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The Effect of Gravity on the Combustion Synthesis of Porous Biomaterials
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Abstract

Production of highly porous composite materials by traditional materials processing is limited by difficult
processing techniques.  This work investigates the use of self propagating high temperature (combustion) synthesis
(SHS) to create porous tricalcium phosphate (Ca3(PO4)2), TiB-Ti, and NiTi in low and microgravity.  Combustion
synthesis provides the ability to use set processing parameters to engineer the required porous structure suitable for
bone repair or replacement.  The processing parameters include green density, particle size, gasifying agents,
composition, and gravity.  Tricalcium phosphate produced through the reaction:
                                                                       3CaO + P2O5 = Ca3(PO4)2 (1)
has the ability of being resorbed in-vivo.  Currently titanium is used in a number of biomedical applications.  The
reactions incorporating Ti investigated here are:
                                                                       (x+y)Ti + xB = yTi + xTiB (2)
                                                                                 Ni + Ti = NiTi (3)
The advantage of the TiB-Ti system is the high level of porosity achieved together with a modulus that can be
controlled by both composition (TiB-Ti) and porosity.  At the same time, NiTi exhibits shape memory properties.
SHS of biomaterials allows the engineering of required porosity coupled with  resorbtion properties and specific
mechanical properties into the composite materials to allow for a better biomaterial.

Introduction

Currently a wide range of porous materials are being investigated for bone reconstruction purposes.  In
conjunction with this research, new processing methods of these materials (i.e. use of gravity) are also being studied.
The advantage of porous over solid materials is their ability to provide a biologic interlock with the surrounding
tissues by providing a scaffold for vascularization, soft and bone tissue infiltration, and allowing for the capacity to
match the mechanical properties of the device to the surrounding tissue[1].  Bioresorbable materials have the added
caveat that the material must be removed at the same rate as new tissue is generated[1, 2].

Materials & Methods

SHS reactions take advantage of the process exothermicity of various chemicals[3].  When certain chemical
reactants are combined and excited to a high enough temperature, they will combust and produce enough heat to
ignite the next layer of reactants.  This process will continue or self propagate until the reactants have been
exhausted.  Temperature-enthalpy relations, as shown below in Figure 1, determine theoretically if SHS reactions
are possible.  An SHS reaction will take place when 1) the enthalpy of the products has a greater negative value than
the reactant, 2) the adiabatic temperature (Tad) is ~1800°C, and 3) there is enough enthalpy to ignite the next layer
considering heat loss through conduction and radiation.  Figure 1 shows the theoretical temperature enthalpy
diagram for the 3CaO + P2O5 = Ca3(PO4)2 reaction system in a 1 g environment.  The adiabatic temperature (Tad) is
the theoretical temperature that corresponds to the maximum temperature achieved during reaction with no heat loss.
If there is significant heat loss, then the reaction will not sustain itself.  Considering this heat loss, the measured
maximum temperature achieved during reaction is the combustion temperature (Tc).  The diagram shows the start of
the reaction at the initial temperature (To).  For this system it is very difficult to measure the ignition temperature
since the reaction occurs in propagating mode.
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Figure 1.  Theoretical temperature enthalpy diagram for the 3CaO + P2O5 = Ca3(PO4)2 system.

A typical SHS process includes 1) mixing of reactant powders, 2) forming of pellet by uniaxial or
preferably isostatic pressing, 3) loading into the combustion chamber, and 4) ignition of the combustion reaction.

All samples were pressed into cylinders (dia =1.27cm., h=1.27-2.1cm) and ignited via a tungsten coil in an
argon atmosphere.  Reaction systems including the combination of CaO and P2O5, require that all mixing, pressing,
and test reactions occur in a high purity inert atmosphere (i.e. glovebox).  This is due to the hygroscopic nature of
the P2O5.  Physical data for the reactants are listed below in Table 1.

Table 1.  Physical data for the reactant powders.

 CaO P2O5 Ti B Ni
Particle Size (µm) <45 <94 <45 <45 <45

Purity (%) 99.99 99.9 99.5 99 99.9
Melting Point (°C) 2888 1660 2300 1453

Molecular Mass (g/mol) 56.07 141.92 47.87 10.81 58.69

SHS experiments were conducted in low gravity through the NASA KC-135A Reduced Gravity Research
Program.  Parabolic flight patterns are used to obtain ~20 seconds of low gravity and 40 parabolas per day are
generally flown.  A special rack is used to perform the SHS experiments aboard the plane.  Temperature, video, and
pressure data are obtained together with the production of samples.

Process parameters include green density, particle size, gasifying agents, composition, and gravity.  All of
the processing parameters affect the porosity, amount of interconnected pores, and pore shape.  These properties
allow the engineering of SHS produced materials with specific porosities as well as the construction of functionally
graded porosities.

Scanning Electron Microscope (SEM) images were produced using a JEOL JXA-840 SEM.  The SEM
analysis was coupled with a Thermo NORAN Lithium drifted 10mm2 Electron Dispersive X-ray (EDX).  Samples
were coated with Gold for SEM analysis.  Xray Diffraction (XRD) analysis was performed with a Philips X’Pert
MPD Pro Theta/Theta X-ray diffraction system.  The microstructure of the TiB-Ti samples was studied with an
Olympus SZX12 stereoscope.

Results

SEM micrographs shown below in Figure 2, show the difference in microstructure.  Figure 2 (A) is a
micrograph of a sample reacted in low gravity and partially cooled in a low gravity and ~2 g environment, due to the
parabolic flight pattern of the KC-135.  The grain exhibits the characteristics of particle ripening and six sided grain
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growth features.  Figure 2 (B), shows grains that have cooled in a 1g environment.  The microstructure exhibits
longitudinal grains with characteristic spots.

  
(A)                                                              (B)

Figure 2.  SEM images of Ca3(PO4)2 produced in low gravity (A) and at 1 g (B).

EDX analysis (Figure 3) show spectra taken from the center of both grains from Figure 2.  The low gravity
sample shows almost the same calcium to phosphorus ratios while the 1 g sample exhibits a lower calcium to
phosphorus ratio.  The EDX/SEM samples were coated in gold, therefore deconvolution of the phosphorus and gold
peak was performed.

Figure 3.  EDX spectra for Ca3(PO4)2 produced in low gravity and at 1 g conditions.

XRD analysis of both the low-gravity and 1 g samples are shown below in Figure 4.  Both spectra match
the alpha phase for tricalcium phosphate (PDF 70-0364).  Note that this is a bulk analysis and the above EDX
analysis is a microanalysis.
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Figure 4.  XRD spectra for Ca3(PO4)2 produced in low gravity and 1 g conditions.
Both spectra  match PDF file 70-0364 alpha tricalcium phosphate (monoclinic).

The effect of gravity on the (x+y)Ti + xB = yTi + xTiB is shown below in Figure 5.  The longitudinal or
propagating direction is shown below with ignition from the lower side (bottom of sample).  Sphere-like pores were
produced in low gravity environments and radial pores were produced under terrestrial conditions.

   
(A)                                              (B)

Figure 5.  Effect of gravity on reaction system (x+y)Ti + xB = yTi + xTiB.  The as-produced materials are 92% TiB
and 8%Ti.  A was produced in low gravity and B was produced in terrestrial conditions aboard the KC-135.
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SHS reactions were also investigated for the NiTi system.  XRD analysis of NiTi produced via SHS is
given in Figure 6.  Ni3Ti and NiTi2 were formed with the NiTi in the combustion process (nonequlibrium).

Figure 6.  XRD of SHS produced NiTi under terrestrial conditions.

Discussion

Different gravity environments have a great effect on the Ca3(PO4)2 microstructure produced by SHS.  It is
shown on the micrometer scale that the grain structure is significantly different according to Figure 2.  Low gravity
produces the classic Al2O3 type grain growth while the terrestrial environment yields long radial grains with
characteristic spots.  In Figure 3, EDX analysis shows that the calcium to phosphorus ratio is unity for grains
manufactured on the KC-135 while the calcium to phosphorus ratio is lower for the sample produced under
terrestrial conditions.  The samples produced on the KC-135 were partially cooled in low gravity (~0 g) and high
gravity (~2 g) conditions due to the parabolic flight path of the KC-135.  Bulk analysis performed with XRD (Figure
4), showed that both Ca3(PO4)2 samples produced in microgravity formed the alpha phase of tricalcium phosphate.
The microstructure studied at the surface via EDX is in need of  further investigation to explain the overall balance
in the calcium to phosphorus atomic ratio.  EDX will have to be carried out at the grain boundaries and throughout
other features not shown in Figure 2.  Longer low-gravity conditions (available on the International Space Station)
may also prove to produce a more homogeneous sample.  The processing conditions greatly affect the surface
chemistry, which is directly related to the bioactivity of the sample in-vivo.

The TiB-Ti system produced in variable gravity is shown to have a great influence on the formation of
pores.  Spherical-like pores are produced in low gravity while longitudinal-radial pores are produced in terrestrial
conditions.  The pore structure is directly related to the strength of the material, in-vivo vascularization, and tissue
ingrowth properties.

Ni3Ti and NiTi2 were formed together with the equiatomic NiTi during SHS according to the XRD results
obtained in Figure 6.  This is due to the non equilibrium conditions that are involved with SHS reactions.  The
formation of equiatomic NiTi only happens in a narrow almost equiatomic region (50-55 atomic %) in the phase
diagram.  The NiTi phase exhibits shape memory and superelasticity properties that are desirable for specific
implant applications.  The NiTi system is continually being investigated to produce a greater amounts of the
equiatomic NiTi phase and ways to produce this material in variable gravity situations.
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