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Abstract 

Recently, there has been increased interest in the possibility of asteroids and comets impacting 

the Earth. These studies have ranged from orbit determination to mitigation, mostly 

concentrating on near Earth asteroids, or NEAs. NEA orbits can usually be determined very 

accurately because many observations are available over several orbital periods.  It is possible 

that an asteroid or comet will be discovered on the inbound leg of an impacting trajectory, with 

only a limited amount of time available to collect observations to determine the orbit, and is a 

likely scenario for a long-period comet.  Also, unlike NEAs, comet trajectories are perturbed by 

outgassing forces, which are exerted when the comet surface materials are sublimated by the 

radiation of the Sun.  The results presented in this paper show the level of orbit determination 

accuracy obtainable for long-period comets discovered approximately one year before collision, 

including non-gravitational perturbations due to outgassing.  Comet orbits are designed to impact 

the center of the Earth, and preliminary orbits are determined from simulated observations using 

Gauss’ method. Additional measurements are incorporated to improve the orbit solution through 

the use of a Kalman filter.  A comparison is made between observatories in several different 

circular heliocentric orbits, and shows that observatories in orbits with radii less than 1 AU result 

in increased orbit determination accuracy for short tracking durations due to increased parallax 

per unit time.  However, an observatory in a circular heliocentric orbit at 1 AU will perform just 

as well if the tracking duration is increased, and the orbit determination accuracy is significantly 

improved if additional observatories are positioned at the Sun-Earth Lagrange points L3, L4, or 

L5.  A single observatory at 1 AU capable of both optical and range measurements yields the 

highest orbit determination accuracy in the shortest amount of time when compared to other 

systems of observatories in circular heliocentric orbits at 1 AU. 
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1 Introduction 

The “impact” theory is one explanation of the mass extinctions that have occurred throughout the 

history of the Earth.  Many scientists agree that the massive impact crater discovered in the 

Yucatan peninsula is the result of an extraterrestrial collision responsible for the extinction of the 

dinosaurs some 65 million years ago.  On a clear night the Moon reveals evidence of the 

devastation caused by asteroid and comet bombardment spanning billions of years, which no 

doubt still occurs today even if it is on a much more infrequent scale.  Much media attention has 

been given in recent years to the possibility of an Earth impact, and the attention is not 

unwarranted.  The surface of the Earth is still speckled with the scars of past encounters.  One of 

the most visible, although certainly not the largest, is the Barringer Meteor Crater in the Arizona 

desert.  An object 25 – 60 meters in diameter carved out this one kilometer wide crater upon 

impact 50,000 years ago.  In 1908, an object believed to be an asteroid exploded over Tunguska, 

Siberia, destroying an area of forest larger than the city of Los Angeles.  It is estimated that an 

impact of this magnitude occurs every one hundred years, and that a globally catastrophic impact 

happens every one million years [1].  Existing craters are evidence that our planet has been hit in 

the past.  It most definitely will be hit in the future.  Nothing could have proved this point more 

than the impact event of comet Shoemaker-Levy 9 with Jupiter in 1994, which left several 

blemishes on the surface of the planet 2 to 3 times the size of the Earth.  This event brought to 

our attention a threat that perhaps had not been seriously considered – comets. 

 Most current research is in the area of improving orbit determination for known near-

Earth asteroids (NEAs) with Earth-crossing or Earth-approaching orbits, to predict possible 

collisions many decades into the future.  NASA has recently adopted the goal of finding 90% of 

the asteroids 1 km and larger by the year 2008 [2].  This goal may very well be realized, since it 
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is possible to observe the asteroids over many orbital periods due to their close proximity to 

Earth.  With the possibility of hundreds of observations over more than one orbital period, the 

orbits can be calculated with sufficient accuracy to predict collision potential decades into the 

future [2].  However, there is no current effort to discover long-period comets that may be 

traveling on Earth-impacting trajectories.  A long-period comet is defined as a comet with an 

orbital period greater than 200 years, and could be thousands or even millions of years.  The 

orbit determination problem for the long-period comet case is much different than that of 

asteroids, since it is likely that an impacting comet will only be observable for less than half of 

its orbital period before the collision occurs.  Astronomers discovered comet Shoemaker-Levy 9 

only 16 months before it collided with Jupiter.  It was just enough time to turn the world’s 

telescopes in the direction of our largest neighbor and watch, as the remnants of the comet that 

the massive gravity of Jupiter tore apart hit the planet in a barrage of explosions.  The impacts 

left behind distortions in the Jovian atmosphere that were visible from Earth for up to a month.  

Orbit determination for comet Shoemaker-Levy 9 resulted in predictions within 11 minutes or 

less of actual impact times for all fragments [3]. 

 Orbit determination is the process of collecting a set of measurements and calculating the 

position and velocity of an object at a particular time, or determining a set of six orbital elements 

that define the size, shape, and orientation of the orbit of the object.  Preliminary orbit 

determination is performed by using the minimum number of observations required to calculate 

the orbital parameters, and assuming two-body orbital motion about the Sun.  The orbit is then 

refined by using methods that can incorporate additional measurements and includes a more 

complete force model including non-gravitational perturbations.  The purpose of the current 

study is to investigate the accuracy of orbit determination for comets discovered approximately 



 

 3

one year before a collision with Earth occurs.  Orbits are constructed so that a collision will take 

place on the inbound leg of the orbit.  Preliminary orbits are determined from the minimum 

number of optical observations of celestial latitude and longitude required to calculate position 

and velocity at some epoch.  More precise orbits are then determined by adding additional 

optical measurements and observatories, by including radar or laser measurements of range, and 

by incorporating non-gravitational forces due to comet outgassing into the dynamics model.  The 

effect of the geometry between the observatory and the comet is also investigated by placing the 

observatory in various locations in circular heliocentric orbits with radii equal to 0.39, 0.72, 1.0, 

and 1.5 astronomical units (AU), corresponding to Mercury, Venus, Earth, and Mars orbits 

respectively. 

This investigation requires a thorough understanding of gravitational attraction and 

orbital mechanics, so this topic is discussed in the next section.  Orbit geometries are explained 

and orbital elements are defined in the Appendix.  Sec. 3 focuses on warning time and collision 

design criteria.  Orbit determination and accuracy are discussed in Sec. 4.  Orbit determination 

results obtained by optical measurements of angular position are examined for a family of 

representative comet orbits in Sec. 5, along with results obtained by including additional radar 

information and perturbative effects.  Conclusions and suggestions for further study are 

presented in Secs. 6 and 7. 
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2 Orbital Motion 

The N-body problem in orbital mechanics is the problem of solving the equations of motion for 

N bodies in space, and is formulated using Newton’s laws.  The two-body problem is a 

simplification of the N-body problem, for which a complete analytic solution can be found.  

There are numerous approaches to the development of and the solution for the two-body 

equations of motion.  The method discussed in the next two sections follows the general 

approach described in detail in Refs. [4] and [5].  It will be seen that the two-body simplification 

requires external forces such as comet outgassing to be neglected, so a method for including 

these perturbative forces in comet orbit determination is described in Sec. 2.4. 

 

2.1 The N-Body Problem 

Newton’s laws of motion are [5]: 

 
First Law Every body continues in its state of rest, or of uniform motion in a straight 

line, unless it is compelled to change that state by a force impressed upon 
it. 

 
Second Law The rate of change of momentum is proportional to the force impressed, 

and is in the same direction as that force. 
 
Third Law To every action there is always opposed an equal reaction. 

 

These three laws of motion were first introduced in 1687 with the publication of Principia, 

although Newton had worked out the equations some 20 years earlier.  Also introduced was his 

law of universal gravitation, which states that any two bodies attract one another with a force 

proportional to the product of their masses and inversely proportional to the square of the 

distance between them.  Newton formed these laws with the assumption that the bodies were 
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particles, or point masses.  Also, the laws are only valid in an inertial reference frame, or a 

reference frame that is at rest or moving with constant velocity.  In reality, an inertial reference 

frame does not exist.  For practical applications, a reference frame is considered to be inertial as 

long as the observed motion of the particles under study agrees with Newton’s theoretical 

prediction of the motion described by his laws.   

The motion of a system of N bodies can be described analytically using Newton’s second 

law of motion and the law of universal gravitation under the assumptions stated above.  The 

gravitational force acting on a body with mass mi due to other bodies in the system with masses 

m1, m2, …, mN is expressed mathematically using Newton’s law of universal gravitation as  

 

                                                ( ) Ni
r
mm

G
N

ij
j

ij
ij

ji
i ,...,1,

1
3 =−= ∑

≠
=

rrf ,                  (2.1) 

 
where G is the universal gravitational constant and has a value of 6.672×10-11 Nm2/kg2, ri is the 

position vector from the origin of the inertial coordinate frame to the body on which the force is 

being exerted, rj is the position vector from the origin of the inertial coordinate frame to the body 

exerting the gravitational force, and rij is the distance between the i-th and j-th bodies, where 

 
         ijij rrr −= .                         (2.2) 

 
Newton’s second law of motion states that the total force acting on the body is  

 

             
dt

dm
dt
dm i

i
i

ii
vrf ≡= 2

2

                   (2.3) 

 

where 2

2

dt
d ir

 and vi are the inertial acceleration and velocity of the body, respectively. 
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Assuming no other external forces are acting on the system, the expression describing the motion 

of a system of N particles is given by  

 

                  ( )∑
≠
=

−=
N

ij
j

ij
ij

ji

r
m

G
dt
d

1
32

2

rrr
.                             (2.4) 

 
There is no known general solution to Eq. (2.4).  A complete solution requires 6N integrals, of 

which only 10 are obtainable.  The 10 constants of integration result from the fact that total linear 

momentum, angular momentum, and energy of the system are conserved.  From the conservation 

of total linear momentum it can be shown that the center of mass (CM) of the system moves with 

constant linear velocity, and that the position of the CM as a function of time is 

 
              ( ) ( ) 000 rvr +−= ttt ,                               (2.5) 

 
where v0 and r0 represent 6 of the constants of integration.  The total angular momentum, h, of 

the system is  

                  ∑
=

×=
N

i
iii m

1
vrh ,                       (2.6) 

 
which can be shown to be conserved so that h represents three more of the constants of 

integration.  The tenth constant is the total system energy, ℰ, which is the sum of the total kinetic 

and potential energy of the system.  Complete derivations and proofs of the conservation of total 

linear momentum, angular momentum, and system energy are presented in detail in Ref. [4]. 

An analytical solution can be found for Eq. (2.4) for the relative motion of two particles 

under their mutual gravitational attraction. All other forces acting on the particles, including     

N-body gravitational attraction, can be described in terms of perturbations.  For this reason, the 
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simplified approach of solving the equations of motion for two bodies is ideal for describing the 

motion of comets in orbit about the Sun. 

 

2.2 The Two-body Problem 

The inertial reference frame containing the two bodies (the Sun and the comet) is defined by 

three orthogonal unit vectors, xî , yî , and zî .  Positive zî  is normal to the ecliptic plane and 

points in a direction parallel to the orbital angular momentum vector of the Earth, positive xî  

points in the direction of Earth vernal equinox and lies in the ecliptic plane, and positive yî  lies 

in the ecliptic plane and completes the orthogonal coordinate system.  The mass of the comet is 

negligible compared to the mass of the Sun.  The only perturbative effects to be included in 

determining the comet orbits are those due to outgassing because they are unknown; 

gravitational attraction from the planets in the solar system, including Earth, can be modeled 

very precisely and therefore are not considered. 

 

               

xî

yî

zî

Position of Earth
on March 21

Vernal equinox direction
xî

yî

zî

Position of Earth
on March 21

Vernal equinox direction  
Figure 1.  Inertial reference frame unit vectors 
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The equations of motion for two bodies are given by Eq. (2.4) with N = 2 and i = 1, 2, 

i.e., 

         ( )123
12

21
2
1

2

1 rrr
−=

r
mmG

dt
dm                         (2.7) 

and  

         ( )213
21

12
2
2

2

2 rrr
−=

r
mmG

dt
dm .                        (2.8) 

 
The equation of relative motion for the two-body problem is found by subtracting Eq. (2.8) from 

Eq. (2.7) to obtain 

 

                          
( )

rr
3

21
2

2

r
mm

G
dt
d +

−= ,                    (2.9) 

 
where 12 rrr −= , and r is the magnitude of r.  The term ( )21 mmG +  is called the gravitational 

parameter and is represented by µ.  With this substitution, Eq. (2.9) becomes  

 

                    0rr =+ 32

2

rdt
d µ .                                    (2.10) 

 
Eq. (2.10) is a second order, nonlinear, vector differential equation describing the relative motion 

of two bodies.  Even though it is nonlinear, it is possible to find a completely analytic solution to 

this equation through six independent constants of integration.  These six constants can be the 

components of position and velocity, or they can be a set of six parameters that define the orbit 

of the object around the primary body, called orbital elements.  Orbital elements are described in 

detail in the Appendix. 
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2.3 Orbit Propagation 

If the position and velocity of an object are known at some time t0, the position and velocity can 

be calculated at any time t using the expressions 

 
                                                                    00 vrr gf += ,                   (2.11) 

                                                                   00 vrv gf && += ,                  (2.12) 

 
where the variables f and g are called Lagrange coefficients, also known as the f and g functions.  

There are many ways to calculate the Lagrange coefficients, one of them being through the use 

of universal functions, which are used extensively throughout Ref. [4] and summarized in the 

equations to follow.  The Lagrange coefficients in terms of universal functions are 

 

                                                                     
0

21
r

Uf −= ,                  (2.13) 

                                                        ( )2010
1 UUrg σ
µ

+= ,                    (2.14) 

                                                                    
0

1

rr
U

f
µ

−=& ,                  (2.15) 

                                                                     
r

Ug 21−=& ,                  (2.16) 

where 
 

                                                                ( )000
1 vr ⋅=
µ

σ .                    (2.17) 

 
The universal functions are expressed differently whether the orbit is parabolic, hyperbolic, or 

elliptic.  The expressions for the first four universal functions for elliptical orbits are  
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                                                               )cos(0 χzU = ,                    (2.18) 

                                                               
z
zU )sin(

1
χ= ,                   (2.19) 

                                                            
z

zU )cos(1
2

χ−= ,                    (2.20)  

           
zz

zzU )sin(
3

χχ −= ,                         (2.21) 

 
where z is the reciprocal of the semi-major axis of the orbit and can be expressed as 

 

                                                                  
µ

2
0

0

2 v
r

z −= .                  (2.22) 

 
The variable χ is an independent variable used instead of time, sometimes referred to as the 

generalized anomaly, and is related to the eccentric anomaly by  

 

                                                               ( )0
1 EE
z

−=χ .                   (2.23) 

 
The universal functions are used to obtain the generalized form of Kepler’s equation  

 
                                                    ( ) 320100 UUUrtt ++=− σµ .                  (2.24) 

 
If time is given, Eq. (2.24) must be solved for χ to find the position in the orbit.  This equation is 

transcendental in χ, therefore an iterative scheme is necessary.  Ref. [5] suggests using a first 

guess of  

                                                              ( )0ttzg −= µχ ,                  (2.25) 
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where t is the time at which r and v are to be calculated and t0 = 0.  This guess is used in a 

Newton iteration algorithm 

                                                           

g
d
dt

tt g
gg

χχχ

χχ

=

+

−
+=1 ,                  (2.26)  

 
where χg is first used to calculate the universal functions and then Eq. (2.24) is used to calculate 

tg by setting t = tg.  Substituting universal functions into Eq. (4.4-17) of Ref. [5] yields an 

expression for the term 
χd

dt , i.e., 

 

                                                        ( )21000
1 UUUr

d
dt ++= σ

µχ
.                 (2.27) 

 
Eq. (2.26) is iterated until t - tg converges to the pre-assigned value. 

 

2.4 Perturbing Forces 

The solution to the two-body problem presented in the previous sections describes the relative 

motion between two particles when the only force acting on the particles is their mutual 

gravitation.  In reality, other forces act on the bodies and perturb the motion.  Some examples of 

these perturbing forces are gravitational forces from other bodies in the system or the asphericity 

of the central body, atmospheric drag, electromagnetic forces due to interaction with magnetic 

fields, or solar radiation pressure.  The additional forces and the deviations from two-body 

motion are called perturbations, and there are two methods for analyzing them.  In the method of 

special perturbations, the equations of motion, including all perturbing accelerations, are 

numerically integrated.  In the method of general perturbations, an analytical solution is achieved 
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through variation of parameters.  Both methods are described in Ref. [5].  The method of special 

perturbations will be used to include the perturbative effects due to comet outgassing on the two-

body comet trajectories under study.   

A comet is often thought of as a fuzzy point of light in the night sky.  A comet appears 

“fuzzy” because the heat radiated from the Sun is sublimating the comet surface, and the 

evaporated materials form a cloud around the core, or nucleus, of the comet.  The cloud of 

evaporated materials is called the coma.  Solar radiation pressure and the solar wind blow this 

dust away from the nucleus and a tail is formed.  The composition of the nucleus is still mostly 

unknown, but it is generally thought of as a “dirty snowball”.  Based on spectroscopic 

observations of comet tails it has been speculated that the nucleus is made mostly of frozen water 

and organic and silicate compounds [6].  When the comet gets close enough to the Sun so that 

the materials in the nucleus begin to evaporate, the comet is said to be outgassing.  This 

outgassing exerts forces on the comet that perturb the orbit, so it is necessary to determine 

whether the magnitude of these deviations will make it impossible to determine the orbit to some 

specified level of accuracy. 

 A commonly used method for modeling outgassing accelerations was developed by 

Marsden, Sekanina, and Yeomans, and is described in Ref. [7].  By carefully studying the orbits 

of over 20 periodic comets they were able to derive the following expression for acceleration due 

to outgassing, 

           αααα ( )[ ]ntr ˆˆˆ 321 AAArg ++= ,                  (2.28)  
 
where  

                                                          ( )
knm

r
r

r
rcrg

−−




















+








=

00

1 .                   (2.29) 
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The unit vector r̂  points in a direction parallel to the Sun-comet vector r in the orbit plane, t̂  is 

perpendicular to r in the orbit plane, and n̂  is perpendicular to the orbit plane.  This model is 

based on the assumption that the comet is an “icy conglomerate” – an object consisting mostly of 

frozen water that holds together bits and pieces of rock-like material.  This model also was used 

to generate accurate ephemerides for Halley’s comet [8].  In Eq. (2.29) the variable r is the 

heliocentric distance of the comet in AU, and all other parameters are constants based on studies 

of vaporization rates of comet nuclei materials and are derived in Ref. [7].  The constants are 

reported to be m = 2.15, n = 5.093, and k = 4.6142.  The normalizing constant c is defined such 

that g(1) = 1, and r0 is the scale heliocentric distance of high outgassing activity with a value 

equal to 2.808 AU for frozen water.  Substituting these values into Eq. (2.29) and solving for the 

normalizing constant yields c = 0.1113.  In Eq. (2.28), Ai (i = 1, 2, 3) are constants describing the 

components of acceleration in the radial, transverse, and normal directions.  Values of A1 and A2 

calculated by studying changes in comet orbital periods are listed in Table I of Ref. [7] for 

various comets.  Values for A3 are not given because the acceleration force normal to the orbit 

plane had no detectable effect on the orbital periods studied.  However, a normal acceleration 

force may be present if the comet is rotating or tumbling, and this component must be included 

in simulations designed to predict collisions.  Without any given data for such a force it is 

assumed that A3 = A2.  It should also be noted that the model is based on comets that have made 

multiple solar passes.  A comet approaching the Sun for the first time may be subject to larger, or 

smaller, outgassing accelerations than described by this model, depending on the composition of 

the nucleus.  

Before undertaking orbit determination simulations it is important to understand the 

magnitude of displacement from two-body motion along the comet trajectory caused by 
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outgassing accelerations.  These accelerations are included as an additional term in Eq. (2.10) so 

that the equation of motion for an outgassing comet is 

 

                                         ( )[ ]nTrrr ˆˆˆ 32132

2

AAArg
rdt

d +++−= µ .                  (2.30) 

 
By comparing results obtained through numerical integration of Eqs. (2.10) and (2.30), the 

perturbation to two-body motion caused by comet outgassing is determined as 

 
                 ( ) ( ) ( )on ttt rrr −=δ ,                  (2.31) 

 
where rn is the position of the comet calculated through integration of Eq. (2.10), and ro is the 

position calculated by integration of Eq. (2.30).  The integration is performed for a sample long-

period comet (orbital period greater than 200 years) on an Earth-impacting trajectory with orbital 

elements ra = 300 AU, rp = 0.1 AU, i = 45°, Ω = 30°, ω = 143.2°, and ν0 = -163.9° (criteria for 

creating such orbital elements is presented in Sec. 3).  The orbital period for this comet is 1839.4 

years.  The equations of motion are integrated from t0 to tf, corresponding to times when the 

comet is at heliocentric distances of 5 AU and 1 AU, respectively.  The maximum values for the 

acceleration coefficients listed in Ref. [7] are used for this analysis. These values are A1 = 3.61 

AU/108 day2 (5.4 km/day2) and A2 = A3 = 0.3269 AU/108 day2 (0.49 km/day2).   Fig. 2 shows the 

absolute value of each component of δr, denoted by δrx, δry, and δrz, versus time on a 

logarithmic scale.  Also shown is the magnitude of δr versus time, δr, which is approximately 

2,500 km by the time the comet reaches a heliocentric distance of 1 AU for this sample case.  

This deviation is sufficiently large compared to the size of the Earth that outgassing must be 

included in orbit determination accuracy calculations.  However, the more important result is that 
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the perturbations are less than 10 km until about 200 days, and can be considered negligible.  At 

200 days the comet has traveled to a heliocentric distance of about 2.5 AU.  Since these 

deviations are so small compared to the heliocentric distance of the comet, a first order 

perturbation adequately represents the motion of the comet, and a linear model is adequate to 

represent the perturbations for orbit determination purposes.  This is confirmed through Monte 

Carlo simulations, the results of which are presented in Sec. 4.2.4.  A similar result is obtained 

for a short-period comet (orbital period less than 200 years) with orbital elements ra = 40 AU,    

rp = 0.1 AU, i = 50°, Ω = 30°, ω = 143.6°, and ν0 = -164.8°.  The orbital period of this comet is 

89.8 years.  Fig. 3 also shows negligible perturbations until approximately 200 days, when the 

comet has reached a heliocentric distance of 2.6 AU. 
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Figure 2.  Deviation in position due to outgassing forces for a long-period comet 
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Figure 3.  Deviation in position due to outgassing forces for a short-period comet 
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3 Impact Trajectory Criteria 

The accuracy of orbit determination depends on many factors.  Some of these that are important 

to this investigation are the number of observations available, the time interval over which those 

observations are made, the resolution of the measuring device, and the geometry between the 

observatory and the object.  A standard method for examining these effects is to construct a 

collision orbit, use this “reference” orbit to calculate a set of perfect measurements and add 

random noise to them, and then determine the “estimated” orbit using the noisy measurements 

with the orbit determination method described in Sec. 4.  An important consideration in 

designing these true orbits is warning time.  Warning time is the interval between the time when 

the comet orbit becomes known and the time of collision, and is greatly dependent on the 

heliocentric distance of the comet at the time observations are made.  Warning time is discussed 

in Sec. 3.1, with the purpose of establishing an approximate distance at which the comet should 

be discovered to supply enough time to observe and determine the orbit to the desired degree of 

accuracy, while leaving roughly one year to plan and execute an evacuation scenario or even 

some type of mitigation technique.  A set of comet orbits representing several different orbit 

geometries are designed to guarantee Earth-impact using the equations presented in Sec. 3.2 [9]. 

 

3.1 Warning Time  

As stated previously, warning time is the interval between the time when the comet orbit 

becomes known with sufficient accuracy and the time when the collision takes place.  It is 

possible that the comet will travel through several orbits in this time, but the possibility also 

exists that the comet will be discovered on its terminal orbit, greatly reducing the amount of 
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warning time.  A system designed to detect impacting comets should be able to provide enough 

information to determine such an orbit, and it is important to calculate the amount of warning 

time to be expected in this case. 

 Fig. 4 shows the Earth in a circular heliocentric orbit of radius rc = 1 AU, and a comet in 

a coplanar elliptical orbit which crosses the orbit of the Earth.  The xî  and yî  axes lie in the 

ecliptic plane, with positive xî  in the direction of vernal equinox. The comet is discovered after 

aphelion, and the collision takes place before perihelion.  The time between discovery and 

collision is the quantity to be determined.  The motion of both the comet and the Earth about the 

Sun is governed by the two-body orbit mechanics described in Sec. 2.2. 
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Figure 4.  Orbits of the Earth and an impacting comet 



 

 19

Inclination does not affect orbital period or the time of flight between one point and 

another; therefore, studying the coplanar case is suitable for generalizing warning time analysis.  

Perturbative effects on the comet due to the gravity of the Earth and comet outgassing are not 

considered in the analysis to follow, since these effects will not significantly change the time of 

flight on the relatively short time interval being investigated (compared to the orbital period of 

the comet). 

The eccentric anomaly, E, at any point on an elliptic orbit is given by Eq. (A14).  If E 

denotes the eccentric anomaly at the point of discovery where r is the distance between the Sun 

and the comet, and Ec denotes eccentric anomaly at the point of collision where r = rc = 1 AU, 

then the time of flight between these two points is calculated using Eq. (4.2-9) of Ref. [5] given 

here as 

                 ( ) ( )[ ]ccc EeEEeEatt sinsin
3

−−−=−
µ

.                       (3.1) 

 
Eq. (3.1) is used to calculate the warning times for a sample family of short- and long-

period comets whose orbits become known at distances of 5, 6, and 7 AU.  The family is 

constructed with perihelion distances, rp, equal to 0.1 and 1 AU, and aphelion distances, ra, equal 

to 15, 20, 25, …, 100, 200, 300, …, 1000, 2000, …, 50×103 AU.  The range of orbital periods for 

these values of aphelia is between 20 years and 4×106 years, reaching out to the middle of the 

Oort cloud. Long-period comets are typically defined as those with periods greater than 200 

years. 

Warning time as a function of ra is displayed in Fig. 5.  Warning time does not change 

significantly for aphelia greater than 1000 AU, and reducing rp by a factor of 10 results in a loss 

of warning time by about the same amount as reducing the detection distance by 1 AU.  The 
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Figure 5.  Times of flight between detection and collision for short- and long-period comets 

 

range in warning times is between a little more than 2 years for the case where the comet is 

discovered at a distance of 7 AU, with rp equal to 1 AU, and 9.5 months for the case where the 

comet is discovered at a distance of 5 AU, with rp equal to 0.1 AU. 

 

3.2 Designing Earth-Impacting Orbits 

By design, all of the orbits to be studied pass through the ecliptic plane at a heliocentric distance 

of 1 AU.  If the ecliptic plane is the reference plane, a comet in an inclined orbit is at the 

ascending or descending node when passing through the ecliptic.  Therefore, the collision takes 

place when the comet is at the ascending or descending node, and the heliocentric distance r is 
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equal to rc.  Referring to Fig. A1, we see that ν = -ω when the object is located at ascending 

node, and  ν = π -ω  when the object is located at descending node.  The equation of the orbit can 

be written in the form   

                  
( )

νcos1
1
e

er
r p

+
+

= ,                         (3.2)  

 
which after substituting the collision requirements becomes 

 

                 
( )

ωcos1
1
e

er
r p

c ±
+

=  ,                               (3.3)   

 
where the positive and negative signs are associated with the ascending and descending nodes, 

respectively.  Solving for argument of periapsis, ω, gives  

 

          
eer

r

c

p 111cos −





 +=± ω .                     (3.4)   

 
The comet orbit will intersect the orbit of the Earth as long as  

 
            cp rr ≤                          (3.5)  
  

and  
            ac rr ≤ .                    (3.6)   

 

Therefore, Eq. (3.4) can be used to solve for the value of ω that ensures a collision to take place 

at the ascending or descending node, as long as Eqs. (3.5) and (3.6) are satisfied.  When the 

comet orbit lies in the ecliptic plane, the ascending and descending nodes will be undefined since 

i = 0°.  In this case, the value of ω is arbitrary because a collision is ensured to occur as long as 

the conditions in Eqs. (3.5) and (3.6) are satisfied. 
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4 Orbit Determination and Collision Probability 

It was shown in Sec. 2.2 that six parameters are necessary to define an orbit, either a set of six 

orbital elements or the six components of position and velocity.  Therefore, a minimum set of six 

measurements is required to calculate an orbit, usually two angular measurements at three 

separate observation times.  Newton was the first to describe a method for finding the orbit of a 

body from three observations, and Edmund Halley was the first person to apply this technique to 

the calculation of orbits.  He used it to prove that a comet observed by Kepler in 1607 was the 

same comet he observed in 1682, and predicted that it would return in 1758.  On Christmas day, 

1758, the comet appeared in the night sky, fulfilling his prediction and ever after bearing his 

name [5].   

Preliminary orbit determination is the process of using the minimum number of 

observations to calculate a first approximation of the six orbit parameters required to define an 

orbit.  This approximation can then be combined with additional angular measurements, range 

information, and effects due to perturbative forces to obtain the orbit more precisely.  The comet 

orbits under study have been designed to cross the ecliptic plane at a heliocentric distance of       

1 AU where a collision at the center of the Earth is assumed to occur.  The designed orbit defines 

a nominal set of observations consisting of celestial longitude, ϕ, celestial latitude, λ, and in 

some cases range, ρ, to which random noise is added to simulate observations collected from an 

observatory.  The accuracy of the orbit determination can be quantified by comparing the orbits 

calculated with noisy measurements to the nominal orbit for different tracking schedules and 

observatory locations.  Orbit determination methods are discussed in Sec. 4.1, and orbit 

determination accuracy is discussed in Sec. 4.2. 
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4.1 Methods of Orbit Determination 
 
Ultimately it would be Gauss who would be remembered for solving the orbit determination 

problem based on three observations, although he knew himself that his method was only an 

approximation to be used for preliminary orbit determination. He’s quoted as stating that 

improvement could only be made by accumulating “the greatest number of the most perfect 

observations, and to adjust the elements, not so as to satisfy this or that set of observations with 

absolute exactness, but so as to agree with all in the best possible manner” [5].  His method of 

weighted least squares is one way of combining a “great” number of observations to calculate an 

improved estimate of the orbit. This method usually employs observational data collected 

together as a “batch”, and is applied to minimize the sum of the squares of the weighted residuals 

of the measurements. The batch process requires all data to be stored, so when a new 

measurement becomes available, it is added to the batch and the entire set is either reprocessed 

or augmented using a sequential batch process. Simple formulas exist for adding a new 

measurement without having to reprocess the entire data set, and various levels of importance 

can be placed on the measurements through weighting factors. However, the method of weighted 

least squares has no method for incorporating system noise to account for incomplete force 

modeling or measurement noise to account for imperfect observations.  An orbit determination 

method that does incorporate system and measurement noise statistics makes use of the Kalman 

filter, a sequential data processing algorithm that yields a minimum error variance, or minimum 

trace of an error covariance matrix.  This method is described in Sec. 4.1.2.   
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4.1.1 Preliminary Orbit Determination Using Gauss’ Method 

Gauss’ method makes use of measurements of longitude, ϕ~ , measured from vernal equinox in 

the ecliptic plane, and latitude, λ~ , measured from the ecliptic plane toward the north celestial 

pole.  The tilde superscript denotes the fact that the measurements are assumed to have some 

error associated with them due to the measurement resolution of the observing device.  

Following the algorithm presented in Sec. 5.8 of Ref. [5], assuming that optical measurements ϕ~  

and λ~  are available at three times t1, t2, and t3, a unit vector along the line of sight between the 

observatory and the comet is expressed as 

 

                             ( ) ( ) ( ) 3,2,1,ˆ~sinˆ~cos~sinˆ~cos~cosˆ =++= iiii ziyiixiii λλϕλϕL .             (4.1) 

 
The heliocentric position of the comet can be expressed as 

 
                                                                      ρLdr ˆ+= ,                    (4.2) 

 
where d is the heliocentric position of the observatory, and ρ is the magnitude of the distance 

between the observatory and the comet.  If the vector r(t) is expressed in terms of the Lagrange 

coefficients f and g at t2, then 

 
                                         ( ) ( ) ( ) 22222222 ,,,, vvrrvrr ttgttft −+−= ,                  (4.3) 

 
and with  

                                                             ( )222 ,, ttff ii −= vr                         (4.4) 

                                                            ( )222 ,, ttgg ii −= vr ,                       (4.5) 
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a set of nine equations in the nine unknowns r2, v2, ρ1, ρ2, and ρ3 can be expressed as 

 
                                                           1112121 Ldvr ρ+=+ gf ,                        (4.6) 

                                                                  2222 Ldr ρ+= ,                         (4.7) 

                                                           3332323 Ldvr ρ+=+ gf .                        (4.8) 

 
This set of equations is reduced to six independent equations in the six unknowns r2 and v2 by 

cross multiplying the i-th equation with Li and eliminating the zî  components to obtain the 

following set of equations written in matrix notation, 
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where rx, ry, and rz are the components of r2, and vx, vy, and vz are the components of v2.  The 

variables f and g are functions of r2 and v2 and are obtained through the process outlined in    

Sec. 2.3.  Eqs. (4.9) are nonlinear, and the procedure for solving this set of equations is: 

1. Estimate the vector r2 using Eq. (4.2) at t2, where d2 and L2 are known, and ρ2 is   

assigned a value of 5 AU (the distance at which the comet is assumed to be discovered); 

2. Estimate the vector v2 by forming the cross product of L1 and L3 to obtain a unit vector 

along the direction of the angular momentum, ĥ ; form the cross product of ĥ  with a unit 

vector in the direction of the estimated position, 2r̂ , to obtain a unit vector in the direction 
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of the estimated velocity, 2v̂ ; estimate the magnitude of v2 using the expression for 

circular velocity, i.e., 

                                                                         
2

2 r
v µ= ; 

 
3.  Using these estimates, compute the values of f1, g1, f2, and g2 using the equations   

presented in Sec. 2.3, and substitute into Eq. (4.9) to solve for the components of r2 and 

v2; 

4.  Update f1, g1, f2, and g2 and iterate until r2 and v2 converge. 

In all of the analysis to follow, Gauss’ method is used with three observations spaced seven 

days apart to determine preliminary orbits and other required initial parameters for the Kalman 

filter.  The preliminary orbit serves as an initial guess for the filter, and additional observations 

are collected to attain more accurate orbit determination. 

 

4.1.2 Final Orbit Determination Using the Kalman Filter 

As previously stated, the Kalman filter is a sequential filter, or a recursive data processing 

algorithm in which an estimate of the state, namely the six components of position and velocity, 

determined from measurement data available at the current time is updated when measurements 

become available at subsequent times.  The objective of any type of filter is to obtain this 

estimate while minimizing the error in some respect.  The Kalman filter is an optimal estimator 

that minimizes the error variance, or the trace of the error covariance matrix.  The Kalman filter 

can incorporate all available measurements and measurement uncertainties, along with the 

dynamics models of the comet and observatory and the uncertainty in these models to produce an 

estimate of comet position and velocity at the time of each observation. 
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4.1.2.1    State Propagation 

Using a Kalman filter requires some basic assumptions to be made about the problem.  First, the 

problem must be described using a linear model.  Since the orbit determination problem is 

nonlinear, the approach is to linearize about a reference trajectory.  Let r*(t) and v*(t) be the 

position and velocity of the comet on the reference trajectory.  The comet will not follow this 

reference trajectory exactly, and the actual position, r(t), and velocity, v(t), will deviate from 

r*(t) and v*(t).  Expanding r(t) and v(t) in a Taylor series about the reference trajectory yields 
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where [ ]* indicates that the matrix of partial derivatives is evaluated on the reference trajectory, 

higher order terms are neglected, and 

 
                ( ) ( )000 tt ∗−= rrrδ ,                  (4.12) 

               ( ) ( )000 tt ∗−= vvvδ .      (4.13) 

 
If a state deviation vector x is defined as 
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then Eqs. (4.10) and (4.11) can be written as 

 
       ( ) ( ) ( ) ( )000, ttttt wxx +Φ= ,                 (4.15) 
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where ( )0, ttΦ  is the state transition matrix, given by 
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As before, [ ]* indicates that the matrix of partial derivatives is evaluated on the reference 

trajectory.  The numerical values of the elements populating Φ  can be calculated from the 

analytical expressions of Eqs. (9.84) through (9.87) in Ref. [4], which are repeated below, 
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where C is introduced for convenience of notation and is defined in terms of universal variables 

by 

               ( ) ( ) 204531 UttUUC −−−= χ
µ

.                 (4.21) 

 
The quantity C is determined using the equations given in Sec. 2.3, along with the following 
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expressions for the universal variables U4 and U5, 
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When χ = U1 = 0, it can be shown through identities given in Ref. [4] that U5 = 0.   

 

4.1.2.2   The Observation Equation 

The observations are assumed to occur at discrete points in time and follow the linear relation 

 
                 kkkk εxHy += ~ ,                         (4.24) 

 
where the subscript k denotes the discrete point in time, tk.  The vector yk is an m×1 observation 

residual vector, the elements of which are the difference between the measurements on the actual 

trajectory and the measurements on the reference trajectory, and εεεεk are the errors in the 

measurements.  The matrix H~  is an m×6 matrix of partial derivatives of the observations with 

respect to the state vector, where the state vector is a 6-dimensional column vector of the 

components of position and velocity at time tk.  This matrix is generally based on the geometry 

of the problem and is sometimes referred to as the observation matrix.  For measurements of 

longitude and latitude, the observation matrix is expressed as 
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where ρρρρ is the position vector of the comet with respect to the observatory, i.e.,  

 
              zzyyxx iii ˆˆˆ ρρρ ++=ρρρρ ,                   (4.26) 

 
and ρ is the magnitude of ρρρρ.  When each observation consists of two angular measurements, the 

dimension of yk is 2×1 and the dimension of H~ is 2×6; if a measurement of range is added to 

each observation, the dimension of yk is 3×1 and the dimension of H~ is 3×6.   The first two rows 

of H~ will be the same as above, and the last row will contain the partial derivatives of the 

measurement of range with respect to the state, i.e., 
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 The second Kalman filter assumption is that the measurement noises are white, meaning 

the values of noise are not correlated in time.  In other words, the value of noise at a particular 

time cannot be predicted based on knowledge of the noise value at previous times.  Therefore, 

the measurement errors εεεεk in Eq. (4.24) are uncorrelated errors with  

 
       ( ){ } 0=tE εεεε  

           ( ) ( ){ } ( )tttE R=Tεεεεεεεε ,                    (4.28) 

 
where the m×m matrix R(t) is the covariance of εεεε and describes the uncertainty in the 

observations.   
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4.1.2.3    Time and Measurement Updates 

The initial state deviation x(t0) will not be known precisely a priori.  Therefore, the dynamics 

model of Eq. (4.15) is written in terms of an estimate of the initial state deviation ( )0ˆ tx , i.e., 

 
         ( ) ( ) ( ) ( )000 ˆ,ˆ ttttt wxx +Φ= ,                 (4.29) 

 
where ( )0tw  is white noise with  

 
                     ( ){ } 0=tE w  

                        ( ) ( ){ } ( )tttE Qww =T .                   (4.30) 

 
The 6×6 matrix Q(t) is the covariance of w and describes the uncertainty in the dynamics model.  

A 6×6 covariance matrix P is defined in terms of the error in the estimate of the state deviation 

vector, 

 
               ( ) ( )[ ] ( ) ( )[ ]{ } Pxxxx =−− Tˆˆ ttttE .                   (4.31) 

 
 The Kalman filter is used to estimate and update the state deviation vector from the time 

when one measurement is processed, tk-1, to the time the next measurement is processed, tk.  This 

process can be thought of as consisting of two parts: a time update and a measurement update.  

The procedure uses the solution at time tk-1 as the starting point for the update at time tk.  

Consider the state deviation at a time just after a measurement update, denoted by +
−1kt , and a 

time just before the next measurement update, −
kt .  The time updates of the state deviation vector 

and the covariance matrix P are given by Eqs. (4.2-17) and (4.2-18) in Ref. [10] repeated here, 
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                 ( ) +
−−

− Φ= 11 ˆ,ˆ kkkk tt xx ,                   (4.32) 

              ( ) ( ) 1
T

111 ,, −−
+
−−

− +ΦΦ= kkkkkkk tttt QPP .                (4.33) 

 
The measurement updates of the state deviation vector and the covariance matrix P are given by 

Eqs. (4.2-5) and (4.2-12) in Ref. [10] as 

 
           [ ]−−+ −+= kkkkkk xHyKxx ˆ~ˆˆ ,                (4.34) 

      ( ) ( ) TT~~
kkkkkkkkk KRKHKPHKP +−Ι−Ι= −+ ,                   (4.35) 

 
where K is the Kalman gain, given by Eq. (4.2-15) in Ref. [10] as, 

 
                  [ ] 1TT ~~~ −−− += kkkkkkk RHPHHPK ,                 (4.36) 

 
and is an optimal gain matrix that weights the measurements more heavily if K is large and less 

heavily if K is small.   

 The filter generates the best prediction of the state deviation −
kx̂  at time tk before the 

measurement at time tk is processed, and generates the best prediction −
kk xH ˆ~  of what the 

measurement deviation will be before the measurement is actually taken.  The measurement 

residual is calculated as the difference between the measurement deviation yk and −
kk xH ˆ~ , and 

then multiplied by the gain matrix, Kk, to produce a correction term to be added to −
kx̂  to obtain 

+
kx̂ .  This correction term is proportional to both Kk and the measurement residual [ ]−− kkk xHy ˆ~ .  

The algorithm has a predictor-corrector structure.  The Kalman filter algorithm is completely 

defined by specifying Φ and H~  for all times of interest, and supplying ( )0ˆ tx , yk, and the 
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 uncertainties P0, Q(t), and R(t) [11]. 

 An initial estimate of the state deviation ( )0ˆ tx  is supplied in the form of a 6×1 column 

vector of deviations in position and velocity from the true comet orbit, and a corresponding 

initial 6×6 covariance matrix P0 describing the uncertainties in ( )0ˆ tx .  The initial conditions are 

obtained from a preliminary orbit determined by Gauss’ method, using three observations 

collected by an observatory with measurement resolution η equal to 0.1 arcseconds (comparable 

to Hubble Space Telescope).  The Gauss algorithm presented in Sec. 4.1.1 is used 100 times with 

100 sets of six observations that have normally distributed noise with zero mean and standard 

deviation equal to η.  The samples are truncated at ±2η.  From this process, 100 different 

preliminary orbit solutions are obtained.  The initial estimate of the state deviation, ( )0ˆ tx , is the 

difference between the Gauss solution and the designed orbit.  The initial covariance matrix is 

calculated from the 100 state deviation vectors. 

 Since outgassing forces have been shown to be negligible during the time interval when 

observations are being collected, all time updates are performed by way of the two-body state 

transition matrix of Eq. (4.16).  Comet outgassing introduces an uncertainty in the two-body 

assumption and is modeled as two effects – a varying uncertainty that changes with time and a 

constant uncertainty that acts over the entire orbit.  The time-varying uncertainty  is modeled as 

white state noise with zero mean and diagonal covariance Q(t).  The elements of Q(t) are 

calculated with the aid of Eq. (2.28).  Since it is impossible to know ahead of time the values of 

the outgassing coefficients for a newly discovered comet, a distribution of values between the 

maximum and minimum values of Ai (i = 1, 2, 3) given in Ref. [7] is used to determine standard 

deviations for the coefficients,
iAσ (i = 1, 2, 3).  Using the

iAσ (i = 1, 2, 3) in place of the Ai (i = 1, 

2, 3) in Eq. (2.28), outgassing acceleration αααα′  is determined.  Assuming αααα′  is constant over the 
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time interval between observations, the deviation in position due to outgassing acceleration is 

expressed as 

                            ( )2
12

1
−−′= kk ttααααrδ ,                 (4.37) 

 
and the deviation in velocity is expressed as 

 
                  ( )1−−′= kk ttααααvδ ,                  (4.38) 

 
where the quantity ( )1−− kk tt  is the time interval between observations.  The uncertainty in the 

system model can be expressed as  

                   ( ) 3,2,1,2 == irt ikii δQ                    (4.39) 

                   ( ) .6,5,4,2
3 == − ivt ikii δQ                  (4.40) 

 
The constant element of uncertainty caused by outgassing is described in Sec. 4.2.2. 

 

4.2 Orbit Determination Accuracy 

Body plane (B-plane) targeting is a method commonly used for determining spacecraft closest 

approach distance to a target planet during the design phase of interplanetary missions, and for 

interplanetary orbit determination and maneuver targeting.  This method is easily applied to 

define a metric to quantify orbit determination accuracy for Earth-impacting comets in terms of 

miss distance.  Results from B-plane analysis can be used further to determine Earth collision 

probability, as in Ref. [12].   
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4.2.1 The B-plane 

The B-plane is defined as a plane passing through the center of the target planet, perpendicular to 

the asymptote of the incoming hyperbolic orbit.  The vector B is a vector in that plane, on a line 

from the center of the target planet to the point where the asymptote intersects the plane, as 

shown in Fig. 6.  The vector B determines where the point of closest approach would be 

assuming the target planet had no mass and did not influence the trajectory.  A coordinate system 

with origin at the center of the target planet is defined by three orthogonal unit vectors T̂ , R̂ , 

and Ŝ .  The unit vector Ŝ  points in the direction parallel to the incoming asymptote, T̂ is normal 

to Ŝ  and lies in the ecliptic plane, and R̂  completes the orthogonal basis.  The construction of 

the basis is such that Ŝ  is perpendicular to the B-plane, and T̂ and R̂  lie within it. 
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Figure 6.  B-plane geometry 
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In the present study, the B-plane is constructed with the Earth as the target planet.  

Ignoring the gravity of the Earth, the velocity at infinity can be calculated as 

 
             ( ) ( )cEcC tt vvv −=∞ ,                 (4.41) 

 
where ( )cC tv  and ( )cE tv  are the velocities of the comet and the Earth in the inertial reference 

frame at the designed time of collision, respectively.  Thus,  

 

                                                                        
∞

∞=
v
vŜ .                   (4.42) 

 
The unit vector T̂ lies in the ecliptic plane perpendicular to Ŝ , therefore 
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S
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The unit vector R̂  is  

 
                                                                       TSR ˆˆˆ ×= .                  (4.44) 

 
 As stated previously, the vector B is a vector in the B-plane, extending from the center of 

the Earth to the point where the hyperbolic asymptote intersects the B-plane.  Since Ŝ  is normal 

to the B-plane, and since both B and Ŝ  lie in the trajectory plane, B must satisfy the expressions 

 
        ( ) hSB =× ∞

ˆv ,                      (4.45) 

         ( ) 0ˆ =⋅ ∞SB v ,                  (4.46) 

 
where h is the angular momentum of the comet relative to the center of the Earth, 
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         ∞∞ ×= vrh ,                  (4.47) 

 
and r∞ is the relative position of the comet with respect to the Earth at the designed time of 

collision, 

                ( ) ( )cEcC tt rrr −=∞ .                   (4.48) 

 
  Forming the cross product of Ŝ  with Eq. (4.45) gives 

 

              ( ) ( )hSSBS ×=××
∞

ˆ1ˆˆ
v

,      (4.49) 

or 
 

                    ( ) ( ) ( )hSSBSBSS ×=⋅−⋅
∞

ˆ1ˆˆˆˆ
v

.                 (4.50) 

 
Since Ŝ  is a unit vector, and since B and Ŝ  are mutually orthogonal, Eq. (4.50) becomes  

 

        ( )hSB ×=
∞

ˆ1
v

.                    (4.51) 

 
The magnitude of B is the miss distance.  It is common to describe B using the two components 

along the T̂ and R̂  directions,  

 
                                                                       TB ˆ⋅=TB ,                  (4.52) 

                                                                       RB ˆ⋅=RB ,                             (4.53) 

 
and describe them verbally as “B dot T” and “B dot R”. 
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4.2.2  State Uncertainties at Nominal Collision Time 

A collision occurs at the center of the Earth by design.  Therefore, if the collected observations 

were perfect, producing perfect orbit determination, B would be zero.  Of course, the 

observations have random noise associated with them and a perfectly determined orbit is not 

expected.  The objective of the Kalman filter process is to determine a vector B and an associated 

uncertainty.  This uncertainty is determined by propagating the final Kalman covariance matrix 

+
kP  from tk to tc by 

                ( ) ( ) k
T

kckkcc tttt QPP +ΦΦ= + ,, ,                   (4.54) 

 
 with a modification required for the calculation of Qk.  The state noise covariance given in    

Eqs. (4.39) and (4.40) is valid for short time intervals over which outgassing forces are assumed 

constant.  The interval between the time of the last observation and the designed time of collision 

is too long for this assumption to remain valid (approximately one year), so this long interval is 

divided into 20 shorter intervals (each roughly two weeks).  The modified time update is 

 
          ( ) ( ) k

T
kkkkkk tttt QPP +ΦΦ= +

+
++ ,, 111 ,                 (4.55) 

 
where kQ  is the average state noise covariance for the shorter time interval, 

 

               
2

1++
= kk

k
QQQ .                    (4.56) 

 
Eqs. (4.55) and (4.56) are applied repeatedly until ck tt =+1 .  The covariance matrix Pc is a 6×6 

matrix describing the uncertainty in the Kalman filter solution at the designed time of collision.  

However, only the upper left 3×3 partition of Pc is of interest, since this partition contains 
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uncertainties in position, and is denoted by cP̂ .  As mentioned previously, uncertainty due to 

comet outgassing is modeled as two effects.  The time varying uncertainty is contained in the 

covariance Q(t) as described above.  The constant uncertainty is included by supplementing cP̂  

with a covariance matrix calculated from differences in position at the designed time of collision 

caused by outgassing.  Eq. (2.28) is numerically integrated from the time of the first observation 

to the designed time of collision, tc, once with αααα = 0, and then three times, each with αααα calculated 

using one of the 
iAσ  (i = 1, 2, 3) previously introduced.  The difference in r(tk) between the       

αααα = 0 and 
iAσ  solutions are expressed as a 3×1 column matrix, δδδδ, and the supplemented 

covariance matrix is 

                                                               ∑
=

+=
3

1

Tˆ
i

iicc δδPP .                   (4.57) 

 

4.2.3 Position Uncertainty in the B-plane 

The covariance given by Eq. (4.57) is associated with unit vectors in the inertial coordinate 

frame, and therefore must be rotated to the B-plane coordinate frame.  If C denotes the direction 

cosine matrix required for the rotation, then the covariance matrix in the B-plane coordinate 

frame is given by 

                       Τ= CPCP cB .                           (4.58) 

 
The uncertainty in the orbit solution can be thought of as a 3-dimensional error ellipsoid centered 

at the B-plane intersection point marked by the vector B.  The error in position is described by a 

2-dimensional ellipse formed by the intersection of this ellipsoid with the B-plane, and is 

determined from the 2×2 partition of PB associated with the unit vectors T̂  and R̂ .  This 2×2 
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partition is denoted by Pb.  The semimajor and semiminor axes of the error ellipse, denoted by σ1 

and σ2 respectively, are the square roots of the eigenvalues of Pb.  The eigenvalues are the 

elements of a diagonal matrix D given by 

 
               VPVD b

T= ,                  (4.59) 

 
where V is a matrix containing the normalized eigenvectors whose directions are parallel to the 

principal axes of the error ellipse.  The orientation of the error ellipse is  

 

                    







= −

11

211tan
V
Vθ ,                             (4.60) 

 
and is measured positive clockwise from the T̂  axis to the semimajor axis of the error ellipse.  

The out-of-plane component of the ellipsoid is associated with the error in time of arrival to the 

B-plane, denoted by σ3, and is calculated by dividing the square root of the component of PB 

associated with Ŝ  by v∞. 

 

4.2.4 Validation of Linearity 

Inspecting results obtained through Monte Carlo simulations will verify that the linear state 

model assumption made in the formulation of the Kalman filter algorithm is valid.  Using the 

same long- and short-period comet sample orbits employed in Sec. 2.4, 100 different orbit 

solutions are obtained from 91 optical observations spaced one day apart, taken from a single 

observatory with angular resolution η = 0.1 arcseconds, located at the same heliocentric position 

as the Earth.   The observations contain normally distributed random noise with zero mean and 

standard deviation equal to η.  The samples are truncated at ±2η.  Perturbations due to comet 
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outgassing are not included.  Each orbit solution has a covariance matrix Pb, resulting in 100 

different error ellipses centered on each of the 100 B-plane intersection points, with the 

distribution of the points themselves mimicking the shape of an ellipse.  Each error ellipse is 

characterized by σ1, σ2, σ3, and θ.  Average values of these parameters should agree fairly well 

with values determined from a single covariance matrix calculated from the 100 Kalman filter 

solutions of state deviation at the time of collision.  Figs. 7 and 8 show the 100 B-plane 

intersection points, along with the 1σ error ellipse calculated from the single covariance matrix 

and centered on the mean coordinates of BT and BR (the 2σ and 3σ error ellipses can be 

calculated by simply multiplying the 1σ values by 2 or 3 accordingly).  For clarity, the error 

ellipses associated with each intersection point have been omitted, so Figs. 9 and 10 are supplied 

to show how the size and orientation of these ellipses are virtually the same for each Monte 

Carlo simulation, with only slight variations from the mean values,  represented in the figures by 
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Figure 7.  Error ellipse for a sample long-period comet after 91 observations (1σσσσ) 
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Figure 8.  Error ellipse for a sample short-period comet after 91 observations (1σσσσ) 

 
 
a blue line.  The similarity in the size and orientation of the ellipses is evidence of linearity, as 

well as the similarity of the average values to the single values of σ1, σ2, σ3, and θ, listed in 

Table 1 for comparison.  In other words, because the problem is linear, every orbit solution 

covariance at the designed time of collision will be virtually the same no matter where the        

B-plane intersection point is located.   Since the covariance matrix can be used to describe orbit 

determination accuracy, the need to run further Monte Carlo cases is eliminated, saving time and 

computer resources. 

Since the perturbation due to outgassing is small, the problem remains linear when these 

perturbations are included.  Table 2 lists values of the error ellipse parameters for the outgassing 

case.  By comparing the values in Table 2 with the values in Table 1, the effect of comet 

outgassing is an increase in the size of the 1σ error ellipse, signaling slightly less accurate orbit 

determination. 
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Figure 9.  Variation in error ellipse parameters for a sample long-period comet after 91 observations 
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Figure 10.  Variation in error ellipse parameters for a sample short-period comet after 91 observations 
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Table 1.  Error Ellipse Parameters for Sample Long- and Short-Period Comets 

 Long-period Short-period 
 Single Average Single Average 

 σσσσ1 (RE) 0.914713 0.785722 1.158412 0.983721
 σσσσ2 (RE) 0.224407 0.232689 0.188408 0.199222
  σσσσ3 (minutes)    2.491799 2.541044 2.439856 2.313072
 θθθθ (degrees) 11.334516 9.221617 9.591973 8.860158
 BT 0.041637 0.030882
 BR 0.028503 0.030710

 
Table 2.  Error Ellipse Parameters for Sample Long- and Short-Period Comets  

with Outgassing Included 

 Long-period Short-period 
 Single Average Single Average 

 σσσσ1 (RE) 0.923522 0.796227 1.166215 0.992968
 σσσσ2 (RE) 0.229514 0.236704 0.193971 0.204095
  σσσσ3 (minutes)    2.537502 2.585841 2.490257 2.366148
 θθθθ (degrees) 10.903420 8.676846 9.329242 8.504838
 BT -0.068534 -0.084936
 BR 0.014652 0.016525

 

 
 

 

4.2.5 Collision Probability 

With the proof presented in the previous section that the linearity assumption is valid, Monte 

Carlo simulations are no longer required.  The nominal comet trajectory is used as the reference 

trajectory in the Kalman filter orbit determination sequence, and as such, passes through the 

center of the Earth.  Under this formulation the metric for describing how well the orbit has been 

determined is not an actual miss distance, but rather an Earth-collision probability.  The 

projection of the Earth onto the B-plane is a disk, and the probability of impact can be computed 

by integrating the bivariate Gaussian probability density function,   
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over the effective cross-sectional area of the Earth, which accounts for the gravity of the planet 

that was neglected in the construction of the B-plane.  The effective collision radius is given by 

Eq. (8.3-30) in Ref. [5] as 

 

           
E

EE
E R

v
v
RR µ22 += ∞

∞

,                   (4.62) 

 
where RE is the physical radius of the Earth and µE is the gravitational parameter of the Earth.  

The variables σT and σR in Eq. (4.61) are the standard deviations in BT and BR and are related to 

σ1 and σ2 through the expressions 

 

                                                    ( ) ( )2
2

2
1 sincos θσθσσ +=T ,                  (4.63) 

                                                   ( ) ( )2
2

2
1 cossin θσθσσ +=R .                   (4.64) 

 
The variable ρTR is the correlation coefficient of σT and σR. 

Numerical integration of Eq. (4.61) is performed by constructing a coarse grid on the    

B-plane.  At each course grid point, Eq. (4.61) is evaluated at every point on a fine grid that 

approximates a circle of radius ER , and is multiplied by the area of the fine grid square.  The 

probability that the comet passes through the B-plane somewhere inside this circle is simply the 

sum of these products.  Contours of constant fTR are ovals, as in Fig. 11, which shows contours of 
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constant collision probability for the long-period comet sample case without outgassing.  The 

maximum value of collision probability occurs at the origin, and the figure can be interpreted as 

follows: if the calculated orbit crosses the B-plane at the origin (signifying a predicted collision 

at the center of the Earth), the probability of collision is 0.796; if the calculated orbit crosses the 

B- plane at (2,0) where it intersects the contour labeled –1, the probability of collision is 0.1; 

points outside the contour labeled  –6 signify less than a one- in-a-million chance that a collision 

will occur.   Therefore for this sample case, with 91 optical observations taken from a single 

observatory once per day, the confidence in predicting an Earth collision can never be greater 

than 0.796, or 79.6%.  When perturbations due to comet outgassing are included, this probability 

decreases to 78.9%.   

Fig. 12 shows maximum collision probability, denoted by 0κ , as a function of tracking 

duration from a single observatory for both the long- and short-period sample comets, with and 

without perturbations due to outgassing included.  This figure clearly shows the collision  
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Figure 11.  Earth collision probability for a sample long-period comet after 91 observations 
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probability results obtained from 15 to 100 days of observations, where κ0 reaches approximately 

0.9.  However, the results of interest are at longer tracking durations where the curves appear to 

level off and the collision probability is 0.99 or above.  It is also difficult to distinguish any 

significant effect outgassing has on the results.  Plotting 01 κ−  versus tracking duration on a 

logarithmic scale, as in Fig. 13, makes the results much easier to interpret.  It is clear from this 

figure that outgassing does indeed introduce uncertainty in the orbit solution.  Fig. 14 shows the 

B-plane collision probability for the 141-day tracking interval.  Comparing with Fig. 11, the 

ovals are now smaller in size, and the collision probability at the point (2,0) is now less than 10-6. 
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Figure 12.  Maximum collision probability as a function of tracking duration for  

sample long- and short-period comets 
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Figure 13.  Maximum collision probability as a function of tracking duration on a logarithmic scale for 

sample long- and short-period comets 
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Figure 14.  Earth collision probability for a sample long-period comet after 141 observations 
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5 Observatory Location and Observation Schedule 

The results for the sample cases of the long- and short-period comets have been used thus far to 

aid in the presentation of the concepts and the method used to describe how well an Earth-

impacting comet orbit can be determined.  B-plane error ellipses and collision probabilities have 

been compared for these two cases, but general conclusions about the best observatory location 

or tracking schedule cannot be made based on these two cases alone.  Therefore, a family of 

comets on Earth-impacting trajectories is created with varying inclinations to serve as a 

representative set of the real-life population of possible impactors, and orbit determination 

accuracies are analyzed for this family of comets.   The orbits are determined from angular 

measurements over several different tracking intervals, and from single or multiple space-based 

observatories in circular orbits around the Sun at varying heliocentric distances.  Radar 

measurements of range are also included in some cases.  The results of this analysis will make it 

possible to compare various telescope configurations and observation schedules to be used for 

determining the orbits of Earth-impacting comets. 

 The family of comets on which the remainder of the analysis will be focused contains 

five orbits with inclinations of 5°, 45°, 90°, 135°, and 175°, chosen to characterize low and high 

inclination orbits and direct and retrograde motion.  Inclinations of 0° and 180° are not included 

because these cases will cause all of the elements in the first, fourth, and fifth columns of the 6×6 

matrix on the left hand side of Eq. (4.9) to be zero, and finding a preliminary orbit solution will 

not be possible.  Based on the results of the sample comets in the previous section, increasing the 

orbital period (or increasing the aphelion distance from say, 40 to 300 AU) does not cause a 

significant change in collision probability, therefore all orbits in this representative set have an 
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aphelion distance of 300 AU and a perihelion distance of 0.1 AU.  The comet orbits also have Ω, 

ω, and ν0 in common, with values of 30°, 143.6°, and -164.8°, respectively.   

 

5.1 Single Observatory at Earth 

The most convenient location for an observatory would be on the Earth, or in low Earth orbit.  In 

orbit determination simulations performed for this study, it is assumed that the observatory is 

located at the center of the Earth because the distance between the observatory and the comet 

during the tracking interval is so large (approximately 5 AU).  All observations are assumed 

possible; situations where the Sun or other bodies would interfere with observing the comet are 

ignored.   

Fig. 15 contains plots of collision probability, κ, as a function of tracking interval for a 

single observatory coincident with the Earth.  The probability was calculated at three selected  
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Figure 15.  Collision probability results from a single Earth observatory 
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points in the B-plane for each of the comets in the test set: at the center of the Earth, and at the 

surface of the Earth in both the BT and BR directions.  Collision probability at the center of the 

Earth is denoted by κ0, and at the surface of the Earth along the BT and BR axes, collision 

probability is denoted by κT and κR, respectively.  One obvious characteristic of the curves in  

Fig. 15 is that each approaches a maximimum value of κ at long tracking durations.  This 

behavior is explained by visualizing collision probability as the area of an ellipse contained 

inside a disk.  In the limit, this area approaches 1 if the ellipse center is located at the center of 

the disk, as shown in the plot on the left of Fig. 16.  The area of the same ellipse with its center 

located at the surface of the disk approaches 0.5, as shown in the middle plot (half of the ellipse 

lies inside the Earth disk, and half lies outside).  However, if the same ellipse is located at some 

other point on the surface of the disk as shown in the plot on the right, the area inside could be 

less than 0.5, depending on the size and orientation of the ellipse.  In the limit the ellipse would 

become sufficiently small so that the area inside would approach 0.5, no matter where on the 

surface of the disk it was located.    Referring back to Fig. 15, κ0 approaches the limit at 1, and 

κT approaches the limit at 0.5.  The limit is approached much more slowly for κR due to the 

orientation of the error ellipse.  It is difficult to discern the variation in κ at these limits, so the  
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Figure 16.  Collision probability for central and limb impacts 
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behavior is shown in detail by plotting 1-κ0, 0.5-κT, or 0.5-κR on a logarithmic scale, as in        

Fig. 17.  If collision probabilities of 0.99 are of interest, then approximately 111 observations 

from a single telescope at 1 AU are needed to accurately determine the direct comet orbits in the 

test set.  For the retrograde orbits, 130 to 140 observations are needed to achieve the same level 

of accuracy.  This difficulty is due to poor orbit geometry between the observatory and the 

comet.  Fig. 18 shows the heliocentric orbits of the comet (red) and the observatory (blue) over a 

121-day tracking interval for the direct comet orbit with i = 5° and the retrograde comet with              

i = 175°.  The geometry for the direct comet case results in larger heliocentric parallax between 

the observatory and the Sun-comet line than for the retrograde comet case.  This larger parallax 

is beneficial to orbit determination accuracy because it helps determine the distance between 
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Figure 17.  Collision probability results from a single Earth observatory on a logarithmic scale 
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Figure 18.  Orbit geometry between an observatory at 1 AU and direct and retrograde comets 

 

the comet and the observatory along the line of sight.  The subject of parallax will be discussed 

in more detail in the next section. 

As previously explained, κT and κR are sensitive to the orientation of the error ellipse.  As 

the tracking duration lengthens, the orientation of the error ellipse changes so that the angle 

between the semimajor axis and the direction of the heliocentric velocity of the comet increases.  

This change in orientation is the reason why the κT curves in Fig. 17 have a “bump”.  With a 

small number of observations, the majority of the orbit determination error is along track (in a 

direction parallel to the heliocentric velocity of the comet).  As more observations are collected 

the error in this direction decreases, and the orientation of the error ellipse changes.  Fig. 19 

shows this behavior.  On the top is the error ellipse for the 45° inclination comet after 61 

observations, and on the bottom is the error ellipse for the same comet after 121 observations.  

Also shown is the direction of the heliocentric velocity of the comet projected into the B-plane, 

represented by the green lines.  The error ellipse on the top is much larger and the semimajor 

axis is oriented along the direction of the velocity of the comet, signaling that the majority of the  

i = 5° i = 175° 
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Figure 19.  Orientation of error ellipses for a long-period comet with 45° inclination 

 

error is along track.  On the bottom, the error ellipse is smaller, and the angle between the 

semimajor axis and the velocity is larger, evidence that as the tracking duration increases the 

importance of the error along track decreases. 

 

5.2 Single Observatory in a Circular Orbit at 1 AU 

Although an observatory located at the center of the Earth approximates a convenient location, 

such as low Earth orbit, there may be other positions along the heliocentric orbit of the Earth that 

result in better orbit determination accuracy.  One way to investigate this is to examine the size 

of the error ellipse resulting from observatory locations that vary in increments of 5° around the 

heliocentric orbit of the Earth.  Tracking durations of five days are used to determine the orbit 

solution and the associated error ellipse for each 5° increment.   The results are presented in   

Fig. 20, which shows the semimajor axis of the error ellipse, σ1, versus the angle, γ, in the 
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ecliptic plane between the observatory and comet position vectors at the time of the first 

observation.  Smaller values of σ1 represent orbit solutions with less uncertainty than those with 

larger values of σ1.  There is similarity in the variation of σ1 between the i = 5° and  i = 175° 

cases, and also between the i = 45° and i = 135° cases.  Also, the comet with i = 90° has the least 

amount of variation in σ1 due to the fact that the orbit plane is perpendicular to the ecliptic plane, 

and the comet appears to be directly overhead from the point of view of the observatory.   

Minimum values of σ1 occur when γ is approximately 0° (or 360°), with a secondary minimum 

near γ = 180°; peaks in σ1 occur when γ is near 90° or 270°.  These variations in σ1 are due to the 

time rate of change of heliocentric parallax, dtdβ , given by 
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Figure 20.  Semimajor axis of error ellipse after 5 observations as a function of the angle between the 
observatory and the Sun-comet line 
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Minimum values of σ1 occur at maximum values of dtdβ , where γ is near 0° or 180°, as shown 

in  Fig. 21.  Points of minimum and maximum dtdβ  are labeled with the corresponding value 

of γ.  At the points of maximum parallax rate, the observatory is moving in a direction 

perpendicular to the Sun-comet line.  The maximum values of dtdβ  indicate that these 

locations produce the most apparent motion between the observatory and the comet.  Because the 

distance between the observatory and the comet is so large during the tracking interval, the 

comet appears to be stationary.  Therefore, the main contributor to the change in parallax is the 

motion of the observatory.     
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Figure 21.  Semimajor axis of error ellipse after 5 observations as a function of time rate of change of parallax 
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The results presented in Fig. 21 are confirmed by studying parallax rate through an analytical 

approach, where the comet is placed on the xî  axis at a distance of 5 AU and dtdβ  is 

calculated at 5° increments around circular, heliocentric observatory orbits of various radii.  The 

plot on the left of Fig. 22 shows the relationship between dtdβ  and γ  for these hypothetical 

cases.  Maximum dtdβ  occurs when γ = 0°, with a secondary maximum when γ = 180°; 

minimum dtdβ  occurs when γ is between ±45° and ±90°.  In particular, the curve 

corresponding to an observatory radius of 1 AU is at maximum dtdβ  when γ = 0° or 180°, and 

minimum dtdβ  when γ  is approximately 80° or 280°.   These results agree well with those 
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Figure 22.  Time rate of change of parallax as a function of observatory orbit radius for a hypothetical comet 

with i = 0° 
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presented in Fig. 21.  Moving the observatory orbit inside 1 AU to 0.5 AU, or outside 1 AU to 3 

AU, increases the maximum parallax rate, as shown in the plot on the right of Fig. 22.  Since 

better orbit determination is obtained when dtdβ  is maximum, the best locations for an 

observatory are in an orbit with a small radius, where the observatory would be traveling very 

fast around the Sun, or in a larger orbit closer to the comet.  However, the cost of delivering an 

observatory to such orbits may not be justifiable based on the small increases in dtdβ  shown in 

Fig. 22.  An observatory at 1 AU could perform just as well if the tracking duration was 

sufficiently long, if additional observatories were available to collect observations, or if the 

observations also included measurements of range.  

Fig. 23 shows maximum collision probability, κ0, versus tracking duration for four 

different observatory orbits, corresponding to Mercury, Venus, Earth, and Mars orbit radii.  The  
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Figure 23.  Collision probability as a function of tracking duration for Mercury, Venus, Earth, and Mars 

observatories 
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results for short tracking intervals, when the main factor in orbit determination accuracy is 

parallax rate, agree with the conclusions drawn in the previous discussion.  In each case the 

Mercury and Venus observatories out perform the Earth observatory, and the Earth observatory 

out performs the Mars observatory.  However, as the tracking duration increases the orbit 

determination accuracy is improved by the additional observations, and the Earth observatory 

performs just as well, or better, than the others for direct comet orbits, as shown in Fig. 24.  For 

retrograde comet orbits the comet is moving in a direction opposite to that of the observatory, 

making the parallax rate larger, and the Mercury and Venus observatories still produce the best 

orbit determination for a majority of the tracking interval for these cases.  However, after 

approximately 170 days the Earth observatory results in the same orbit determination accuracy as 

the Mercury and Venus observatories.  In all cases the Mars observatory produces the worst orbit 
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Figure 24.  Collision probability as a function of tracking duration for Mercury, Venus, Earth, and Mars 

observatories on a logarithmic scale 
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determination accuracy, which is consistent with the hypothetical results presented previously.  

The orbit radius of Mars is near the minimum of the curve on the right of Fig. 22.  Since the 

Earth observatory can be made to achieve the same orbit determination accuracy as observatories 

with higher parallax rates, there is no need to expend the additional cost of transferring an 

observatory to an orbit outside a heliocentric radius of 1 AU.     

 

5.3 Multiple Observatories in Circular Orbits at 1 AU 

The direction from which the comets are traveling on their Earth-impacting trajectories will not 

be known ahead of time, and it may even be necessary to track several targets at the same time.  

It is impossible to ensure that a single observatory could be placed in a location that allows 

maximum time rate of change of parallax between it and a comet.  However, the odds of 

achieving the desired geometry are increased by adding a second or third observatory in the same 

heliocentric orbit.  Using a multi-observatory configuration results in simultaneous angular 

measurements, which is equivalent to measurements with large parallax and no time lapse.  Also, 

the number of available observations can be doubled or tripled, which will also improve orbit 

determination accuracy. Several different observatory configurations are investigated, with 

observatories placed at the Sun-Earth Lagrange points L3, L4, or L5 shown in Fig. 25.  The L3 

Lagrange point is 180° ahead of the Earth, the L4 point is 60° ahead of the Earth, and the L5 point 

is 60° behind the Earth.   

Fig. 26 shows maximum collision probability versus tracking duration on a logarithmic 

scale for various observatory configurations.  The curves corresponding to the single Earth 

observatory are the same curves shown in Figs. 23 and 24.  There are three curves corresponding 

to systems consisting of two observatories, each with one observatory located at the center of the  
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Figure 25.  Location of Sun-Earth Lagrange points 
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Figure 26.  Collision probability results from observatories in circular heliocentric orbits at 1 AU 
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Earth, and the second at a Sun-Earth Lagrange point.  A curve is shown corresponding to a 

configuration with three observatories, one at the center of the Earth and one each at the 

Lagrange points L4 and L5.  Also shown is a single observatory located at the center of the Earth 

that is capable of collecting range measurements good to 1000 km, as well as optical 

measurements.  The single Earth observatory gives the poorest orbit determination in terms of 

the time required to achieve a specified value of collision probability.  In the direct comet orbit 

cases, the Earth + L4 configuration performs better than the Earth + L5 configuration.  The initial 

orbit geometry is such that the second observatory at L4 is moving across the Sun-comet line, 

which increases the time rate of change of parallax.  An observatory at L5 is moving in the same 

general direction as the comet and does not contribute the same beneficial increase in parallax 

rate.  In the retrograde comet orbit cases, the Earth + L4 and the Earth + L5 configurations exhibit 

similar performance because both systems are moving in the same general direction as the 

comet, except during longer tracking durations when the L4 observatory is moving in a direction 

perpendicular to the Sun-comet line.   The system of three observatories, Earth + L4 + L5, is 

better than both the    Earth + L4 and Earth + L5 systems, but the best configurations are the two 

observatory system of Earth + L3, and the single Earth observatory capable of range 

measurements.  These systems yield very similar results for retrograde comet orbits because in 

these cases the orbit geometry is ideal.  The line joining the Earth + L3 observatories is 

perpendicular to the Sun-comet line, and the parallax between the observatories and the comet is 

maximum.  This configuration is just as effective as a single observatory with range 

measurement capability, and orbit solutions with very high collision probability will be 

determined within three months of tracking.  For direct comet orbits, the Earth + L3 observatory 

geometry is less than ideal.  In fact, a tracking duration of approximately 71 days results in zero 



 

 63

parallax.  Without the parallax benefit, the Earth + L3 configuration produces less accurately 

determined orbits than the range observatory.  Based on these results, the single Earth 

observatory with range capability is the best choice for observing all the comets in the test set, 

producing orbit solutions with maximum collision probability of 0.99 with 51 days of tracking. 

 As mentioned earlier, with short tracking arcs of angular measurements, the major error 

at the time of impact is along the comet velocity, i.e. along track.  This error results from the fact 

that the range to the comet is poorly determined by angular measurements. The advantage of 

range data is to immediately resolve this uncertainty. An approximate relation between range 

accuracy derived from angular data can be developed based on Fig. 27.  Consider two 

observatories in the same heliocentric orbit that measure the angle γ  to locate the comet 

assuming the comet is along the normal to the line between the observatories.  The heliocentric 

distance to the comet is easily derived from the distance D, which is given by 

 
                   γtandD = .                      (5.2)  

 
 Assuming both observatories have an error in γ  of ηγ, the error in the inferred distance D is 

 

 

γ

γ
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D
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Figure 27.  Orbit geometry for range measurements 
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This relationship is plotted in Fig. 28 for ηγ  = 0.1 arcsec. If the two observatories were at the 

Earth and L3 (d = 1 AU) the range to a comet at 5 AU can be determined to about 10,000 km.  So 

independent range measurements with measurement accuracy much less than 10,000 km will 

significantly improve the orbit determination.  From this figure it is seen that the comet would 

have to be closer than 3 AU before the angular measurements would provide the 1000 km 

accuracy assumed for the range measurements. 
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Figure 28.  Error in heliocentric distance of comet 
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 The results presented in this section reveal an important relationship between parallax 

and orbit determination accuracy.  In all previous analysis, the distance between the comet and 

the observatory is large enough so that the comet appears to be stationary during the tracking 

duration.  When the tracking time scales are small compared to the time it takes the comet to 

reach the Earth, the time rate of change of parallax is an important parameter and observatory 

orbits with smaller radii perform well.  On the other hand, over longer time scales the total 

parallax is the important parameter.  In this case observatory orbits with larger radii are better.  

So a trade should be made concerning the amount of time between the discovery of the comet 

and the time when a collision is predicted to occur.  If observing time on the order of years is 

available, an observatory outside a heliocentric radius of 1 AU will perform well because both 

the observatory motion and the comet motion help in the orbit determination accuracy.  If not 

much time is available for collecting observations an observatory inside 1 AU will perform well 

because of the higher time rate of change of parallax.      
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6 Summary and Conclusions 

This research investigated the effect of tracking duration and observatory placement on orbit 

determination accuracy for a set of Earth-impacting, long-period comets with various orbit 

inclinations.  Orbit solutions were obtained using a Kalman filter algorithm, in which an 

assumption is made that the comet orbit dynamics can be described by a linear model.  Orbit 

determination accuracy results have been presented in terms of Earth collision probability.  

Perturbations due to comet outgassing were included in this analysis, and have been shown to be 

negligible until the comet reaches a heliocentric distance of 2.5 AU, which is approximately 200 

days of tracking from an initial distance of 5 AU.  Perturbations in comet position are less than   

1 Earth radius at a heliocentric distance of 1 AU.  Monte Carlo simulations proved that the 

Kalman filter linearity assumption is valid, even when comet outgassing is present. 

 It was determined that the best observatory location is one in which the rate of parallax 

change is maximum based upon a brief study concerning the relationship between the time rate 

of change of parallax between the observatory and the comet and orbit determination accuracy.  

This occurs when the motion of the observatory is perpendicular to the Sun-comet line.  Circular 

heliocentric observatory orbits with radii of 0.5 AU and 3 AU both have maximum parallax rates 

that are larger than that of an observatory orbit at 1 AU.  The smallest maximum parallax rate 

within the inner solar system occurs in an orbit with a radius of approximately 1.7 AU.  A 

comparison of collision probability results obtained from observatories in Mercury, Venus, 

Earth, and Mars orbits confirmed these findings, and in general the Mercury and Venus 

observatories performed better than the Earth observatory, while the Mars observatory performed 

worse in all instances.  However, because longer tracking intervals increased the orbit 

determination accuracy of the Earth observatory to match or exceed the accuracy of the 
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observatory orbits with smaller radii, it was concluded that the additional cost of transfer and 

maintenance for an observatory outside 1 AU was not justifiable. 

 A solution is considered accurate when collision probability is 0.99 or above for Earth 

observatory orbit determination.  For a single Earth observatory with 0.1 arcsecond resolution, 

four months of daily observations is required to accurately determine the orbit of an outgassing 

comet.  Adding an observatory positioned at the Sun-Earth Lagrange point L4 reduces the 

necessary tracking duration to three months, and including yet another observatory at the Sun-

Earth L5 Lagrange point reduces the tracking duration to approximately two and a half months.  

The best orbit determination results from a single Earth observatory with range measurement 

capability good to 1000 km, which can achieve 0.99 collision probability with only 51 days of 

tracking.  Similar accuracy is obtained by a system of two observatories with an angular 

separation of 180°.   

All of the observatory configurations studied are capable of producing collision 

probabilities of 0.99 or better.  The reason why one configuration is deemed “better” than 

another is because the required orbit determination accuracy is obtained in less time.  In fact, all 

configurations are capable of producing collision probabilities as high as 0.999999 within the 

assumptions of the study if the tracking duration is long enough.  No matter how many 

observatories are used or where in the inner solar system they are located, increasing the tracking 

interval will always improve orbit determination accuracy. 
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7 Future Work 

Confirming such high collision probability as 0.999999 will require a much more detailed 

analysis than presented here, where additional force and observation error models should be 

included.  The force models should include solar radiation pressure where uncertainty in comet 

mass is a consideration.  The error models should include ephemeris errors, especially if the 

comet makes a close approach to Jupiter or Mars on the inbound leg of the impacting trajectory, 

and correlation between observations due to atmospheric effects should be included.  Instrument 

biases should also be included, because actual error distributions will be much more complex 

than the simple normal distribution assumed in this analysis.  Finally, a more consistent 

outgassing error model should be implemented.  A time-varying element of uncertainty due to 

comet outgassing was included in the covariance Q(t) which was updated once per day during 

the tracking intervals when observations were being collected, and approximately once every 

two weeks during the propagation from the time of the last observation to the designed time of 

collision.  An appropriate time interval between updates to the covariance Q(t) should be 

determined and applied consistently throughout the analysis. 
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Appendix 

The set of six classic Keplerian orbital elements defined in Ref. [5] are   

1. a, semimajor axis; 
2. e, eccentricity; 
3. i, inclination; 
4. Ω, longitude of ascending node; 
5. ω, argument of periapsis; 
6. τ, time of periapsis passage. 
 

The first two orbital elements determine the size and shape of the orbit.  The next three elements 

are Euler angles that determine the orbit orientation in three-dimensional space.  The sixth orbital 

element is used to determine the position of the object at a particular time.  

If the position, r, and velocity, v, of the object are known, calculating the orbital elements 

is a straightforward process.  To accomplish this, determine three important vectors: the angular 

momentum vector h, the node vector n, and the eccentricity vector e.  These vectors are shown in 

Fig. A1, which shows the orientation of the orbit plane in 3-dimensional space.  The angular  
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Figure A1.  Orbital plane orientation in 3-dimensional space 
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momentum vector is normal to the orbit plane and is given by 

 
                       vrh ×= .                           (A1) 

The node vector is defined as 

           hn ×≡ zî ,                            (A2) 

 
and lies in both the orbit and ecliptic plane.  The intersection of these planes is referred to as the 

line of nodes, and n points in the direction of the ascending node.  If h is parallel to zî , then       

n = xî .  The eccentricity vector is expressed as Eq. (3.14) of Ref. [4], 

 

                              ( )
r
rhve −×=

µ
1 ,                      (A3) 

 
where r is the magnitude of the position of the object.  For elliptic orbits, the vector e originates 

at the focus of the orbit and lies along a line called the line of apsides.  There are two important 

points in the orbit which lie on the line of apsides: periapsis and apoapsis.  The eccentricity 

vector points toward periapsis, the point on the orbit where the object is closest to the primary 

body.  The distance to this point is denoted rp.  Apoapsis is the point where the object is farthest 

from the primary body, and the distance to this point is denoted ra.  Expressions for periapsis and 

apoapsis are given by 

 

           
e

prp +
=

1
,                    (A4) 

 
and 

           
e

pra −
=

1
,                    (A5) 
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where p is the semi-latus rectum, 

         
µ

2hp = .                                  (A6) 

 
 

When the Sun is the primary body, rp and ra are referred to as perihelion and aphelion, 

respectively. 

 With the three vectors h, n, and e determined, the orbital elements are simple to obtain as 

follows: 

1. Calculate the magnitude of the eccentricity vector, i.e, 

 
                           ( ) 2/1ee ⋅=e .                     (A7) 

 
2. Determine the semimajor axis using the expression 

 

      22 v
ra µ−= ,                    (A8) 

 
where v is the magnitude of the velocity of the object. 

3. The inclination is the angle between zî  and h, therefore 

 

             
h
ii ẑcos

⋅
=

h
,                       (A9) 

 
where h is the magnitude of h, and °≤≤° 1800 i . 

4. The ascending node is the angle between xî  and n, hence 
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where n is the magnitude of n. 

5. The argument of periapsis is the angle between n and e, therefore 

 

            
nehne

ennhe ⋅=





 ×⋅= ωω cos,sin .                        (A11) 

 
6. Determine the time of periapsis passage from Kepler’s equation, 

 
        ( ) EeEtn sin−=−=Μ τ ,                 (A12) 

 
where n is the mean motion given by 

 

                 3a
n µ= ,                  (A13) 

 
and M is the mean anomaly, which describes an angle that evolves linearly with time.  

The mean anomaly has no significance other than convenience of notation.  The 

eccentric anomaly, E, is expressed in terms of the true anomaly, ν, as 

 

                       
ν
ν

cos1
coscos

e
eE
+
+= ,  

ν
ν

cos1
sin1sin

2

e
eE

+
−= ,                 (A14) 

 
where 

          
er

re ⋅=νcos ,  
µ

ν p
e
vr=sin ,                    (A15) 

 
and vr is the velocity along the radial direction, i.e, 

 

                                                     
r

vr
vr ⋅= .                    (A16) 
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Conversely, the position and velocity of the object can be determined from a set of orbital 

elements and a specified time.  First solve Kepler’s equation for E and then solve Eq. (A15) for 

ν.  Calculate the magnitude of the position, r, using the equation of the orbit,  

 

                 
νcos1 e

pr
+

= .                     (A17) 

 
Next, determine the position vector using the 3-1-3 Euler angle rotation [Ω, i, ψ] starting with  

[r, 0, 0], i.e., 
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where ψ = ω +ν.  Calculate the magnitude of the velocity from the vis-viva integral, 
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Finally, determine the velocity vector using the 3-1-3 Euler angle rotation [Ω, i, ψ] starting with 

[vr, r dt
dψ , 0], i.e., 
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where vr is the component of velocity along the radial direction, 
r
h

dt
dr =ψ , and ph µ= . 
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