SemanticOrganizer: A Customizable Semantic
Repository for Distributed NASA Project Teams

Richard M. Keller', Daniel C. Berrios®, Robert E. Carvalho', David R. Hall’,
Stephen J. Rich®, Ian B. Sturken’, Keith J. Swanson', and Shawn R. Wolfe'

]Compurational Sciences Division, NASA Ames Research Center, Moffett Field, CA
{rkeller, rcarvalho, kswanson, swolfe}@arc.nasa.gov
ZUniversity of California, Santa Cruz, NASA Ames Research Center, Moffett Field, CA
i dberrios@arc.nasa.gov
’QSS Group, Inc. NASA Ames Research Center, Moffett Field, CA
{dhall, isturken}@arc.nasa.gov
“SAIC, NASA Ames Research Center, Moffett Field, CA
srich@arc.nasa.gov

Abstract. SemanticOrganizer is a collaborative knowledge management system
designed to support distributed NASA projects, including diverse teams of sci-
entists, engineers, and accident investigators. The system provides a customiza-
ble, semantically structured information repository that stores work products
relevant to multiple projects of differing types. SemanticOrganizer is one of the
earliest and largest semantic web applications deployed at NASA to date, and
has been used in diverse contexts ranging from the investigation of Space Shut-
tle Columbia’s accident 1o the search for life on other planets. Although the un-
derlying repository employs a single unified ontology, access control and on-
telogy customization mechanisms make the repository contents appear different
for each project team. This paper describes SemanticOrganizer, its customiza-
tion facilities, and a sampling of its applications. The paper also summarizes
some key lessons learned from building and fielding a successful semantic web

application across a wide-ranging set of domains with diverse users.

1 Introduction

Over the past five vears, the semantic web community has been busily designing lan-
guages, developing theories, and defining standards in the spirit of the vision set forth
by Berners-Lee [1]. There is no lack of publications documenting progress in this new
area of research. However, practical semantic web applications in routine daily use
are still uncommon. We have developed and deployed a semantic web application at
NASA with over 500 users accessing a web of 45,000 information nodes connected
by over 150,000 links. The SemanticOrganizer system [2] has been used in diverse
contexts within NASA ranging from support for the Shuttle Columbia accident inves-
tigation to the search for life on other planets; from the execution of Mars mission
simulations to the analysis of U.S. aviation safety and study of malarial disease in
Kenya. This paper describes our system and some of the practical challenges of build-

ing and fielding a successful semantic web application across a wide-ranging set of

domains. One of the key lessons we learmed in building a successful application for

NASA is to understand the limits of shared ontologies and the importance of tuning

terminology and semantics for specific groups of users performing specific tasks. We

describe our methods, compromises, and workarounds developed to enable maximal
sharing of our ontology structure across diverse teams of users.

SemanticOrganizer is a collaborative knowledge management application designed
to support distributed project teams of NASA scientists and engineers. Knowledge
management systems can play an important role by enabling project teams to com-
municate and share information more effectively. Toward this goal, SemanticOrgan-
izer provides a semantically-structured mformation repository that serves as a com-
mon access point for all work products related to an ongoing project. With a web
interface, users can upload repository documents, data, images, and other relevant in-
formation stored in any of a wide variety of file formats (image, video, audio, docu-
ment, spreadsheet, project management, binary, etc.). The repository stores not only
files, but also concepts that have no associated electronic manifestation, such as hy-
potheses, field sites, and engineered systems. Hardware or software systenis that gen-
erate data used by a project team can access the repository via an XML-based APIL.

Although there are many document management tools on the market to support ba-
sic information-sharing needs, NASA science and engineering teams have some spe-
cialized requirements that justify more specialized solutions. Examples of such teams
include scientific research teams, accident investigation teams, space exploration
teams, engineering design teams, and safety investigation teams, among others. Some
of their distinctive requirements include:

e sharing of heterogeneous technical information: teams need to exchange many
types of specialized scientific and technical information in various formats;

o detailed descriptive meradata: teams use a precise technical terminology to record
detailed characteristics relating to information provenance, quality, and collection
methodology;

o muln-dimensional correlation and dependency tracking: teams need to interrelate
and explore technical information along a variety of axes simultaneously and rap-
1dly make connections to new information;

e evidential reasoning: teams must be able to store hypotheses along with supporting
and refuting facts, and methodically analyze causal relationships;

® experimentation: teams must carry out experiments to test hypotheses with system-
atic measurements;

e instrument-based data production: teams use specialized scientific instruments and
sensors as data sources;

e security and access control: information being collected and analyzed may be
highly proprietary, competitively sensitive, and/or legally restricted; and

e historical record: project teams must document their work process and products —
including both successes and failures — for subsequent scrutiny (e.g., to allow fol-
low-on teams to validate, replicate, or extend the work, to capture lessons learned,
or to satisfy legal requirements).

Aside from the above requirements, we faced several other major technical challenges

in building the SemanticOrganizer repository system. One of the most difficult chal-

lenges was to make the information easily and intuitively accessible to users, even

when different teams employ different terms, relationships, and models to mentally
organize their work products. Rather than organizing information using generic index-
ing schemes and organizational models, we felt it was important to employ terms,
concepts, and natural distinctions that make sense in users’ own work contexts. A sec-
ond and related challenge was to develop a single application that could be rapidly
customized to meet the needs of many different types of teams simultaneously. Many
of the candidate user teams were as small as just two or three people, so they could
not afford the overhead of running their own server installation or handling system
administration. Thus, the system had to be centrally deployed while still being cus-
tomized for each teams’ distinctive work context. A third key challenge mvolved
knowledge acquisition and the automatic ingestion of information. With the large
volume of information generated during certain projects and the complexity of the
semantic interrelationships among information, users cannot be expected to maintain
the repository without some machine assistance. A final challenge is providing rapid,
precise access to repository mformation despite the large volume of information.

We found that a semantic web framework provided a sound basis for our system.
Storing information in a networked node and link structure, rather than a conventional
hierarchical structure, addressed the need to hyperconnect information along multiple
dimensions. Using formal ontologies provided a customizable vocabulary and a stre-
tured mechanism for defining heterogeneous types of information along with their as-
sociated metadata and permissible relationships to other information. We employed
an automated inference system to automatically maintain knowledge in the repository.
However, we also found it necessary to add a host of practical capabilities on top of
the basic semantic web framework: access control mechanisms for network-structured
mformation, authentication and security, ontology renaming and aliasing schemes, ef-
fective interfaces for accessing semantically-structured information, and APIs to en-
able ingestion of agent-delivered information.

The balance of the paper is organized as follows. Section 2 describes the basic Sc-
manticOrganizer system in more detail. Section 3 describes the mechanisms we have
developed to customize the system for multiple groups simultaneously. Section 4 dis-
cusses related work. Section 5 highlights NASA applications that we have developed
using SemanticOrganizer and explains extra functionality that was added to support
specific application needs. Section 6 summarizes some of the lessons learned from
our experience building a practical semantic web application and Section 7 concludes.

2 The SemanticOrganizer System

SemanticOrganizer consists of a network-structured semantic hypermedia reposi-
tory [3] of typed information irems. Each repository item represents something rele-
vant to a project team (e.g., a specific person, place, hypothesis, document, physical
sample, subsystem, meeting, event, etc.). An item includes a set of descriptive meta-
data properties and optionally, an attached file containing an image, dataset, docu-
ment, or other relevant electronic product. The items are extensively cross-linked via
semantically labeled relations to permit easy access to interrelated pieces of informa-
tion. For example, Figure 1 illustrates a small portion of a semantic repository that

was developed for a NASA accident investigation team. The item in the center of the
diagram represents a rotor assembly system being testing in a wind tunnel. The links
between items indicate that the rotor assembly was operated by John Smith, who is
being investigated by the CRW (Canard Rotor Wing) investigation. Rotor fatigue
was observed and is a hypothesized causes of the mishap. Fatigue is documented by
evidence consisting of a metallurgy report and a scanning electron microscope (SEM)
image. These types of items and relationships are natural and appropriate for this do-
main, whereas others would be required to support a different type of team.

Toxume g

rotor tect log

Fig. 1. Portion of semantic repository item network for CRW accident investigation

A master ontology (Figure 2) describes all the different types of items for Semanti-
cOrganizer applications, and defines links that can be used to express relationships
between the items. (In this paper, we use the term irem type and ontology class mter-
changeably; similarly, item and instance are interchangeable.) A link or relation is de-
fined by specifying its name and its domain and range classes, along with the name of
its reverse link. (All links are bidirectional.) We began development of SemanticOr-
ganizer in 1999, prior to the standardization of semantic web languages; as a result,
the system was built using a custom-developed representation language. Our lan-
guage has the equivalent representational power of RDFS [4], except that it does not
permit the subclassing of relationships.

Model . _ Causal Mission Feature Request . Project
Ssac:;t [Deduction [Scientific " Task Action Item Document { Presentation
(]
Hypothesis - Investigative Project Meeting/Telecon tmage Experment
Scientific Activity | Review Bug Fix Dats — Interview
Organization Field Trip 4% 1 Evidence ___[Observation
Sacial [Person WorkGroup Experiment Physical
Struciure LGroup —~ { Investigation Board L investigation Measurement{ Numerical
Project Team Microscope Nominal
! Work Site ~ 1 Accident Equipment | Camera Microbial
Location [[Sample {]
Laboratory “ Field -~ 02 Micrasensor Soil

Fig. 2. Representative classes from SemanticOrganizer’s master ontology. The entire ontology
has over 350 classes and reaches a maximum depth of six.

SemanticOrganizer 1s built in Java and its ontology classes and instances are stored
in a MySQL database. The system includes an inference component that is built on
top of Jess [5]. Explicit rules can be defined that operate on the ontology and create or
modify items/links in the repository or establish property values.

SemanticOrganizer includes an email distribution and archiving facility that allows
teams to create ad-hoc email lists. Email sent to a SemanticOrganizer distribution list
is forwarded to recipients and archived as an email message item within the team’s
repository. Attachments are preserved along with the message body, and instances
representing the sender and recipients are automatically linked to the message. A
more experimental system component under development is the Semantic Annotator,
which parses text documents, such as email messages, and links them to relevant
items In the repository. The Semantic Annotator employs WordNet [6], as well as
other sources of information, to select relevant items for linking. (The specific algo-

rithm used by the Semantic Annotator is beyond the scope of this paper.)

Fig. 3. SemanticOrganizer’s architectural components

SemanticOrganizer’s various components are depicted in Figure 3. For conceptual
clarity, in the diagram we distinguish between the ontology, which stores the class
and hink types, and the semantic network repository, which stores the interlinked in-
stances. In practice, these components are implemented using a single representa-
tional mechanism that stores both classes and instances. Although the repository is
stored on a single server, access control and ontology customization mechanisms
make the repository format and content appear different for each group of users. In
essence, SemanticOrganizer 1s a set of virtual repositories, each built upon the same
representational framework and storage mechanisms, yet each custom-designed to
suit the needs of its individual users. The customization process is described in Sec-
tion 3.

SemanticOrganizer users enter and interlmk items using a serviet-driven Web in-
terface that enables them to navigate through the semantic network repository, view
metadata and files, and search for specific items (see Figure 4). The interface also al-
lows users to create and interhink items, upload files and attach them to items, and

flexibly search through the repository. The core interface uses only HTML and basic
JavaScript to maximize compatibility with standard browsers. Aside from the HTML-
based Web interface, the system also includes some specialized applets for visualizing
and editing specific interlinked structures of items. (A more general graphical net-
work visualization component is currently under development.) SemanticOrganizer
features an XMI-based API that enables external agents to access the repository and
manipulate its contents. In addition, we have developed a set of Visual Basic macros
that provide an interface between Microsoft Office documents and SemanticOrganizer
using the Office application’s menu bar.

Ené it oen
i BT Bate - -RSIAIME
TTrep Obgeconmn Kt Fovus Geimp Trg
T Natry ‘Mpc:wirqmm-\:sa;h
etk
Wife Priwiven Slihax, Prad
ZEMIEG
Read fFerngacian @ 8clom, Sl
Cirarcpan @ik ju {
=4 B SN, SSive :
1§
i
&
i
\

B B0 Mwws. I'nwd
; WO, feoe
PR ’Emrﬂﬂ

Fig. 4. SemanticOrganizer’s Web interface displaying a scientific ‘field trip’ item at right.
Note individual and group read and write permissions for the item. Links to related items are
displayved at left.

Security and authentication are handled by HTTPS encryption and individual user
logins. No access is permitted to users without an assigned login as part of one or
more established project teams. Once inside the repository, user access to items is
controlled by a permission management system. This system limits users’ access to a
defined subnet within the overall information space that contains information relevant
to their team. As part of this access control system, each instance in the repository has
a set of read and write permissions recording the individual users or sets of users (i.e.,
groups) that can view and modify the instance.

A set of successively more sophisticated search techniques is available to Semanti-
cOrganizer users. A basic search allows users to locate items by entering a text string
and searching for matching items. The user can specify where the match must occur:
in an item name, in a property value for an item, or in the text of a document attached
to an item. In addition, the user can limit the search to one or more item types. An in-

termediate search option allows the user to specify property value matching require-
ments involving a conjunction of constraints on numeric fields, enumerated fields,
and text fields. Finally, a sophisticated semantic search is available for matching pat-
terns of multiple interlinked items with constraining property values [7].

3 Application Customization Mechanisms

SemanticOrganizer is specifically designed to support multiple deployments across
different types of distributed project teams. Knowledge modelers work with each new
group of users to understand their unique requirements. The modelers add or reuse
ontology classes to form a custom application suitable for the team. To encourage re-
use of class, property, and link definitions, the system contains a single unified ontol-
ogy that addresses the needs of users involved in more than 25 different project teams.
Each of these teams uses only a subset of the classes defined in the ontology. Ontol-
ogy classes are assigned to users through a process illustrated in Figure 5.

User : '/’Q”,?.’Q/’Q
7 <
olumbia Acciden

\ CONTQUR
Review Board Spacecraft LOSs)

Apphcathn microbiology accident .
Module investigation
Bundie - @é fault projecty | .

Mars Exobioiogy
Team

Group

pre;y \trees \mgmt
Ciass o cfg/ O M) 5
lab TNICTOSCOPE gpservation tauit achon proposat schedule

cutture

Fig. 5. Mapping ontology classes to users via bundles, application modules and groups

At the lowest levels, classes are grouped into bundles, where each bundle defines a
set of classes relevant to a specific task function. For example, all of the classes rele-
vant to growing microbial cultures (e.g., physical samples, microscopes, lab cultures,
cuituring mediaj might constitute one bundle; all classes relevant to project manage-
ment (e.g., project plans, project documents, funding sources, proposals, meetings)
might be another bundle. Aside from grouping related classes, bundles provide a
mechanism for aliasing classes to contro} their interface presentation to users. For ex-
ample, the ontology includes a class called ‘field site’. A field site is simply a location
away from the normal place of business where investigation activities are conducted.
Although there may be a general consensus about this definition across different ap-
plication teams, the terminology used to describe the concept may differ. For exam-
ple, whereas geologists may be perfectly comfortable with the term ‘field site’, acci-

dent investigators may prefer the term ‘accident site’. Although this distinction may
seem trivial, employing appropriate terminology is essential to user acceptance. The
bundling mechanism allows domain modelers to alias classes with a new name. (Note
that renaming of properties is not supported, at present, but would prove useful.)

At the next level up in Figure 5, sets of bundles are grouped together as application
modules. These modules contain all the bundles that correspond to relevant tasks for a
given application. For example, there might be a microbiology investigation team
growing microbial cultures as part of a scientific research project. In this case, the ap-
plication builder would simply define a module that includes the microbial culture
bundle and the project management bundle. At the top levels of Figure 5, modules are
assigned to groups of users, and finally through these groups, individual users gain
access to the appropriate classes for their application. A user can be assigned more
than one module if he or she is involved in more than one group. For example, a mi-
crobiologist involved in the Mars Exobiology team may also be on the Columbia Ac-
cident Review Board as a scientific consultant. Note that this discussion explicitly
covers assignment of ontology classes, not ontology relations, to users. However, the
assignment of relations can be considered a byproduct of this process. A specific rela-
tion is available to a user if and only if its domain and range classes are available.

4 Related Work

We have identified four categories of Web-based systems that share important charac-
teristics with SemanticOrganizer: conventional Web portals, content/document man-
agement systems, semantic portals, and semantic repositories. Conventional Web
portals, as exemplified by sites such as MyYahoo, typically allow users to selectively
subscribe to various published content and customize its presentation. Commercial
content/document management systems (e.g., Documentum, FileNet, Vignette, and
DocuShare) are more focused on supporting daily work processes than publishing.
They allow users to upload, store, and share content (including intermediary work
products). To summarize the difference. portals are intended to publish finished con-
tent, whereas document management systems manage transient and unfinished work
products that are not necessarily appropriate for external or internal publication. Nei-
ther type of system is semantically based.

Semantic portals [8-12] and semantic repositories [13, 14] can be viewed as analo-
gous to “regular” portals and content management systems, except that they use an
underlying ontology to enhance their content with semantics. As a generalization, the
primary difference between them is that semantic portals are intended to publish final-
ized information, whereas semantic repositories are intended to manage work prod-
ucts in process. SemanticOrganizer is a prime example of a semantic repository; it is
intended to provide semantics-enhanced content management support across Various
phases of a project lifecycle.

Worthy of special note is ODESeW [8], which has many features in common with
SemanticOrganizer. ODESeW is primarily a semantic portal but also allows users to
edit both the underlying ontology and its instances. Access can be granted (or de-
nied) at the instance level or the class level, as well as the ability to instantiate in-

stances of a specific class. Unlike SemanticOrganizer, these permissions are con-
trolled solely by an administrator, and only read access can be denied for a particular
instance, not write access. Furthermore, although the ability to hide all instances of a
class is similar to the SemanticOrganizer’s customization mechanism, there is no fa-
cility to alter the presentation of the same instance to different user groups.

5 Applications

5.1 Background

With over 500 registered users and over a half-million RDF-style triples in its re-
pository, SemanticOrganizer is one of the largest semantic web applications that has
been fielded at NASA to date. The system was first deployed in 2001 to support a
small group of collaborating research scientists. As of April 2004, over 23 different
collaborating groups — ranging in size from 2 people to over 100 — have used Seman-
ticOrganizer in conjunction with their projects. System users are drawn from more
than 50 ditferent organizations throughout NASA, indusiry, and academia. The over-
all ontology contains over 350 classes and over 1000 relationships. Over 14,000 elec-
tronic file attachments have been uploaded into the system and more than 12,000
email messages have been distributed and archived.

SemanticOrganizer has found application primarily within two user communities:
the NASA scientific community (where the system is known as ScienceOrganizer),
and the NASA safety and accident investigation community (where the system is
known as InvestigationOrganizer or JO). In the following sections, we describe proto-
typical applications within these distinct SemanticOrganizer user communities.

5.2 ScienceOrganizer

ScienceOrganizer was originally developed to address the information manage-
ment needs of distributed NASA science teams. These teams need to organize and
maintain a body of information accumulated through scientific fieldwork, laboratory
experimentation, and data analysis. The types of information stored by scientific
teams is diverse, and includes scientific measurements, publication manuscripts, data-
sets, field site descriptions and photos, field sample records, electron microscope im-
ages, genetic sequences, equipment rosters, research proposals, etc. Various relation-
ships among these types of information are represented within ScienceOrganizer, and
they are used to link the information together within the repository. For example, a
field sample can be: collected-at a field site; collected-by a person; analyzed-by an in-
strument; imaged-under a microscope; etc. We have selected two ScienceOrganizer
applications to highlight in this section: EMERG and Mobile Agents.

The Early Microbial Ecosystems Research Group (EMERG) was an early adopter
of ScienceOrganizer, and provided many of the requirements that drove its develop-
ment. EMERG 1s an interdisciplinary team of over 35 biologists, chemists, and geolo-
gists, including both U.S. and international participants across eight institutions. Their

goal 1s to understand extreme environments that sustain life on earth and help charac-
terize environments suitable to life beyond the planet. EMERG focuses on under-
standing the evolution of microbial communities functioning in algae mats located in
high salinity or thermally extreme environments. As part of their research, they con-
duct field trips and collect mat samples in various remote locations, perform field
analysis of the samples, and ship the results back to laboratories at their home institu-
tion. There, they perform experiments on the samples, grow culwres of the organisms
in the mats, analyze data, and publish the results.

ScienceOrganizer was used across the team to store and interlink information
products created at each stage of their research. This enabled the distributed team to
work together and share information remotely. As a side benefit, the repository served
as an organizational memory [15] that retained a record of previous work that could
be referenced when planning subsequent scientific activities. As part of the collabora-
tion with EMERG, we developed a capability that allows scientists to set up and initi-
ate automated laboratory experiments on microbial mats from within ScienceOrgan-
izer. The scientist defines an experiment within ScienceOrganizer by specifying its
starting time and providing details of the experimental parameters to be used. A
software agent 1s responsible for controlling internet-accessible laboratory hardware
and initiating the experiment at the specified time. When the experiment is complete,
the agent deposits experimental results back within ScienceOrganizer so they can be
viewed by the scientist. This capability allows remote users to initiate experiments
and view results from any location using ScienceOrganizer.

The second project, Mobile Agents [16], is a space mission simulation that uses
mobile software agents to develop an understanding of how humans and robots will
collaborate to accomplish tasks on the surface of other planets or moons. As part of
the mission simulation, humans (acting as astronauts) and robots are deployed to a
remote desert Jocation, where they conduct a mock surface mission. In this context,
ScienceOrganizer is used as a repository for information products generated during
the mission, including photos, measurements, and voice notes, which are uploaded by
autonomous software agents using the system’s XML-based API. ScienceOrganizer
also serves as a two-way communication medium between the mission teamn and a
second team that simulates a set of earth-bound scientists. The science team views the
contents of ScienceOrganizer to analyze the field data uploaded by the mission team.
In response, the science team can suggest activities to the mission team by uploading

fAr ntian ke n te

recommended plans inio ScienceOrganizer for execution by the mission team.

5.3 InvestigationOrganizer

When an accident involving NASA personnel or equipment occurs, NASA policy
requires the creation of an accident investigation board to determine the cause(s) of
the mishap and formulate recommendations to prevent future accidents. Information
management, correlation, and analysis are integral activities performed by an accident
investigation board. Their primary tasks are to collect and manage evidence, perform
different types of analysis (e.g., chemical, structural, forensic) that generate derivative
evidence, connect the evidence together to support or refute accident hypotheses,
conduct failure analyses, come to a resolution on accident causal factors, and make

recommendations. The heterogeneous nature of the evidence in NASA accidents cou-
pled with the complex nature of the relationships among evidence and hypotheses
make the use of a system like SemanticOrganizer quite natural in this setting. NASA
accident investigation teams typically are composed of engineers, scientists, and
safety personnel from NASA’s ten geographically distributed field centers across the
country. Each team is composed of specialists with expertise pertinent to the accident.
Distributed information sharing is an essential capability for accident investigation
teams. Although the team may start out collocated, evidence gathering and analysis
often take team members to different sites. With lengthy investigations, the logistics
of centralizing personnel and information at one location are unworkable. Teams have
relied on standard information-sharing technology in past investigations: email,
phone, fax, and mail courier. From many perspectives — security, timeliness, persis-
tence — these approaches are largely inadequate. '

InvestigationOrganizer was developed in partnership with NASA engineers and
mission assurance personnel to support the work of distributed NASA mishap investi-
gation teams. The types of data stored by these teams include a wide variety of infor-
mation, including descriptions and photos of physical evidence, schematics and de-
scriptions of the failed system, witnesses interviews, design and operational readiness
decuments, engineering telemetry, operator logs. meeting notes, fraining records, hy-
pothesized contributory accident factors, supporting and refuting evidence for those
factors, etc. Various relationships among these tvpes of information are represented
within InvestigationOrganizer and serve to link information (e.g., as in Figure 1). For
instance, a design document can: describe a physical system; be authored-by a con-
tractor employee; refute a hypothesized accident factor; be requested-from a contract-
Ing organization; etc.

To date, InvestigationOrganizer has been used with four NASA mishap mvestiga-
tions that ranged in scope from minor localized investigations to major distributed in-
vestigations. The larger investigations included the loss of the Space Shuttic Colum-
bia as well as the loss of the CONTOUR unmanned spacecraft which disappeared
while escaping earth orbit.

Within the Columbia and CONTOUR investigations, InvestigationOrganizer was
used to track information pertaining to almost every aspect of the investigation. The
system also supported analysis of the data in terms of fault models and temporal event
models that were built to understand the progression and causes of the accidents.
Mishap investigatofs in these investigations went beyond the system’s basic capabili-
ties to support evidence collection and correlation; they used InvestigationOrganizer
10 explicitly record and share investigators' reasoning processes as the investigations
proceeded. In the case of the Columbia, an added benefit to recording these processes
was a preservation of the chain of evidence from hypotheses and theories to findings
and recommendations. This chain of evidence 15 currently being used in NASA's ef-
forts to return the Space Shuttles to flight, allowing engineers to trace the reasoning
behind the conclusions reached by the investigation board.

6 Lessons Learned

Our experience deploying SemanticOrganizer across numerous domains, and working
with a very diverse set of users, has given us a glimpse into the promise and the perils
associated with semantic repository applications. In this section we discuss some of
our key lessons leamed.

6.1 Network-Structured Storage Models Present Challenges to Users

Despite the ubiquity of the Web, we found that people are not initially comfortabie
with using network structures for storing and retrieving information. Most informa-
tion repositories use the familiar hierarchical structure of folders and subfolders to or-
ganize files. While networks structures have advantages, the notion of connecting in-
formation using multiple, non-hierarchical relationships was very disorienting to
some users. Even with training, they would either fail to comprehend the network
model or reject it as overly complex and unnecessary for their needs. In response to
users’ desire to organize information hierarchically, we introduced nested folder
structures into our repository with limited success. Folders were typed and linked to
their contents via a ‘contains’ relation. Users could create folders of people, photos,
biological samples, etc. However, this model was unfamiliar to users expecting to
place a set of mixed items in a folder without constraint. Our attempt to graft hierar-
chical structures onto networks left much room for improvement and we continue to
seek better, more intuitive methods of combining these two models.

6.2 Need for both ‘Loose’ and ‘Tight’ Semantics

People have widely differing styles regarding the manner in which they wish to or-
ganize information. At one end of the spectrum are the meticulous organizers who
strove to understand and use the full power of the semantic representations in our sys-
tem. They would carefully weave the semantic network around their reposttory con-
tent and suggest precise revisions and extensions to the global ontology. They appre-
ciated the increased descriptive power of a “tight” (i.e., more precise) semantics and
didn’t mind taking the additional time required to appropriately annotate and link the
new material. At the other end of the spectrum are the casual organizers — users who
simply wanted to add their document to the repository as quickly as possible. If their
new material didn't align easily with the existing semantics, they became frustrated.
They wanted “loose” semantics that would minimally cover their situation so they
could quickly add and link their material, yet feel comfortable it was at least reasona-
bly correct. SemanticOrganizer was designed with the meticulous organizers in mind
and we had to relax our notion of what was semantically correct to accommodate the
casual organizers. However, we found that in our attempt to craft compromises and
simuitaneously accommodate both styles of use, we sometimes failed to serve either

group properly.

6.3 Principled Ontology Evolution is Difficult to Sustain

Because we often had a half dozen projects in active development, ontology sharmmg
and evolution became much harder than expected. Our knowledge modelers under-
stood the importance of reuse and initially, there was sufficient momentum to evolve
common ontology components to meet the changing needs of projects. However, as
the workload and schedule pressures increased, it became increasingly difficult to co-
ordinate the necessary discussions and create consensus on how to evolve the ontol-
ogy. In an effort to meet their individual project needs, modelers would simply start
cloning portions of the ontology and then evolve them independently. Cloning serves
immediate local project needs and offers the freedom to quickly make decisions and
updates without seeking global consensus. Because our tools for merging classes or
morphing instances into new classes were not well developed, modelers were also re-
luctant to take the time during slower periods to recreate a more globally coherent on-
tology. We expect this will continue to be a difficult problem to address.

6.4 Navigating a Large Semantic Network is Problematic

ypical projects in SemanticOrganizer contain raore than 5000 informationai nodes
with 30,000 to 50,000 semantic connections between those nodes. A common user
complaint with SemanticOrganizer is the difficulty of orienting themselves in the in-
formation space. The standard system interface (Figure 4) presents the details of a sin-
gle node and a hyperlinked list that names all of its direct neighbors, organized by the
semantic type of the link. This interface is convenient for editing the informational
content of a node and linking it to new neighbors, but it does not help with non-local
navigation. The degree of the node connectivity is bimodal with a small, but signifi-
cant, percentage of the nodes being connected to many tens of nodes, while 30 1o 40
percent of the nodes have 3 or fewer links. Imagine trying to explore a city having
several massive central intersections where hundreds of streets meet. Most of these
streets are narrow paths leading thru smaller intersections ending in a cul-de-sac. In-
terfaces that allow users to understand the overall topology of the space and that allow
a smooth transition from a local to a global perspective are needed to understand how
information is connected to items that are important to a user’s task [17].

6.5 Automated Knowledge Acquisition is Critical

The original design concept for SemanticOrganizer was that teams would primarily
manage their repository space manually, using the web interface to add links, enter
new information, and upload artifacts such as documents or scientific measurements.
But we quickly found that the task of adding information to the repository and linking
to existing content can be time consuming and error prone when the volume of infor-
mation 1s large or many people are involved. To address this need, SemanticOrganizer
evolved 10 mcorporate various forms of automated knowledge acquisition: an infer-
ence engine that uses rules to create links between items and maintain the semantic
consistency of the repository; an API that allows software agents to add artifacts,

modify meta-knowledge, and create links; a Microsoft Office macro that give users
the ability to upload information directly from an Office application; and an email
processing system that incorporates user email directly into SemanticOrganizer. We
now understand the importance of developing knowledge acquisition methods that al-
low users to seamlessly add new repository content as a by-product of their normal
work practices, without imposing the burden of new tools or procedures.

7 Summary and Future Directions

Developing the SemanticOrganizer system has left us with a solid foundation of ex-
perience in developing practical semantic web applications. The application domains
and users we’ve directly supported are extremely diverse and have ranged from a few
highly specialized research scientists exploring evidence of microscopic signs of life
on Mars, to retired generals and executives of major aerospace companies, leading the
investigation into the tragic loss of Columbia. SemanticOrganizer represents a micro-
cosm of the benefits and challenges that will become part of a broadly distributed and
implemented semantic web vision of the future.

As an early large-scale semantic web application etfort, many of our system’s
components were designed and build to accommodate our urgent engineering re-
quirements, prior to recent semantic web standardization efforts. We are currently re-
architecting our system to standardize selected components and improve our interop-
erability with other emerging semantic web tools. This will include a transition into a
web service compatible framework. In addition to refining our access control and per-
sonalization frameworks, we have also begun work on a number of new capabilities
following from our lessons learned. In particular, we are working on new visualiza-
tion techniques to provide users with an enthanced ability to understand and navigate
the semantic repository. We are also building tools that will automatically analyze
text from documents and produce semantic annotations that link the document to re-
lated items in SemanticOrganizer.

Acknowledgments

We gratefully acknowledge funding support by the NASA Intelligent Systems Project
and by NASA Engineering for Complex Systems Program. This work would not have
been successful without dedicated application partners in various scientific and engi-
neering disciplines. Tina Panontin and James Williams provided invaluable guidance
and direction on the application of SemanticOrganizer to accident investigation. They
also took a leading role in the deployment of SemanticOrganizer for the Shuttle Co-
lumbia accident investigation, as well as other investigations. Brad Bebout provided
essential long-term guidance and support for the application of SemanticOrganizer to
astrobiology and life science domains. Maarten Sierhuis provided support for applica-
tion to space mission simulation testbeds. Our sincere appreciation goes to our col-
leagues Sergey Yentus, Ling-Jen Chiang, Deepak Kulkarni, and David Nishikawa for
their contributions to system development.

References

K=J

11

—
L

16.

17.

T. Berners-Lee, "A Roadmap to the Semantic Web," 1998, http://www.w3.org/ Designls-
sues /Semantic.html.

R. M. Keller, "SemanticOrganizer Web Site," 2004, hrtp://sciencedesk.arc.nasa.gov.

B. R. Gaines and D. Madigan, "Special Issue on Knowledge-based Hypermedia," /nterna-
tional Journal of Human-Computer Studies, vol. 43, pp. 281-497, 1995.

D. Brickley and R. V. Guha, "RDF Vocabulary Description Language 1.0: RDF Schema,”
W3C, 2004, http://www.w3.ore/TR/rdf-schema’.

E. Friedman-Hill, "Jess: The rule engine for the Java platform,” 2004, hup:‘herzberg.
ca.sandia.gov/ess/index.shim].

G. A. Miller, "WordNet: A Lexical Database for English,” Communications of the ACM,
vol. 38, pp. 39-41, 1995.

D. C. Berrios and R. M. Keller, "Developing a Web-based User Interface for Semantic In-
formation Retrieval," in Proc. ISWC Workshop on Semantic Web Technologies for Search-
ing and Rerrieving Scientific Data, N. Ashish and C. Goble, Eds. Sanibel Island, FL. 2003,
pp. 63-70.

0. Corcho, A. Gomez-Perez, A. Lopez-Cima, V. Lopez-Garcia, and M. Suarez-Figueroa,
"ODESeW. Automatic generation of knowledge portals for Intranets and Extranets,” The
Semantic Web - ISWC 2003, vol. LNCS 2870, pp. 802-817, 2003. ‘

Y. Jin, S. Xu, S. Decker, aud G. Wiederhoid, "OntoWebber: a novel approach for manag-
ing data on the Web.," International Conference on Data Engineering, 2002.

. N. Stojanovic, A. Maedche, S. Staab, R. Studer, and Y. Sure, "SEAL - a framework for de-

veloping semantic portals.," Proceedings of the International Conference on Knowledge
capture, pp. 155-162, 2001.

P. Spvns, D. Oberle, R. Volz, J. Zheng, M. Jarrar, Y. Sure, R. Studer, and R. Meersman,
"OntoWeb - a semantic Web community portal.," Fourth International Conference on
Practical Aspects of Knowledge Management, 2002.

. E. Bozsak, M. Ehrig, S. Handschuh, A. Hotho, A. Maedche, B. Motik, D. Oberle, C.

Schmitz, S. Staab, L. Stojanovic, N. Stojanovic, R. Studer, G. Stumme, Y. Sure, 1 Tane, R,
Voiz, and V. Zacharias, "KAON-towards a large scale Semantic Web..," Proceedings of

EC-Web. 2002.

. "BrainEKP." Santa Monica, CA: TheBrain Technologies Corporation, 2004, hup:/www.

thebrain.com.

. A. P. Sheth and C. Ramakrishnan, "Semantic (Web) Technology In Action: Ontology

Driven Information Systems for Search, Integration and Analysis," /EEE Dara Engineering
Bullerin, vol. 26, pp. 40-48, 2003.

. R. Dieng-Kuntz and N. Matta, "Knowledge Management and Organizational Memories."

Boston: Kluwer Academic Publishers, 2002.
M. Sierhuis, W. J. Clancey, C. Seah, J. P. Trimble, and M. H. Sims, "Modeling and Simu-

lation for Mission Operations Work Systems Design," Journal of Management Information

Systems, vol. 19, pp. 85-128, 2003.
V. Geroimenko and C. Chen, "Visualizing the Semantic Web: XML-based Internet and In-

formation Visualization." London: Springer-Verlag, 2003.

