model 
them in their full complexity. 
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the computer. with a novel approach in n-hich widespread unreliability of 
those components n-ould not interfere a-ith the computation [2 .  13. Some of 
its more speculative aspects are concerned aith “how to program” a mas- 
siveiy distributed, noisy system of components n-hich may consist in part 
of biochemical and/or biomechanical components [131,233]. Work here has 
tended to focus on schemes for how to robustly induce desired geometric 
dynamics across the physical body of the amorphous computer - issue 
that are closely related to morphogenesis, and thereby lend credence to the 
idea that biochemical components are a promising approach. 

Especially in its limit of computers with very small constituent compc- 
nents, amorphous computing also is closely related to the fields of nanotech- 
nology [64]. As the prospect of nanotechnology-driven mechanical systems 
gets more concrete. the daunting problem of how to robustly control. power. 
and sustain protean systems made up of ex-tremely h g e  sets of nano-scale 
derices looms more important [95. 96. 1071. If this problem were to be 
solved one would in essence have “smart matterr. For example, one nTould 
be able to  “paint” an airplane wing with such matter and have it improve 
drag and lift properties significantly. 

Self Organizing Systems 

The concept of self-organization and self-organized criticality [15] was origi- 
nally developed to help understand xhy many distributed physical systems 
are attracted to critical states that possess long-range dynamic correla- 
tions in the large-scale characteristics of the system. It provides a powerful 
framework for analyzing both biological and economic systems. For exam- 
ple, natural selection (particularly punctuated equilibrium [68, 931) can 
be likened to self-organizing dj-namical system, and some haye argued it 
shares many the properties (e.g., scale invariance) of such systems [57]. 
Similarly, one can view the economic order that. i e d t s  from the actions of 
human agents as a case of self-organization [S9]. The relationship between 
complexity and self-organization is a particularly important one. in that it 
provides the potential laws that a l l o ~  order to arise from chaos [125]. 

-4daptive Control Theory 

Adaptive cootrol [?, 1961, a d  5 particular adaptive ccntrol imohing 
locally weighted RL algorithms [9; 1651, constitute a broadly applicable 
framework for controlling small, potentially inexactly modeled systems. 
ilugmented by techniques in the control of chaotic systems [52, 60, 611, 
they constitute a very successful way of soh-ing the “inverse problem” for 
such systems. Lnfortunately, it is not clear how one could even attempt to 
scale such techniques up to the massively distributed systems of interest in 
collectives. 
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1.3 COIN Framework 

The prerious section provided a summary of different fields that address 
various issues pertinent to  the fieid of coliectives. In this section, we sum- 
marize the COIN (Collective Intelligence) framework, which is one of the 
first frameworks that aims to bridge the gap between the needs of the field 
of collectives and the extant analysis/design  method^.^ 

1.3.1 Central Equation 
Let Z be an arbitrary vector space Those elements z give the joint, moxie of 
all agents in the system (i.e., z specifies the full "worldline" consisting of 
the actions/states of all the agents). The world uti l i ty G ( z ) ,  is a function 
of the full worldline, and we are concerned with the probiem of finding the 
z that maximizes G(z) .  

In addition to G! for each agent 7 ,  there is a private utility function 
{gv}. The agents act to improve their indiridual private uti1it.y functions; 
even though, we, as system designers are only concerned m-ith the value 
GE the ivcir!I? utility G.  Tc specify all agents other than 77, we will use the 
notation 3. 

Our uncertainty concerning the behavior of the system is reflected in a 
probabilit): distribution over Z. Our ability to  control the system consists 
of setting the value of some characteristic of the agents, e.g., setting the 
private functions of the agents. Indicating that mlue by s, our analysis 
revolves around the following central equation for P ( G  I s), which fo1Iou.s 
from Bayes' theorem: 

P(G 1 S )  = d z ~ l ' ( G  I &, S )  dzg',P(zG 1 zg? s)P(cg I s) , (1.1) s I 
where Zg is the vector of the "intelligences" of the agents with respect to 
their associated private functions, and ZG is the vector of the intelligences 
of the agents with respect to  G. Intuitively, these vectors indicate m-ha.t per- 
centage of q 's  a.ctions would have resulted in lower utility.'' In this chapter, 
we use ir?t,e!ligence vectors as decomposition variables for Equakion 1.1. 

Note that cg, ( z )  = 1 means that player 77 is fully rational at z ,  in that its 
move maximizes the value of its utility, given the moves of the plajiers. In 
other r:ords, a p i n t  z vhere E ~ , ( z )  = 1 for a!! p!zyers q is m e  that meets 
the definition of a game-theory Rash equilibrium. On the other hand, a 
z at which all components of CG = 1 is a local maximum of G (or more 
precisely, a. critical point of the G(z)  surface). So if we can get these two 
vectors to be identical, then if the agents do well enough at maximizing 

'The full COIN theory is presented in Chapter 2 
'oIntelligence is formally defined in Chapter 2. 
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their private utilities we are assured we will be near a local maximum of 
G. 

To formalize this, consider our decomposition of P(G I s). If we can 
choose s so that the thjrd ceditiom! probability ir? the i a t e g a d :  P(Zg 
s), is peaked around vectors Zg all of m-hose components are close to  1 
(that is agents are able to “learn” their tasks), then we have likely induced 
large private utility intelligences. If we can also have the second term, 
P(& I Zg, s) ,  be peaked about Z ,  equal t o  Zg (that is the private and world 
utilities are aligned), then ?G will also be large. Finally, if the first term in 
the integrand, P(G 1 &; s), is peaked about high G when ZG is large. then 
our choice of s will likely result in high G, as desired. 

1.3.2 Factoredness and Learnability 
For high \-&des of G to be achieved, the private utility functions need 
to h21-e two properties. First, the pri.i-ate utility functions need to be 
“aligned with G’, a need that is expressed in the second term of Equa- 
tion 1.1. In particular. regardless of the details of the stochastic en\-iron- 
mcnt in which the agents operate, or of the details of the learning a@- 
rithms of the agents, if Zg equals CG exactly for  all z ,  the desired form for 
the second term in Equation 1.1 is assured. We call such a system factored. 
In game theory language, the private utility function Nash equilibria of a 
factored system are local maxima of G. In addition to  this desirable equi- 
librium behai-ior, factored systems also automatically provide appropriate 
off-equilibrium incentives to the agents (an issue generally not considered 
in the game theory / mechanism design literature). 

Second, we n-ant the agents‘ private utility functions to have high learn- 
ability, intuitively meaning that an agent‘s utility should be sensitive to 
its ox-n actions and insensitive t o  actions of others. This requirement that 
private utility Ifunctions have high “signal-to-noise” arises in the third term. 
-4s an example. consider a “team game” where the private utility functions 
are set to G. [56] Such a system is tautologically factored. However team 
games often have loa- learnability, because in a large system an agent will 
have a d i6cd t  t i a e  discemkg the effects of its actions on G. -4s a con- 
sequence, each ’7 may have difficdty achieving high gV in such a system. 
Loosely speaking, agent 7‘s learnabilitg is the ratio of the sensitivity of g,, 
to 7’s actions to the sensitivity g,, to the actions of all other agents. So 

”Non-game theory-based function maximization techniques like simulated annealing 
instead address how to have term 1 have the desired form. They do this by trying to  
ensure that the local maxima that the underlying system ultimately settles near have 
high G, by ”trading off exploration and exploitation”. One can combine such term-1- 
based techniques with the techniques presented here, The resultant hybrid algorithm, 
addressing all three terms, outperforms simulated annealing by over two orders of mag- 
nitude [240]. 
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at a given state z ,  the higher the learnability, the more g,,(z) depends on 
the move of agent q, i.e.: the better the associated signal-to-noise ratio for 
q. Intuitively then, higher learnabilitjr means it is easier for 77 to achieve a 
large value of its iitiliij-. 

1.3.3 Dzfference Utilities 
It is possible to solve for the set of all private utilities that are factored 
with respect to a particular world utility. Unfortunately, in general i t  is not 
possible for a collective both to  be factored and to  have perfect learnability 
for all of its players (i.e.: no dependence of any g,, on any agent other than 
q )  for all of its agents [238]. However, consider difference utilities, which 
are of the form: 

DU(=) = G ( ~ )  - r(j(.)) , (1.2) 

m-here r(f) is independent of “I,,. Such difference utilities are factored [238]. 
In addition, under usually benign approximations. learnability is maxi- 
mized over the set of difference utilities by choosing 

r(f(2)) = E(G I z-,?, S) , (1.3) 

up to an overall additiye constant. We call the resultant difference utility 
the Aristocrat utility (-4U). If each player q uses an appropriately rescaled 
version of the associated AU as its private utility function, then we have 
ensured good form for both terms 2 and 3 in Equation 1.1. 

Using -4U in practice is sometimes difficult, due to the need to evaluate 
the expectation value. Fortunately there are other utility functions that, 
while being easier to evaluate than -4U, still are both factored and possess 
superior learnability to the team game utility. Q,, = G. One such private 
utility function is the Wonderful Life Utility (WLU). The WLU for player 
q is parameterized by a pre-fixed clamping parameter CL, chosen from 
among 7’s possible moves: 

TVLU, E G(z) - G(z-,,, CL,) . (1.4) 

WLU is factored no matter m-hat the choice of clamping parameter. Fur- 
thermore, while not matching the high learnability of -4U. WLU usually has 
far better learnability than does a team game, because most of the [‘noise” 
due to other agents is removed from 77’s utility. Therefore, TVLU generally 
results in better performance than does team game utilities [22S, 2381. 

Figure 1.1 provides an example of clamping. -4s in that example, in many 
circumstances there is a particular choice of clamping parameter for agent 
that is a “null” move for that agent, equivalent to removing that agent from 
the system. For such a clamping parameter WLU is closely related to the 
economics technique of “endogenizing a player’s (agent’s) externalities”. for 
example with the Groves mechanism [174. 175, 871. 
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FIGCRE 1.1. This example shows the impact of the  clamping operation on the  
joint s ta te  of a four-agent system rrhere each agent has three possible actions, 
and each such action is represented by a three-dimensional unary vector. The 
first matrix represents the  joint state of the system z where agent 1 has selected 
action 1; agent 2 has selected action 3, agent 3 has selected action 1 and agent 
4 has selected action 2. The second matrix displays the  effect of clamping agent 
2:s action to the  ‘hulln vector <i.e.. replacing zT2 with 6). The third matrix 
shows the  effect of instead clamping agent 2’s move to  the  “average” action 
vector a’ = {.33, .33, .33}, which amounts to  replacing tha t  agent’s move with t h e  
“illegal” move of fractionally taking each possible move (zT2 = a’). 

However it is usually the case that using TVTU with a clamping parameter 
that is as close as possible to the expected move defining -4U results in fa r  
higher learnability than does clamping to  the null moye. Such a TT7LTJ 
is roughly akin to  a mean-field approximation to  -4U.” For example: in 
Fig. 1.1, if the probabilities of player 2 m&ng each of its possible moves 
was 1/3. then one would expect that a c h r p i n g  parmeter of a’ would be 
close to optimal. Accordingly‘ in practice use of such an alternative WLU 
derived as a “mean-field approximation“ to -4U almost ah-ays results in 
far better values of G than does the “endogenizing” TVL,U. 

Intuitively, collectives having factored and highly learnable private utili- 
ties Eke -4U and WLU can be viewed as & to weli-run human companies. 
G is the “bottom line” of the compaq, the players 1;1 are ident6ed with the 
employees of that company, and the associated gq given by the employees’ 
performancebased compensation packages. For example, for a “factored 
company”, each employee’s compensation package contains incentives de- 

12Formally$ our approximation is exact only if the expected d u e  of G equals G eTal- 
uated at the expected joint move (both expectations being conditioned on given moves 
by all players other than q). In general though, for relatively smooth G, vie would expect 
such a mean-field approxirnation to AU, to give good results, even if the approximation 
does not hold exactly. 
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signed such that the better the bottom line of the corporation, the greater 
the employee‘s compensation. -4s an example, the CEO of a company wish- 
ing to have the private utilities of the employees be factored with G may 
give stock options to the employees. The net eEect of this action is to ensure 
that what is good for the employee is also good for the company. In ad- 
dition, if the compensation packages are “highly learnable”, the employees 
will have a relatively easy time discerning the relationship between their 
behavior and their compensation. In such a case the employees will both 
have the incentive to help the company and be abIe to determine how best 
to do so. Note that in practice, providing stock options is usually more 
effective in small companies than in large ones. This makes perfect sense 
in terms of the formalism summarized above, since such options generally 
have higher learnability in small companies than they do in large compa- 
nies. in which each employee has a hard time seeing how his/her moves 
affect the company’s stock price. 

1.3.4 
In earlier work, we tested the TVLU for distributed control of network 
packet routing [241], achieving substantially better throughput than by US- 

ing the best possible shortest-path-based system [241], even though that 
SP-4-based system has information denied the agents in the WLU-based 
collective. In related work we have shon-n that use of the TYLU automati- 
cally avoids the infamous Braess’ paradox, in which adding new links can 
actually decrease throughput - a situation that readiIy ensnares SP.4.s [228, 
2391. 

We have also applied the WLU to the problem of controlling commii- 
nication across a constellation of satellites so as minimize the importance- 
weighted loss of scientific data flowing across that constellation [237]. We 
have also shown that agents using utility functions derived from the COIN 
framework significantly improve performance in the problem of job schedul- 
ing across a heterogeneous compming grid [227]. 

In addition we have explored COIN-based techniques on variants of con- 
gestion games [238, 242, 2431, in particular of a more challenging variant 
of -4iths’s E! Faro! bar zftendmce problem [SI (also  OWE as the L ‘ ~ - i -  
nority game” [48]). In this work we showed that use of the TVLU can result 
in performance orders of magnztude superior to that of team game utili- 
ties. We have dso successfid!y applied COIN techiques tc the problern of 
coordinating a set of autonomous rovers so as to  maximize the importance- 
weighted value of a set of locations they visit [226]. 

Finally we have also explored applying COIN techniques to problems that 
are explicitly cast as search. These include setting the states of the spins in 
a spin glass to  minimize energy; the conventional bin-packing problem of 
computer science, and a model of human agents connected in a small-world 
network who have to synchronize their purchase decisions [240]. 

Summary of COIN Results io Date 



32 Kagan Turner and David 11-olpert 

1.4 Applications/Probleins Driving Collectives 

The prerious sections focused on fields that provide solutions to problems 
arising in the fieid of coiiectives. To complement Lhem, in this section we 
present three problems that are particularly suited to being approached 
from the field of collectit-es, and that provide fertile ground for testing 
novel theories of collectives. 

’ 1.4.1 El Farol Bar Problem (Minority Game) 
The “El Farol” bar problem (also known as the minority game) and its 
variants provide a clean and simple testbed for investigating certain kinds 
of interactions among agents IS, 44. 47, 2061. In the crigiaal version of the 
problem, which arose in economics. at each time step (each “night”), each 
agent needs to decide whether to attend a particular bar. The goal of the 
agent in making this decision depends on the total attendance at the bar on 
that night. If the total attendance is below a preset capacity then the agent 
should have attended. Conversely, if the bar is overcrowded on the given 
night, then the agent should not attend. (Because of this structure, the 
bar problem m-ith capacity set to 50% of the total number of agents is also 
known as the ‘minority game’; each agent selects one of two groups at each 
time step, and those that are in the minority ha\-e made the right choice). 
The agents make their choices by predicting ahead of time whether the 
attendance on the current night nil1 exceed the capacity and then taking 
the appropriate course of action. 

What makes this problem particularly interesting is that it is impossible 
for each agent to be perfectly LLrationd”, in the sense of correctly pre- 
dicting the attendance on any giren night. This is because if most agents 
predict that the attendance will be low (and therefore decide to attend), 
the attendance will actudly high, while if they predict the attendance d l  
be high (and therefore decide not to attend) the attendance will be low. 
(In the language of game theory, this essentially amounts to the property 
that there are no pure strategy Kash equilibria [49, 2461.) a41tematively, 

nature, in that “rational” behavior by all the individual agents thwarts the 
global goal of maximizing total enjojment (defined as the sum of all agents’ 
ec jqmect  m d  m e z e d  when the b u  is exactly at capacity)- 

This frustration effect is a crisp example of the difficulty that can arise 
n-hen agents try to model agents that are in their turn modeling the first 
agents. It is similar to what occurs in spin glasses in physics, and makes 
the bar problem closely related to the physics of emergent behavior in 
distributed systems [46, 47, 48, 2481. Researchers have also studied the dy- 
namics of the bar problem to investigate economic properties like competi- 
tion, cooperation and collective behavior and especially their relationship 

\iien-inu tho nr-ers  svctep ac a CojJeCtive, it h a  a Prisoner’s DilepnAa-1&e --..--o -- -.- JU”’- - 
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to market efficiency [58, 122, 1971. 

1.4.2 Data Routing in a Network 
Packet routing in a data network [28, 110, 212, 231, 127, 941 presents a 
particularly interesting domain for the investigation of collectives. In par- 
ticular, with such routing: 
(i) the problem is inherently distributed; 
(ii) for all but the most trivial networks it is impossible to employ global 
control ; 
(iii) the routers have only access to local information (routing tables); 
(iv) it constitutes a relatively clean and easily modified experimental testbed; 
and 
(r) there are potentially major bottlenecks induced by ‘greedy’ behavior 
on the part of the individual routers. which behavior constitutes a readily 
investigated instance of the Tragedy Of the Commons (TOC). 

Many of the approaches to packet routing incorporate a variant on RL [39, 
43, 51, 147, 1521. Q-routing is perhaps the best known such approach and 
is based on routers using reinforcement learning to select the best path [39]. 
Although generally successful, Q-routing is not a general scheine for invert- 
ing a global task. This is even true if one restricts attention to the problem 
of routing in data networks - there exists a global task in such problems, 
but that task is directly used to construct the algorithm. 

A particular version of the general packet routing problem that is ac- 
quiring increased attention is the Quality of Service (QoS) problem, where 
different communication packets (voice, video, data) share the same band- 
n-idth resource but have widely varying importances both to the user and 
(via revenue) to  the bandwidth provider. Determining which packet has 
precedence over which other packets in such cases is not only based on 
priority in arrival time but more generally on the potentia1 effects on the 
income of the bandwidth provider. In this contex%, RL algorithms have 
been used to  determine routing policy, control call admission and maxi- 
mize revenue by allocating the available bandwidth efficientIy [43, 1521. 

Many researchers have exploited the nor?cooperztive game theoretic un- 
derstanding of the TOC in order to explain the bottleneck character of 
empirical data networks’ behavior and suggest potential alternatives to 
cixsfit routing schemes [25, 67, 132, 133, 139, 141, 179, 180, 2081. Closely 
related is work on various “pricing”-based resource allocation strategies 
in congestable data networks [149]. This work is at least partially based 
upon current understanding of pricing in toll lanes, and traffic flow in gen- 
eral (see below). All of these approaches are particularly of interest when 
combined with the RL-based schemes mentioned just above. Due to these 
factors, much of the current research on a general framework for collectives 
is directed toward the packet-routing domain (see next section). 
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1.4.3 Trafic Theory 
Traffic congestion tj-pifies the Tragedy of the Commons public good prob- 
lem: everyone wants to use the same resource, and all parties greedily try- 
ing to optimize their use of that resource not on!y worsens global behavior, 
but also worsens their own private utility (e.g., if everyone disobeys traffic 
lights, everyone gets stuck in tr&c jams). Indeed, in the well-known Braess’ 
paradox [20, 54, 55,1341, keeping everything else constant - including the 
number and destinations of the drivers - but opening a new tr&c path 
can increase everyone’s time to get to their destination. (Viex-ing the over- 
all system as an instance of the Prisoner’s dilemma, this paradox in essence 
arises through the creation of a novel ‘defect-defect, option for the overall 
system.) Greedy behavior on the part of individuals also results in very rich 
global dynamic patterns, such as stop and go n-aves and clusters 1102, 1031. 

Much of trafEc theory employs and inyexigates tools that have preyiously 
been applied in statistical physics 1102, 129, 130, 183. 1871 (see subsection 
abox-e). In particular, the spontaneous formation of traffic jams provides 
a rich testbed for studying the emergence of complex activity from seem- 
ingly chaotic states [102, 1041. Furthermore, the dynamics of traffic flom- is 
particular amenable to the application znd testing of nzj- norel numeri- 
cal methods in a controlled environment [l6, 29, 2021. Many experimental 
studies have confk-med the usefulness of applying insights gleaned from 
such work to real world traffic scenarios [102, 170, 1691. 

1.5 Challenge Ahead 

Cnfortunately, though they provide valuable insight on some aspects of col- 
lectives, none of the fields discussed above can be modified to encompass 
systems meeting all of the requirements of a “field” of collectives. This is 
not too surprising, since none of those fields n-ere explicitly designed to 
design/analyze collectives. but rather touched on certain aspects of collec- 
tives. 

What is needed is a fundamentally new look at this field, one that though 
may borrow from the various fields, wili not simply- extend an existing 
field that was not meant to analyze general collectives. There are many 
directions in which future work on collectives can and n6I.l proceed. It is 
a vast and rich area of research, and understandine the interaction among 
the 1-arious fields is essential in forging new directions. 
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