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The Goddard Profiling Algorithm (GPROF): 
Description and Current Applications 

William S. Olson, Song Yang, John E. Stout, and Wei-Kuo Tao 

Atmospheric scientists use different methods for interpreting satellite data. In the early 

days of satellite meteorology, the analysis of cloud pictures from satellites was primarily 

subjective. As computer technology improved, satellite pictures could be processed 

digitally, and mathematical algorithms were developed and applied to the digital images in 

different wavelength bands to extract information about the atmosphere in an objective way. 

The kind of mathematical algorithm one applies to satellite data may depend on the 

complexity of the physical processes that lead to the observed image, and how much 

information is cmhined in the satellite images both spatially and at different wavelengths. 

Imagery from satellite-borne passive microwave radiometers has limited horizontal 

resolution, and the observed microwave radiances are the result of complex physical 

processes that are not easily modeled. For this reason, a type of algorithm called a Bayesian 

estimation method is utilized to interpret passive microwave imagery in an objective, yet 

computationally efficient manner. 

Scientists participating in NASA’s Tropical Rainfall Measuring Mission program 

have developed a Bayesian algorithm for determining surface rainfall rate and precipitation 

vertical structure from satellite microwave radiometer imagery. Called GPROF (for 

Goddard Profiling Algorithm), it has been applied to both tropical and midlatitude 

radiometer data to yield maps of precipitation and precipitation vertical structure. In 

addition, GPROF can be used to estimate the latent heat released by the condensation of 

atmospheric moisture through statistical correlations between latent heating and precipitation 

structure. A knowledge of the distributions of atmospheric latent heating is important 

because latent heating produces warmer, more buoyant air, and so atmospheric vertical 

circulations are driven by latent heating to a large extent. The tropical Hadley Circulation is 

one example. 



.- 

GPROF rain rate estimates agree well with independent rain estimates from both 

ground-based and satellite-borne radar. Over the globe, the greatest monthly rainfall is 

generally found in the equatorial belt of precipitation called the Intertropical Convergence 

Zone, where persistent, organized weather systems produce a large percentage of the rainfall 

and latent heating. Midlatitude weather systems are characterized by greater horizontal 

extent but shallower vertical precipitation and latent heating structures. 



Note to NASA reviewers: we were invited to write this short paper in the form of a book 

chapter at the request of Eurainsat steering committee members Vincenzo Levizzani, Joseph 

Turk, and Peter Bauer. Eurainsat is a European Commission activity for “European 

satellite rainfall analysis and monitoring at the geostationary scale”. 
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INTRODUCTION 

The use of Bayesian estimation methods in passive microwave radiometry follows 
from a recognition that the total information content of radiometer observations is 
insufficient to determine a “unique” estimate of surface rain rate or precipitation vertical 
profile. In otha words, for a given set of multi-frequency microwave observations at a 
given location, there exist several precipitation profiles that are radiatively consistent 
with the observations, and so iterative methods for seeking a unique solution (ref. Smith 
et al. 1994) would not necessarily return a better estimate. Also, being non-iterative, 
Bayesian methods are relatively computationally efficient, since iterative forward 
radiance calculations are not required. 

Here, the Goddard Profiling Algorithm (GPROF) is described, and applications of 
the most recent implementation (Version 6) of the algorithm are presented and critiqued. 

ALGORITHM DESCRIPTION 

GPROF is based upon a Bayesian technique originally described in Kummerow et 
al. (1996) with an extension to latent heating estimation by Olson et al. (1999). A 
summary of more recent developments in the algorithm can be found in Kummerow et al. 
(2001). In the algorithm, cloud-resolving model simulations, coupled to a radiative 
transfer code, are used to generate a large supporting database of simulated 
precipitatiodlatent heating vertical profiles and corresponding upwelling microwave 
radiances. Given a set of observed multichannel microwave radiances from a particular 
sensor, the entire database of simulated radiances is scanned; the ‘‘retrieved” profile is 
composited from those profiles in the database that correspond to simulated radiances 



consistent with the observed radiances. Formally, a GPROF estimate of profile 
parameters, f i x ] ,  is given by 

where the model profile vector x k  contains all parameters, including the surface rain rate, 
convective rain rate, liquidice-phase precipitation and latent heating profiles, 
corresponding to the simulated radiance indices, Zdxk). The radiance indices, constructed 
fiom radiances at the different radiometer channel frequencies/polarizations, are the 
normalized polarization and scattering indices defined by Petty (1994). ZO is a vector of 
sensor observed radiance indices, similarly defined. SI and 01 are error covariance 
matrices of the simulated and observed microwave radiance indices, respectively. 
Additional information regarding the observed profile, such as estimates of the area 
fractions of convective and stratiform rain within the nominal satellite footprint (14 km x 
14 km for Th4I) and the freezing level, is included in the constraint term, C. The 
summation in (1) is over all simulated profiles/radiance indices in the supporting cloud- 
radiative model database. k is a normalization factor. 

GPROF Algorithm 

Fig. 1. Schematic of the GPROF algorithm. 



The GPROF algorithm is shown schematically in Fig. 1. Simulated radiometer 
footprints and calculated radiance indices of the algorithm’s database are shown at right, 
while the observed footprint and radiance indices are at left. Observed radiance indices 
are compared to each set of simulated radiance indices in the database- the 
precipitatiodlatent heating parameters of those simulations that are more radiatively 
consistent with the observations (e.g. model #1 in the figure) contribute strongly to the 
GPROF estimate of the parameters, while those simulations that are less consistent 
radiatively contribute much less. Therefore, the algorithm performs a kind of radiative 
filtering of the database. 

Since multichannel passive microwave observations contain limited idormation 
regarding precipitation and related parameters, there are, in fact, a distribution of these 
parameters that are consistent with any set of observations at a given footprint location. 
Equation (1) gives the mean of this distribution, but it is also possible to calculate the 
variance of the distribution for a single estimated parameter using 

C?’[x]- k { ( x  - 6 4 ,  
which yields a measure of the uncertainty in the estimate of x due to the limited 
information content of the observations. The uncertainty represented by (2) would exist 
even if the cloud-radiative model simulations in the GPROF supporting database and the 
radiometer observations were perfect, and so additional uncertainties in GPROF 
estimates due to modeling or observational errors may occur. However, since true 
validation of precipitation-related quantities using independent observations is difficult, 
(2) at least provides a lower bound on the error of GPROF estimates- a basic “building 
block” for estimates of the random error in derived products. Algorithm-derived 
estimates of random error for two case studies will be presented in GPROF Applications, 
below. 

EVALUATION OF RAIN RATE ESTIMATES 
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Fig. 2. Scatterplot histogram of Version 6 PR and TMI instantaneous, 60 km resolution rain rate 
estimates over ocean for the month of July, 2001. 

In collaboration with several TRMM investigators, independent estimates of rain 
rate, convective proportion, and latent heating were collected and compared to GPROF 
algorithm estimates based upon TRMM Microwave Imager radiance observations. 
Although independent evaluation of surface rain rate estimates is important in its own 
right, surface rain rate can also be viewed as a proxy for vertically integrated latent 
heating, and the convective proportion is an indicator of heating profile shape. Ground 
validation radar estimates of rain rate and convective proportion coincident with TRMM 
overpasses of significant rain events were collected from the Melbourne, FL and 
Kwajalein (Marshall Islands) sites over an entire year (1998). Surface rainfall rate 
estimates from the Version 5 TMI, PR, and "MI-PR algorithms and ground-based radar 
measurements from Melbourne, FL and Kwajalein, Marshall Islands showed varying 
degrees of agreement. The Version 6 TMI estimates generally showed greater 
consistency with ground validation radar rain observations. The analysis yielded a 



correlation of 0.83 between Version 6 TMI estimates and Kwajalein ground radar rain 
rates at 50 km resolution. The correlation between Version 6 TMI and PR estimates at 
Kwajalein at the same resolution was 0.84. 

Since comparisons to ground validation radars can bias error statistics toward 
local conditions, TMI rain rate and convective proportion estimates were also compared 
to PR estimates over the entire TRMM observing domain. Shown in Fig. 2 is a 
comparison of all coincident Version 6 PR and TMI rain estimates over Ocean for the 
month of July 2001. Estimated rain rates greater than a few tenths of a mm h-’ are 
strongly correlated; the low bias of TMI estimates at very low rain rates does not 
contribute appreciably to the total rain of the distribution. Error modeling of TMI rain 
estimates suggests that 70-908 of the random difference between TMI and PR 
instantaneous rain estimates at half-degree resolution can be explained by random errors 
in the TMI estimates; the remainder is due to errors in the PR estimates and differences in 
the spatial sampling of rain by the two instruments within half-degree boxes. 

GPROF APPLICATIONS 

lnstantaneous Precipitation Estimates 

Shown in Figs. 3 and 4 are applications of GPROF Version 6 to TMI observations 
of two precipitation systems. Hurricane Bret developed in the Gulf of Mexico in mid- 
August, 1999, and attained hurricane strength on 21 August; see Lawrence et al. (2001). 
The GPROF estimates of precipitation in Fig. 3 are derived from TMI observations of 
Bret on 21 August at 2245 UTC, as the storm moved northward towards the coast of 
Texas, USA. Estimated surface rain rates are most intense (> 10 mm h-’) in the nearly 
circular eyewall of Bret, with somewhat less intense rains in bands to the northeast of the 
eye. Note that the resolution of instantaneous rain estimates fiom GPROF is 14 km, and 
so rains are possibly more intense at sub-footprint resolution. The e ewall and innermost 
rain band are surrounded by less intense, stratiform rains (< 5 mm h- ). 7 

Errors in estimates of instantaneous rain rates, given by (2), are shown in the top- 
right panel of Fig. 3. Note that the errors in estimates of lighter rains can be equal to or 
greater than 100%; while for the most intense rains, errors are -60%. These errors are 
characteristic of satellite passive microwave estimates of rain rate- although errors in rain 
rate estimates generally increase with increasing rain rate, percentage errors tend to 
decrease with rain rate. These errors are substantially reduced by space- and time- 
averaging; see Bauer et al. (2002). 

Total precipitation water content (the combined water content of all precipitating 
hydrometeors) and e1-Q~ estimates along the transect A-B are shown in the lower panel 
of Fig. 3. Note that the deepest precipitation structures and greatest heating rates along 
the transect are associated with the eyewall of Bret. The heating vertical structure is 
“convective” in the eyewall, in the sense that heating rates are positive through most of 
the troposphere with a maximum at midlevels. Rain rates and heating rates are greater in 
the left branch of the eyewall, relative to the right branch in the transect, which is 
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Fig. 3. GPROF estimates of surface nun rate (upper left panel), surface rain rate error (upper right 
panel), and cross sections of total precipitation and Q, - QR along the A-B transect (lower panel) 
from TMI observations of Humcane Bret on 21 August 1999. In the lower panel, total precipitation 
(rain, graupel, and snow) water contents are shaded and heating rates are contoured in white at levels 
of -3, -1. 1,3.6,9, and 12 K h-’. 

consistent with the higher-resolution PR-derived distribution of rain intensity (not 
shown). Although the rain rates are a relative minimum in the eye, the TMI does not 
detect a “clear” eye due to the limited horizontal resolution of the instrument and its 
oblique viewing angle (52.8’ from vertical). The quasi-stratiform rainband to the 
northeast of the eye exhibits maximum water contents just above the freezing level 
(estimated to be -4.7 km), with relatively weak heating aloft and evaporative cooling 
below the freezing level. The outer rainband near “B” in the transect has convective 
structure but is much shallower in the vertical than the eyewall. 

Although GPROF applications to observations of tropical precipitation systems 
have been a primary focus of research in the past, the recent expansion of the algorithm’s 
cloud resolving model database to include midlatitude simulations has made extra- 
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Fig. 4. Same as Fig. 3, but for TMI observations of an extra-tropical cyclone over the North 
Atlantic on 17 January 2000. The two swath sections depicted represent observations that were 
separated by -90 minutes of time, causing a slight discontinuity in the GPROF estimates near the 
inter-swath boundary. 

tropical applications possible. The GPROF estimates shown in Fig. 4 are derived from 
two TRMM overpasses of a baroclinic system on 17 January 2000 near 09 UTC. The 
cold-frontal rainband is primarily contained in the lower swath, with a frontal occlusion 
and post-frontal precipitation contained in the upper swath. Maximum rain rates are seen 
in the upper portion of the cold frontal band. Note that the vertical precipitation and 
heating structures along the A-B transect are much shallower than those retrieved from 
the Bret data. Maximum water contents (0.6 g m-3) and heating rates (3 K h-') are 
consistent with weaker updrafts in the extra-tropical system. 

Finally, note that the instantaneous heating estimates shown in Figs. 3 and 4 are 
sometimes subject to large random errors, given the indirect inference of heating from 
TMI precipitation signatures. These figures are presented to indicate the qualitative 
plausibility of GPROF-derived heating structures, even though the individual heating rate 



Fig. 5. Mean surface rain rates, convective rain proportions. and latent heating rates at 7 and 3 
km altitude, derived from TMI observations from January 2000, using the GPROF algorithm. 



estimates may contain large quantitative errors. Random errors in GPROF heating 
estimates are reduced significantly with space- and time-averaging. 

Large-scale Precipitation and Latent Heating 

GPROF estimates of precipitation and latent heating based upon TMI data can be 
aggregated to produce estimates of their large-scale distributions in the Tropics and Sub- 
tropics. Shown in Fig. 5 are GPROF estimates aggregated in 2.5" x 2.5" latitude/ 
longitude boxes over the month of January 2000. Note that the distributions in Fig. 5 are 
not "smooth" in part because the temporal sampling by TMI of a given 2.5" box is 
limited (about 1 day-' near the equator). Temporal sampling by microwave radiometers 
is expected to improve in the future, as additional satellite radiometers will be launched 
as part of the follow-on mission to TRMM. Nevertheless, the main features of global 
rain distributions are captured by TMI observations, including the Inter-Tropical 
Convergence Zone (ITCZ), the South Pacific Convergence Zone, and rains along the 
southem portion of the mid-latitude storm tracks in the Northern Hemisphere. Rains in 
the Tropics are predominantly convective; however, regions of peak rainfall along the 
ITCZ exhibit a relative minimum of convection, indicating the contribution of organized 
mesoscale convective systems to the total rainfall. Latent heating basically follows the 
pattern of surface rain rate. Heating is generally a maximum near 7 km altitude where 
the rainfall is most intense- another signature of organized precipitation systems. In 
regions where less organized convection dominates the spectrum of precipitation 
systems, the heating maximum occurs at lower altitudes. 

CONCLUDING REMARKS 

This brief survey is intended to illustrate some of the strengths and weaknesses of 
precipitation and latent heating estimation using a Bayesian method (GPROF). It should 
be noted that any remote sensing method is limited by the information content of the 
input observations. GPROF was designed to exploit not only the multifrequency sensing 
capability of microwave radiometers, but also information drawn from the horizontal 
distributions of observed radiances. In the future, the identification of precipitation 
system type (isolated convection, short-lived convective lines, squall lines, tropical 
cyclones, extra-tropical cyclones) fiom radiometer observations may lead to more 
specific estimates from the algorithm. Latent heating estimates require contextual 
information and should benefit from the identification of system type. 

Another important area of study is the construction of the algorithm's supporting 
database. First, there are potential biases in the cloud-radiative model calculations; in 
particular the simulation of precipitation-sized ice aloft has been studied (Tao et ai. 
2003). To the extent that biases in the cloud-radiative model simulations can be 
quantified and the physical mechanisms understood, they should be corrected. In 
addition, the general representativeness of the database must be examined. That is, the 
population of simulated precipitation structures in the database should reflect the natural 
population of these structures. High-resolution Precipitation Radar (PR) observations can 
be used as a guide to determine the natural population of precipitation structures. 



Missing structures should be included in the algorithm’s database and artificial structures 
eliminated. Since the a priori distribution of precipitation structures in the database has a 
significant impact on precipitation and heating estimates (Shin and Kummerow, 2W), 
due to the limited information content of the radiometer observations, proper database 
construction is critical. 

The authors are currently conducting the “validation phase” of the Version 6 
GPROF algorithm. Rain rate estimates from the PR and ground-based radar provide 
reference estimates. Latent heating vertical profiles from the algorithm are being 
compared to rawinsonde budget estimates, such as those fiom SCSMEX (Johnson and 
Ciesielski, 2002), while heating profiles inferred from dual-Doppler radar observations in 
combination with radiosonde-derived thermal structure provide another reference. 
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