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Abstract 
 
Droplet interaction with a high temperature gaseous crossflow is important because of its wide 
application in systems involving two phase mixing such as in combustion requiring quick mixing 
of fuel and air. The focus of this work is to investigate dispersion of a two-dimensional 
evaporating spray into a crossflow. 
 
An interactive Microsoft® Excel program for tracking a single droplet in crossflow that has 
previously been developed was modified to include droplet evaporation computation. In addition 
to the high velocity airflow, the injected droplets are also subjected to increased combustor 
temperature and pressure that affect their motion in the flow field. Six ordinary differential 
equations (namely the time rate of change of x, z, ud, wd, D, and Ts) are then solved by 4th-order 
Runge-Kutta method using Microsoft® Excel software.   
 
Visual Basic programming and Excel macrocode are used to calculate the data and plot the 
droplet’s motion in the flow field. This program computes and plots the data sequentially without 
forcing the user to open other types of plotting programs. A user’s manual on how to use the 
program is included. 
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Symbol List 
 
Ad Projected area of the droplet 
BM Mass transfer number 
BT Heat transfer number 
Cexp Expansion coefficient 
CD Drag coefficient 
cp Specific heat at constant pressure 
cp,A Specific heat of air 
cp,F Specific heat of liquid fuel 
cp,Fv Specific heat of fuel vapor 
cp,g Specific heat of fuel-air mixture 
D Droplet diameter 
DFA Diffusion coefficient of fuel in air 
D0 Initial diameter of droplet 
F Force 
g Gravitational acceleration constant 
kA Thermal conductivity of air 
kFv Thermal conductivity of fuel vapor 
kg Thermal conductivity of fuel-air mixture 
L Latent heat of vaporization 
LTbn Latent heat at normal boiling point 
MA Molecular weight of air 
MF Molecular weight of fuel 
mdrop Mass of a droplet 
m  Evaporation rate 
m ′′  Evaporation rate per unit surface area 
n Exponential constant 
Nu Nusselt number 
P Ambient pressure 
PF Partial pressure of fuel 
Pvap Vapor pressure  
PrA Prandtl number of air 
Qact Total heat transfer to droplet 
Qss Steady-state heat transfer to droplet 
Ru Universal gas constant 
Red Reynolds number of droplet 
r Spherical radius of the droplet 
r32 0.5*(Sauter mean radius) 
Tbn Normal boiling point  
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Tcrit Critical temperature 
Tdrop Droplet temperature 
Tr Reference temperature 
Ts Droplet surface temperature 
T∞ Ambient temperature 
te Evaporation time 
UR Relative velocity between the droplet and the gas stream 
uA Velocity of the cross stream (air) in the x-direction 
ud Velocity of the droplet in the x-direction 
Vd Droplet Volume 
wA Velocity of the cross stream (air) in the z-direction 
wd Velocity of the droplet in the z-direction 
x Horizontal direction (+ equals to the right) 
YA Mass fraction of air 
YF Mass fraction of fuel 
Z Vertical direction (+ equals up) 
αg Thermal diffusivity of gas 
λ Evaporation constant 
µA Viscosity constant of air 
ρA Density of the cross stream (air) 
ρd Density of the droplet 
ρF,288.6K Density of fuel droplet at 288.6K 
∆t time step-size 
 
Subscripts 
A Air 

d Droplet 
F Fuel 
g Mixture of gaseous phase 
r Reference condition 
s Droplet surface 
st Steady state
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1. Introduction 
 
A liquid spray injected into a gaseous crossflow with high temperature is important because of 
its wide application in systems involving two phase mixing. It is important to be able to compute 
this flow to optimize the mixing strategy. 
 
An existing Excel program (ref. 1) has previously been developed for tracking a single droplet in 
crossflow computation. This work is focused on producing a quick computational method for 
determining spray penetration with evaporation. With this spreadsheet, one can investigate the 
dispersion of an air-blast atomized spray jet into a high temperature crossflow. During the 
transverse injection of a spray into high velocity airflow, the droplets (carried along in the 
gaseous stream of co-flowing air) are not only subjected to forces due to the crossflow motion, 
but also to increases in the combustor temperature and pressure (see fig. 1).  
 
 
 

 
 
 
 
 
 
 
 

Figure 1.1 (from NASA/CR—2000-210467) (ref. 2) 
 
 

2. Governing Equations 
 

2.1 Droplet Trajectories and Velocities 
 
The trajectories of the droplets can be tracked by applying a Lagrangian-based analysis to the 
droplets. The momentum equations for a droplet can be obtained by equating the droplet motion 
to: (1) The viscosity and pressure-related drag forces, and (2) The pressure gradient and viscous 
forces related to the fluid surrounding the droplet, and (3) The inertia of the virtual mass, induced 
when the particle acceleration affects the fluid mass acceleration.  
 
Droplet trajectory and velocity with respect to time can be calculated. Based on these principles 
along with the following assumptions: 
 

(1) The droplets are spherical, 
(2) No droplet breakup occurs, 
(3) Vaporization is not considered yet and will be derived separately in section 2.2, 
(4) Lift, virtual mass, and Basset forces which takes into account the acceleration history of 

the droplet, are neglected, 
(5) Chemical reaction is not included, 
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These assumptions reduce the droplet momentum equation to include only the effects of the drag 
and body forces. The general momentum equations for a single droplet injected along the 
positive x-direction, transversely into a downward-flowing air stream in the positive z-direction, 
as shown in figure 2, is described by  
 
 bodydragd FFF +=  (1) 
 
where the net force dF that drives the droplet motion is balanced by the drag force opposing its 
motion, and the field forces acting on the droplet. The aerodynamic drag force is given by  
 

 DdRRgdrag CAUUF ρ
2
1−=  (2) 

 
where ρA is the air density, and Ad and CD, the projected area and the drag coefficient of the 
droplet, respectively. The relative velocity between the droplet and the crossflow has a 
magnitude of UR (see fig. 2). The subscript “d” refers to the droplet and “g” the crossflow air.  
 

 

Figure 2.1 (from NASA/CR—2000-210467) (ref. 2) 
 
The body force, resulting from an equivalent volume of air that buoys the droplet, includes the 
gravitational and buoyancy forces. It is given by  
 
 ( ) gVF dAdbody ρρ −=  (3) 
 
which says that the body force is equal to the product of relative droplet and air density (ρd - ρA), 
the droplet volume Vd, and the gravitational acceleration g.  
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Substituting equation (2) and equation (3) to equation (1) yields: 
 

 ( ) DdRAdA
d

dd CAUuu
dt

duV −−= ρρ
2
1  (4) 

 

 ( ) ( ) gVCAUww
dt

dwV ddADdRAdA
d

dd ρρρρ −+−−=
2
1  (5) 

 

 du
dt
dx =  (6) 

 

 dw
dt
dz =  (7) 

 
The drag coefficient of the droplet depends on the droplet Reynolds number and is given by 
 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤⎥⎦
⎤

⎢⎣
⎡ +

=

1000Re424.0

1000ReRe
6
11

Re
24 3/2

d

dd
d

DC  (8) 

 
where Red is the droplet Reynolds number and is defined as follows 
 

 
A

dRA
d

rU

µ
ρ2

Re =  (9) 

 
in which rd is the droplet radius and µg is the gas (air) viscosity.  
 
 

2.2 Droplet Evaporation 
 
To include the effect of evaporation rate on spray penetration, apply a control volume at droplet 
surface that will change with droplet radius during evaporation process. For simplicity, consider 
steady state analysis first. 
 
 
2.2.1. Steady-State Analysis 
 
A fuel droplet rarely reaches a steady state (ref. 3) during its lifetime. This is because most 
commercial fuels are multi-component, where different fuel compounds posses its own 
properties, for example kerosene and gasoline. To simplify analysis, ‘steady state’ term here 
refers to ‘quasi-steady’, which allows droplet lifetime and evaporation rate to be estimated to an 
acceptable level of accuracy. 
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To simplify the analysis, in addition to the assumptions listed in trajectory analysis as shown in 
section 2.1: 
 

1. there is no radiation, 
2. there is no internal circulation and internal convective heating within droplet, 
3. consider only single-component fuel (with well-defined boiling point), and  
4. it is quasi-steady flow. 

 
Consider a fuel droplet at low fuel injection temperature that is suddenly exposed to a gaseous 
crossflow at high temperature. Initially, almost all heat supplied to the droplet serves to raise the 
droplet temperature. As the droplet temperature rises, fuel vapor will form at the droplet surface 
and has two main effects: 
 

1. a large portion of heat transferred to droplet is used to vaporize the droplet, and 
2. the outward flow of fuel vapor impedes the rate of heat transfer to droplet 

 
Eventually, a stage is reached where all heat transferred to droplet is used as the heat of 
vaporization and the droplet temperature will stabilize at a steady-state temperature. 
 
 
Mass Transfer Number 
 
Assume that the thermal diffusion is negligible. Therefore, the concentration gradient is the only 
driving force considered for species diffusion in the direction of the diffusion path. Then, the 
following expression for an evaporating fuel droplet of radius r is described by: 
 

 ( )AF
FA

uF Ym
PD

TR
dr

dY ′′−=  (10) 

 
where  DFA diffusion coefficient of fuel in air  

 Fm ′′  mass rate of diffusion per unit area (mass flux) 
 P ambient air pressure 
 Ru universal gas constant 
 T ambient air temperature 

YF(r) fuel mass fraction  
 YA air mass fraction at range rs < r < ∞ at any time 
 
 YA = 1–YF (10a) 
 
From the continuity equation applied on the control surface surrounding a droplet, one obtains 
 

 
2

, ⎟
⎠
⎞

⎜
⎝
⎛′′=′′

r
rmm s

sFF  (11) 
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where sFm ,′′ – mass flux at droplet surface 
 rs – radius of droplet  
 r – radius of control surface at time t 
 
Substituting equation (10a) and (11) into (10) yields: 
 

 ( )sF
s

sF
FA

uF Y
r
rm

PD
TR

dr
dY

,

2

, 1−⎟
⎠
⎞

⎜
⎝
⎛′′−=  (12) 

 
where  sFY , - fuel mass fraction at droplet surface 
 

Assume the ideal gas relation (
TR

P

u
=ρ ), separating variables, integrating, and rearranging 

equation (12) yields: 
 

 ( )sF
s

FA
sF Y

r
Dm ,, 1ln −⋅−=′′ ρ  (13) 

 
where ρ  – fuel density 
 
Multiplying by droplet surface area (As = 4πrs) and for D = 2rs, 
 
 ( )sFFAsF YDDm ,, 1ln2 −⋅⋅−= ρπ  (14) 
 
where D – diameter of evaporating droplet 
 

Figure 2.2 – Sketch of the control surface
   surrounding a droplet 



NASA/TM—2004-212910 9 

Unity Lewis Number (Le) 
 
Assume Le = 1, it implies that the mass transfer rate is equal to the heat transfer rate, i.e. 
 
 gFAD α=  (15) 
 
where  
 

 
gp

g c
k

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

ρ
α  (15a) 

 
where  αg – thermal diffusivity of gas 
 k – thermal conductivity  
 cp – specific heat at constant pressure 
 
Then,  

 
gp

FAg c
kD ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=ρ  (16) 

 
Define the mass transfer number, BM: 
 

 
sFdropF

FsF
M YY

YY
B

,,

,,

−
−

= ∞  (17) 

 
Since YF,∞  ≈ 0 and YF,drop = 1, equation (17) is simplified as: 
 

 
sF

sF
M Y

Y
B

,

,
1−

=  (18) 

 

 
1

,
, 11

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=

F

A

sF
sF M

M
P

PY  (19) 

 
where  MF – molecular weight of fuel [kg/kg-mol] 
 MA – molecular weight of air [kg/kg-mol] 

P – ambient pressure [kPa] 
 PF,s – fuel vapor pressure at droplet surface [kPa] 
 
Rearranging ln(1–YF) in term of BM yields: 
 
 ( ) ( )MF BY +−=− 1ln1ln  (20) 
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Substituting (16) and (20) into (14) yields the rate of evaporation of a fuel drop at the surface: 
 

 ( )M
gp

sF B
c
kDm +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 1ln2, π  (21) 

 
 
Reference Conditions 
 
For better accuracy, the choice of values of kg and cp,g are evaluated at the following reference 
temperature and composition using the “one-third rule”: 
 

 ( )ssr TTTT −+= ∞3
1  (22) 

 

 ( )sFFsFrF YYYY ,,,, 3
1 −+= ∞  (23) 

Since 0, ≈∞FY ,  

 sFrF YY ,, 3
2=  (24) 

 
 rFrA YY ,, 1−=  (25) 
 
 
Fuel-air Mixture 
 
Therefore, the reference thermal conductivity and specific heat at constant pressure are estimated 
as: 
 
 ( ) ( )rFvrFrArAg TkYTkYk ⋅+⋅= ,,  (26) 
 
 ( ) ( )rFvprFrAprAgp TcYTcYc ,,,,, ⋅+⋅=  (27) 
 
All properties for air and different fuels are provided in Appendix A and B. 
        
 
Evaporation Constant  
 
At steady-state period, the droplet diameter D at any instant may be related to its initial diameter 
D0 by D2-law: 
 
 tDD stλ=− 22

0  (28) 
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where  λst [ s
m2

] is the steady state evaporation constant 

 

 
( )

F

M

gp
st

B
c
k

ρ
λ +

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

1ln8
 (28a) 

 
The D2-law states that the square of droplet diameter is a linear function of time where the 
evaporation constant apparently represents the slope of the equation. The larger the λst, the 
shorter the time it takes for the droplet to vaporize completely. 

 
 
Heat Transfer Number  
 
Consider conductive and convective heat fluxes across a thin shell surrounding the evaporating 
droplet, the heat transfer number is defined as the ratio of enthalpy available in the surrounding 
gas to the energy required to vaporize the fuel: 
 

 
( )

( )dropsdropp

sgp
T TTcL

TTc
B

−+
−

= ∞

,

,  (29) 

 

where L  – latent heat of fuel vaporization corresponding to fuel surface temperature [
kg
kJ ] 

 
For simplicity, one can neglect the energy required to raise the droplet temperature to the surface 
temperature. Then, equation (29) becomes: 
 

 
( )

L
TTc

B sgp
T

−
= ∞,  (30) 

 
When heat transfer dominates the evaporation process, the rate of evaporation of a fuel droplet at 
the surface is then described by: 
 

 ( )T

gp
sF B

c
kDm +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 1ln2, π  (31) 

 
BT versus BM 
 
Estimation of rate of fuel evaporation using equation (31) is only good for steady-state 
conditions. Nevertheless, equation (21) applies under all conditions, including the heat-up 
process of droplet (ref. 6).  
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However, under steady state conditions, BM = BT = B and equation (21) and (31) are identical. 
Therefore, droplet evaporation rate can be written as: 
 

 ( )B
c
kDm

gp
Fs +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 1ln2π  (32) 

 
 
2.2.2 Heat-up Process 
 
According to Chin6, serious error may be incurred in the calculation of fuel evaporation rate and 
droplet lifetime if the transient heat-up process is neglected. In fact, for many fuels at high 
ambient pressure and temperature, the transient heat-up process constitutes a significant portion 
of the droplet evaporation time. 
 
At the steady-state period, the heat used in vaporizing the fuel is given by: 
 
 LmQ Fss =  (33) 
 
Substituting equation (14) into (33) yields, 
 

 ( )LB
c
kDQ M

gp
ss +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 1ln2π  (34) 

 
Including the heating process, the actual heat transfer is estimated as: 
 

 ( ) ( )
M

M
gsact B

B
TTDQ

+
−= ∞

1ln
2π  (35) 

 
Then, the rate of change of the droplet surface temperature is given by: 
 

 
dropFp

ssacts
mc

QQ
dt

dT

,

−
=  (36) 

 
Substituting equation (34) and (35) into (36) and rearranging gives,  
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 1

, M

T

dropFp

Fs
B
B

mc
Lm

dt
dT

 (37) 

 
where  

 3

6
Dm Fdrop ρπ=  (37a) 
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Note that 

 )
6

( 3D
dt
dm FF ρπ=  (38) 

 
Equating equation (14) and (38) and rearranging gives the rate of change of droplet size: 
 

 ( )
gpF

M

c
k

D
B

dt
dD

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛+=
ρ
1ln4  (39) 

 
 
2.2.3 Droplet Lifetime 
 
Since the rate of chemical reactions in many practical combustion systems are so high, the 
burning rate is mainly controlled by the fuel evaporation process. Therefore, droplet lifetime is 
important in such situations because it determines the residence time needed to ensure 
completion of combustion.  
 
Assume the final droplet diameter, D0, equal to zero and rearranging the D2-law, the steady state 
droplet lifetime is readily obtained by: 
 

 
st

ste
Dt
λ

2
0

, =  (40) 

 
 
2.2.4 Convective Effect 
 
All derivations shown above are only good for droplet at stationary condition. In addition, it is 
known that convection may enhance both mass and heat transfer during the evaporation process. 
Moreover, to include the convective effect into the evaporation rate equation is straightforward. 
Equation (23) is then modified by replacing the coefficient with the Nusselt number correlation 
(ref. 5):  
 

 ( )M

gp
F B

c
kDNum +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 1lnπ  (41) 

 
where 
 
 33.05.0 PrRe6.02 AdNu +=  (41a) 
 

 
A

rA
d

DU
µ

ρ ⋅⋅=Re  (41b) 
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All physical properties should be evaluated at the reference temperature, Tr, except for µA, PrA, 
and ρA. Please refer to Appendix B for air properties. 
 
 

3. Numerical Method 
 
Six ordinary differential equations are to be solved for the six dependent variables x, z, ud, wd, D, 
and Ts. The droplet trajectory is defined by the set of x and z values. A 4th-Order Runge-Kutta 
explicit method8 was used to solve these equations. The Runge-Kutta explicit method is an ideal 
numerical scheme for solving ordinary differential equations using Microsoft® Excel software. It 
is a self-starting method with good stability characteristics. The time step-size can be changed as 
desired without any complications for higher-order schemes.  
 
There are totally six sets of coupled equations, namely the time rate change of x, z, ud, wd, D, and 
Ts, along with their solutions, as shown below: (subscript n stands for the nth time step) 
 

[1]  ( )dd ufu
dt
dx

1==  (1) 

 ( )43211 22
6
1 kkkkxx nn ++++=+  (1a) 

 
where 
 

 

)(

)
2

(

)
2

(

)(

3,14

2
,13

1
,12

,11

luftk

luftk

l
uftk

uftk

nd

nd

nd

nd

+⋅∆=

+⋅∆=

+⋅∆=

⋅∆=

 (1b) 

 
 

[2] ( )dd wfw
dt
dz

2==  (2) 

 

 ( )43211 22
6
1 kzkzkzkzzz nn ++++=+  (2a) 

 
where 



NASA/TM—2004-212910 15 

 

)(

)
2

(

)
2

(

)(

3,24

2
,23

1
,22

,21

lzwftkz

lzwftkz

lz
wftkz

wftkz

nd

nd

nd

nd

+⋅∆=

+⋅∆=

+⋅∆=

⋅∆=

 (2b) 

 
 

[3] 
( )

( )sdd
dd

Ddggdg
d TDwuf

V

CAUuu

dt
du

,,,2
1

3=
⎥⎦
⎤

⎢⎣
⎡ −−

=
ρ

ρ
 (3) 

 

 ( )4321,1, 22
6
1 lllluu ndnd ++++=+  (3a) 

 
where 

 

 

),,,(

)
2

,
2

,
2

,
2

(

)
2

,
2

,
2

,
2

(

),,,(

3,33,3,34

2
,

22
,

2
,3

1
,

11
,

1
,32

,,,31

mtTmdDlzwluftl

mtTmdDlzwluftl

mt
T

md
D

lz
w

l
uftl

TDwuftl

nsnndnd

nsnndnds

nsnndnd

nsnndnd

++++⋅∆=

++++⋅∆=

++++⋅∆=

⋅∆=

 (3b) 

 
 

[4] 
( ) ( )

( )sdd
dd

ddgDdRgdg
d TDwuf

V

gVCAUww

dt
dw

,,,2
1

4=
⎥⎦
⎤

⎢⎣
⎡ −+−−

=
ρ

ρρρ
 (4) 

 

 ( )4321,1, 22
6
1 lzlzlzlzww ndnd ++++=+  (4a) 

 
where 
 

 

),,,(

)
2

,
2

,
2

,
2

(

)
2

,
2

,
2

,
2

(

),,,(

3,33,3,44

2
,

22
,

2
,43

1
,

11
,

1
,42

,,,41

mtTmdDlzwluftlz

mtTmdDlzwluftlz

mt
T

md
D

lz
w

l
uftlz

TDwuftlz

nsnndnd
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 (4b) 
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[5] ( )sTDf
Ddt

dD ,
2 5=−= λ  (5) 

 

 ( )43211 22
6
1 mdmdmdmdDD nn ++++=+  (5a) 

 
where 
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⋅∆=

 (5b) 

 

[6] ( )sdd
M

T

dropFp

Fs TDwuf
B
B

mc
Lm

dt
dT

,,,1 6
,

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=  (6) 

 

 ( )4321,1, 22
6
1 mtmtmtmtTT nsns ++++=+  (6a) 

 
where 
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(
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,
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,
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1
,
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,

1
,62

,,,61

mtTmdDlzwluftmt

mtTmdDlzwluftmt

mt
T

md
D

lz
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l
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TDwuftmt

nsnndnd

nsnndnd

nsnndnd

nsnndnd

++++⋅∆=

++++⋅∆=

++++⋅∆=

⋅∆=

 (6b) 

 
Only every nth cycle (as specified by the user) is saved for plotting. This greatly saves on storage 
and increases the speed of post processing. We have chosen to enter the data in SI units in the 
unlocked cells. The required conversions are done in the locked cells. When the user becomes 
familiar with the spreadsheet, the spreadsheet can be unlocked as there is no password and the 
user can adapt the spreadsheet as required. 
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The report can be accessed on the web at: 
http://gltrs.grc.nasa.gov/reports/2004/TM-2004-212910/TM-2004-212910.html

 along with the interactive Microsoft® Excel spreadsheet1 that computes and plots 
data with and without spray evaporation can be accessed through hyperlinks located on the back 
of the title page and on page 17, or directly on the web at:  
http://gltrs.grc.nasa.gov/reports/2004/TM-2004-212910/SprayEvapVBONOFFSept23.xls 

  
The interactive Microsoft® Excel spreadsheet is also available on CD-ROM as a separate 
document. Additional copies of the Microsoft® Excel spreadsheet can be requested by e-mailing: 
Dan.L.Bulzan@nasa.gov.  
 
The CD-ROM also contains NASA/TM—2002-211710 and supplemental Microsoft® Excel 
interactive spreadsheet that computes and plots data without spray evaporation. 
 
 

                                                 
1To access the interactive spreadsheet, Microsoft® Excel 2002 or higher is recommended to view the file and for 
proper functionality. It can be opened through your browser, however, saving to the hard drive is recommended. If 
you cannot access this file, please contact: Dan.L.Bulzan@nasa.gov. 

mailto:Dan.L.Bulzan@nasa.gov
mailto:Dan.L.Bulzan@nasa.gov
http://gltrs.grc.nasa.gov/reports/2004/TM-2004-212910/SprayEvapVBONOFFSept23.xls
http://gltrs.grc.nasa.gov/citations/2004/TM-2004-212910.html
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4. Equations Summary for Tracking an Evaporating Spray in a Crossflow 
 
 

Inputs 
 
Droplets 

Properties:   R32, Ad, Vd, ρd,288.25K, Tcrit, Tbn, Cexp, LTbn, MWd, a, b 
Initial conditions:  X0, Ud0, Z0, Wd0, Tinit,   

 
Crossflow 

Properties:   Mg, Ug, Wg 
 
Ambient conditions:   T∞, P, g 
 
Numerical method:   ∆t, n (total cycle number), ndata, ε 
 
 

Outputs 
 
Ballistics:    X, Ud,  Z, Wd0, Cdt 
 
Evaporation:    D, Tsurf 
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Equations 
 
Mass Transfer Number: 
 
If (Group 1 fuel2) then 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−==
43

exp,
s

svapsF T
baTPP [kPa] (1) 

 
else 
 

 2
1010 loglog sss

s
vap ETDTTC

T
BAP ++++=  (2) 

 
 ( )svapsF TPP =, [mmHg] (3) 
 
End if 
 

 
1

,
, 11

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=

F

A

sF
sF M

M
P

PY  (4) 

 

 
sF

sF
M Y

Y
B

,

,

1−
=  (5) 

 
 
Reference Conditions: 
 

 ( )ssr TTTT −+= ∞3
1 [K]  (6) 

 

 sFrF YY ,, 3
2=  (7) 

 
 rFrA YY ,, 1−=  (8) 
 
Thermal Properties of Air 
 

 ][108289.0100969.0105102 3328311

Km
WTTTk rrrA ⋅

⋅+⋅+⋅−⋅= −−−−  (9) 

 
                                                 
2Group 1 fuels – DF 2, JP 4, JP 5 and n-Heptane  
  Group 2 fuels – Jet-A (C12H23) and Water (H2O) (please refer to Appendix A for more details.) 
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 ][0041.1101102105 527311
, kg

kJTTTc rrrAp +⋅−⋅+⋅−= −−−  (10) 

 ][10)761.186227.00003.0107(
2

7238

m
NsTTTA

−
∞∞∞

− ⋅++−⋅=µ  (11) 

 
 8632.00009.010210102Pr 2639413 +−⋅+−⋅= ∞∞

−
∞

−
∞

− TTTTA  (12) 
 

 0032.191.355 −
∞= TAρ ][

3m

kg  (13) 

 
 
Thermal properties of hydrocarbon fuel: 
 
If (Group 1 fuel) then 

 

 ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−−−−= 2

2

6.288, )6.288(
6.28809.06.2888.11

crit
exKFF T

TTCρρ ][
3m

kg  (14) 

 

 ( )( ) ][001.05000467.0363.0 6.288,, kgK
kJTc KFrFvp ρ−+=  (15) 

 

 ( )( ) ][001.000335.076.0 5.0
, kgK

kJTc FdropFp ρ+=  (16) 

 

 
2

0372.02 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

bn

r

T
T

n  (17) 

 

 ( )[ ] ][
273

2730313.02.1310 6

Km
WT

Tk
n

r
bnFv ⋅

⎟
⎠
⎞

⎜
⎝
⎛−−= −  (18) 

 

 
38.0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
bncrit

scrit
T TT

TT
LL bn [

kg
kJ ] (19) 

 
Else 
 

 

n

c

drop
T

T

F AB
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=
1

ρ [ 3cm
g ] (20) 
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 2
rrFv CTBTAk ++= ][

Km
W
⋅

 (21) 

 

 432
, rrrrFvp ETDTCTBTAC ++++= [

Kmol
J
−

] (22) 

 

 32
, dropdropdropFp DTCTBTAC +++= [

Kmol
J
−

] (23) 

 

 
n

c

drop

T
T

AL ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 1 [

mol
kJ ] (24) 

 
End if 
 
 
Thermal properties of fuel-air mixture: 
 
 ( ) ( )rvrFrArAg TkYTkYk ⋅+⋅= ,,  (25) 
 
 ( ) ( )rvprFrAprAgp TcYTcYc ,,,,, ⋅+⋅=  (26) 
 
 
Droplet trajectories: 
 

 ( ) ( )22
gdgdR wwuuU −+−=  (27) 

 

 
A

sdRA
d

rU

µ
ρ ,2

Re =  (28) 

 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤⎥⎦
⎤

⎢⎣
⎡ +

=

1000Re424.0

1000ReRe
6
11

Re
24 3/2

d

dd
d

DC  (29) 

 

 ( ) DdRgdg
d

dd CAUuu
dt

duV −−= ρρ
2
1  (30) 

 

 ( ) ( ) gVCAUww
dt

dwV ddgDdRgdg
d

dd ρρρρ −+−−=
2
1  (31) 
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 du
dt
dx =  (32) 

 

 dw
dt
dz =  (33) 

 
 
Convective effect: 
 

 33.05.0 PrRe6.02 airDNu +=  (34) 
 

 ( )M
gp

F B
c
kDNum +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 1lnπ  (35) 

 
 
Heat transfer number: 
 

 
( )

L
TTc

B sgp
T

−
= ∞,  (36) 

 
 
Evaporation constant: 
 

 
( )

F

M

gp

BIn
c
k

ρ
λ +

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

18
][

2

s
m  (37) 

 

 3

6
Dm Fdrop ρπ= [kg]  (38) 

 
 
Heat-up process: 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 1

, M

T

dropFp

Fs

B
B

mc
Lm

dt
dT

][
s
K  (39) 

 

 
Ddt

dD
2
λ−= ][

s
m  (40) 

 
 
Evaporation time: 
 

 
λ

2
0

,
D

t ste = [s]  (41) 
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5. User’s Manual 

 
This program is written in Microsoft® Visual Basic Excel. There are six sheets in the program, 
namely the ‘CoverPage’ sheet, ‘Instruction’ sheet, ‘Process’ sheet, ‘Data’ sheet, ‘Trajectory’ 
sheet, and ‘Evap’Code sheet.  
 
‘CoverPage’ sheet 
Relevant information about authors is provided in this sheet. If there are any questions or 
comments regarding this program, please feel free to contact us.  
 
‘Instruction’ sheet 
The instruction sheet contains a description of each sheet in the program, as well as the user’s 
manual.  
 
 

 
Figure 5.1 – ‘Process’ sheet 
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‘Process’ sheet 
The process sheet contains all user-inputs necessary for performing computations. First of all, the 
user needs to choose a fuel type from the pull down menu. This program contains built-in a 
database of properties of each listed fuel necessary for evaporation computations (see 
Appendix A – Fuel Properties). Other than that, the user can specify any hydrocarbon fuel not 
listed here, provided that the properties of each specified fuel are available.  
 
The cells highlighted in light-brown are the user inputs. The cells highlighted in pink contain 
computed values associated with the light-brown cells; therefore, they are locked to prevent the 
user from modifying their values.  When values are entered into the formula cells, the formulas 
are erased and linkages to other cells are interrupted.  That is why for this version we chose to 
lock the closed cells without a password.  
 
One feature added to the previous work (ref. 1) is the ‘Evaporation ON/OFF’ switch. If the user 
chooses to turn off the ‘Evaporation switch’, the Microsoft® Excel program will run as if there is 
no evaporation and will give the solution for the droplet ballistics only.  
 
If the ‘Evaporation switch’ is turned on, one main concern is the computational time because it is 
considered very computation-intensive to use Runge-Kutta method in a Microsoft® Excel 
spreadsheet for tracking a single evaporating droplet in crossflow. The computational time varies 
mostly with the CPU power available and the total cycle number as well as the time step size. To 
remedy this problem, four options have been proposed and it is up to the user to select one of the 
four options before running the code: 
 

a. Option 1 – Properties are calculated four times each cycle (more accurate but very slow) 
b. Option 2 – Properties are calculated one time each cycle (less accurate but fast) 
c. Option 3 – Properties are calculated four times during droplet heating. After droplet 

reaches steady state temperature, properties are not calculated any more. The values are 
used from the last cycle of droplet heating. This option requires user to input a constant 
value of epsilon, ε. It defines the condition when the steady state temperature will occur. 
(dT/dt = ε) 

d. Evap time estimate – Before computation, it's always good to estimate the steady state 
evaporation time (droplet lifetime) of the droplet of size r32. Click the Update button to 
start the estimation. The computational speed depends mostly on the droplet size r32 and 
ambient conditions. For example, a Jet-A droplet of 50-micron diameter (r32=25 micron) 
is estimated to completely vaporize within 0.004s. Using ∆t=1.0e-7s, at least n=40,000 
cycles are required. 

 
4th-Order Runge-Kutta method calculates temperature derivative (dT/dt) four times in each cycle. 
Option 3 will force the program to check all four temperature derivatives in each cycle. If one of 
the temperature derivatives in a cycle is less than the constant epsilon, properties calculation will 
not be performed afterward. Based on the experiment, epsilon between 0.1 and 1 is good enough. 
For instance, a case has been performed using two constant epsilons, say 0.0001 and 0.1. 
Solutions from both epsilons yield similar results. Note that this may not apply to cases with fuel 
with properties highly sensitive to temperature.  
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From figure 4, the last two user inputs, Total Cycles (C32) and Data taken every ## cycles (C33) 
are the important features that were added for monitoring the amount of output data. The 
number assigned in pink cell “E34”must be kept below 65,536; the cell will turn red if this 
condition is not satisfied. Keeping the value below the limit can be done by changing the value 
in the cell “C33”. 
 
After all the inputs have been specified, clicking the Update button will instruct the program to 
update the data in the ‘Data’ sheet as well as all plots in the ‘Trajectory’ and ‘Evap’ sheets. 
 
In summary, the user needs to do the following steps to run the program: 
 

1. Go to the ‘Process’ Sheet  click on the Process tab. 
2. Enter input values in the light-brown cells.  
3. Adjust the value in the cell C33 so that the computed value in cell E34 is less than 

65,536. 
4. Choose the fuel type from the ‘Fuel’ option menu. 
5. Choose the ON/OFF evaporation switch from the evaporation option menu. 
6. If Evaporation is ON, choose one of the four options: Option 1, 2, 3 or Evap time 

estimate. 
7. If ‘Evap time estimate’ is selected in step 6, click the Update button. The code will 

estimate evaporation constant and time.  
8. Based on the estimated value of tst,evap (droplet lifetime), adjust and input appropriate 

'Time step ∆t' and 'Total cycles n'. 
9. Click the Update button. 
10. Observe the droplet profiles on the solution plots at both ‘Trajectory’ and ‘Evap’ 

sheets. 
11. Repeat step 1 through step 10 for different input values 
12. Click the Clear Data button to clear the data (Optional). 

 
An additional feature in this program is the option to store the computed data into a TecPlot 
format file. This feature provides the user a flexibility to plot the data using other software such 
as TecPlot. In summary, user needs to do the following steps to save the data into TecPlot format 
file: 

1. Select "Yes" to save the data into a file 
2. Specify the path and the filename to save into a file (e.g. C:\Document\result.dat) 
3. Select the unit length (i.e. meter or millimeter) 
4. Click the Update button 

 
Other than computational time, another concern is the computer memory usage because the code 
needs a lot of memory space for those six variables arrays to be solved. As discussed above, the 
feature of estimating the steady state droplet lifetime enables us to predict the total cycle number 
n required to complete a whole evaporation process for each fuel droplet. By making use of this 
advantage, a so-called ‘dynamic array size’ is added to the existing code such that the allocated 
memory space for each computation will closely follow the total cycle number n entered by user. 
Using the example in ‘Evap Time Estimate’ option where n=40,000, each variable array size will 
be set to n+2=40002. 
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‘Data’ sheet 
This sheet contains the solution data computed by the program. All the solution data will be 
listed separately at eight columns A to H for plotting. Table 1 shows the corresponding variables 
of each column: 
 
 
Column Variable Units Definition 
A Time sec Time  
B X m Droplet trajectory in x-direction 
C Z m  Droplet trajectory in z-direction 
D Ud 

2s
m  

Droplet velocity in x-direction 

E Wd 
2s

m  
Droplet velocity in z-direction  

F CD n/a Drag coefficient  
G D/D0 µm Normalized droplet diameter square 
H Ts K Droplet surface temperature 

Table 5.1 – Variables with their corresponding column in ‘Data’ sheet 
 
 
‘Trajectory’ sheet 
 
As shown in figure 5, there are five graphs on this sheet, namely droplet trajectory, droplet 
velocity profile, drag coefficient, CD, as a function of time, droplet velocity profiles as a function 
of time, and droplet trajectory profiles as a function of time. 
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Figure 5.2 – ‘Trajectory’ sheet 
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‘Evap’ sheet 
 
There are two graphs on this sheet, as shown in figure 6, namely droplet size and surface 
temperature histories.  It also shows the values of the estimated steady-state evaporation constant 
and evaporation time. 
 

 
Figure 5.3 – ‘Evap’ sheet 
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6. Results and Discussions 
 

To understand the performance of this Excel code, several results have been obtained and 
displayed in the following pages using the input parameters as shown in Table 6.1. Only the 
trajectory and the time variation of normalized droplet size and surface temperature are selected 
as the results to be discussed. 
 

 
6.1(a) Normalized diameter square vs time 

 
6.2(a) Normalized diameter square vs time 

 
6.1(b) Droplet surface temperature vs time 

 
6.2(b) Droplet surface temperature vs time 

    
6.1(c) Trajectory of fuel droplet after injection 

 

  
6.1(c) Trajectory of fuel droplet after injection 

Figure 6.1 – Injection of fuel droplet at 
T=500K and P=1atm 

Figure 6.2 – Injection of fuel droplet at 
T=500K and P=10atm 
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6.3(a) Normalized diameter square vs time 

 
6.4(a) Normalized diameter square vs time 

 
6.3(b) Droplet surface temperature vs time 

 
6.4(b) Droplet surface temperature vs time 

   
6.3(c) Trajectory of fuel droplet after injection 

   
6.4(c) Trajectory of fuel droplet after injection 

 

Figure 6.3 – Injection of fuel droplet at 
T=500K and P=1atm 

Figure 6.4 – Injection of fuel droplet at 
T=500K and P=10atm 
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In figure 6.1(a), water droplet of diameter 50 micron at 500K 1 atm takes a much longer time to 
reach complete vaporization i.e. around 0.13s than Jet-A and DF 2 do. As shown in figure 6.2(a), 
increasing the ambient pressure to 10 atm further extends its droplet lifetime to around 0.16s, as 
known from the general physics results. Similar conclusions will be obtained when comparing 
figure 6.3(a) with 6.4(a) except that each fuel droplet lifetime is much shorter at such a high 
ambient temperature (T=1000K).  
 
Figures 6.1(b) and 6.2(b) show the time variation of droplet surface temperature at the same 
ambient temperature i.e. 500K and two different ambient pressures, i.e. 1 atm and 10 atm 
respectively. In figure 6.1(b), each droplet reaches its steady state temperature and it never goes 
beyond its normal boiling point. While at high pressure as shown in figure 6.2(b), the boiling 
point increases with pressure and consequently the steady state temperature is higher. These 
observations also apply to figures 6.3(b) and 6.4(b). 
 
The droplet trajectory after injection and before complete vaporization for each droplet is shown 
in figures 6.1(c), 6.2(c), 6.3(c) and 6.4(c). Due to the decreasing droplet mass (as a result of 
vaporization) followed by the momentum loss, the downward crossflow forces the evaporating 
droplet to drop almost vertically (or in z-direction) at the very end of its drop life. Water, with a 
higher heat capacity, therefore penetrates deepest across the crossflow among all the fuels. 
 

Input Value (unit) Input Value (unit) 
r32 25 µm Wg -38 m/s 
Xo 0 m T∞ 1000 K  

Udo -2.4 m/s P 1010 kPa  
Zo 0 m g 0 m/s2 

Wdo 0 m/s ∆t 1.00E-07 sec 
Tinit 300 K n 100000 Cycles 

Mg 28.97 kg/kmol ε  1 K 
Ug 0 m/s    

Table 6.1 – Input parameters used in discussion 
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Appendix A—Fuel Properties 
 
In this code, two different groups of fuels are considered. The reason is because the thermal 
properties for these two groups of fuels are referring to different sources as shown below. 
 

Group Source Fuels 

1 Chin (refs. 3 and 6) 

DF 2 (diesel oil) 
JP 4 
JP 5 
n-Heptane 

2 Yaws (ref. 7) Jet-A (C12H23) 
Water (H2O) 

Table A.1 – two groups of fuels 
 
 

Fuel/properties DF 2 Jet-A 
(C12H23) 

JP 4 JP 5 n-Heptane Water 
(H20) 

ρd,288.6K (kg/m3) 846 915.91 773 827 687.8 1036 
Tcrit (K) 725.9 737.0 612 648.8 540.17 647.3 
Tbn (K) 536.4 529.0 420 495.3 371.4 373.16 
Cexp (1/K) 0.00046 n/a 0.000557 0.000485 0.000715 n/a 
LTbn (kJ/kg) 254 341.200 292 266.5 317.8 2191 
Md (kg/kmol) 198 181.321 125 169 100.16 18.02 
a* 15.5274 n/a 15.2323 15.16 14.2146 n/a 
b* 5383.59 n/a 3999.66 4768.77 3151.68 n/a 
*Clasius-Clapeyron constants 
. 

Table A.2 – Physical properties of fuels (Group 1 and 2) 
 
All fuel properties are calculated in subroutines transfernumber(Ts) and 
fuel_thermal_prop(Ts) where Ts refers to surface temperature of a fuel droplet.



NASA/TM—2004-212910 34 

Group 1 Fuels: DF 2 (diesel oil), JP 4, JP 5, and n-Heptane 
 
At any given droplet surface temperature, Ts, fuel vapor pressure at droplet surface, PF,s, is 
approximated by Clasius-Clapeyron equation (or called Antoine equation (ref. 4)) [kPa]: 
 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−==
43

exp,
s

svapsF T
baTPP  (A.1) 

 
where a and b are constants for certain fuels (provided in Table A.2 shown above). 
 Ts – droplet surface temperature [K] 
  

Meanwhile, variation of Fvk  [
Km

W
⋅

] and Fvpc , [
kg
kJ ] of fuel vapors with temperature are given 

by Chin (ref. 3): 
 

 ( )[ ]
n

r
bnFv

T
Tk ⎟

⎠
⎞

⎜
⎝
⎛−−= −

273
2730313.02.1310 6  (A.2) 

 
 
 ( )( )KFrFvp Tc 6.288,, 001.05000467.0363.0 ρ−+=  (A.3) 
 
where  

 
2

0372.02 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

bn

r
T
T

n  (A.3a) 

 
 KF 6.288,ρ  - fuel density in kg/m3 at 288.6K. 
 

Liquid fuel density3 [ 3m
kg ] is needed to calculate λst: 

 

 ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

−−−= 2

2

6.288, )6.288(
6.288

09.06.2888.11
crit

drop
dropexKFF T

T
TCρρ  (A.4) 

 
where Cexp is the expansion coefficient (provided in Table A.2). 
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Latent heat of fuel vaporization [
kg
kJ ] corresponding to fuel surface temperature is estimated by: 

 

 
38.0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
bncrit

scrit
T TT

TT
LL

bn
 (A.5) 

 

 LTbn – Latent heat of fuel vaporization at normal boiling point [
kg
kJ ] 

 

Specific heat at constant pressure of fuel liquid is given by [
kgK
kJ ]: 

 
 ( )( ) 5.0

, 001.000335.076.0 FdropFp Tc ρ+=  (A.6) 
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Group 2 Fuels: Jet-A (C12H23) and Water (H2O)  
 
All equations for the fuel properties can be found in Yaws (ref. 7), as shown below:  
 

Fuel liquid density [ 3cm
g ]: 

 

 

n

c

drop
T

T

F AB
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=
1

ρ  (A.7) 
  
 

Coefficients Jet-A (C12H23) Water (H20) 
A 0.29292 0.3471 
B 0.26661 0.274 
n 0.298 0.2857 

Table A.3 – Coefficients for Fuel Liquid Density [ 3cm
g ] in Group 2 fuel. 

 
 

Latent heat of vaporization of fuel liquid [
mol
kJ ]: 

 

 
n

c

drop

T
T

AL ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 1  (A.8) 

 
 

Coefficients Jet-A (C12H23) Water (H20) 
A 73.509 52.023 
n 0.347 0.321 

Table A.4 – Coefficients for Latent Heat of Vaporization of fuel liquid [
mol
kJ ] in Group 2 fuel. 
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Specific heat at constant pressure of fuel liquid [
Kmol

J
−

]: 

 
 32

, dropdropdropFp DTCTBTAC +++=  (A.9) 
 
 

Coefficients Jet-A (C12H23) Water (H20) 
A 142.238 92.053 
B 1.5261 -0.039953 
C -0.0034477 -0.00021103 
D 0.0000032968 0.0000005347 

Table A.5 – Coefficients for Specific Heat at constant pressure of fuel liquid [
Kmol

J
−

] in 

Group 2 fuel. 
 
 

Specific heat at constant pressure of fuel vapor [
Kmol

J
−

]: 

 
 432

, rrrrFvp ETDTCTBTAC ++++=  (A.10) 
 
 

Coefficients Jet-A (C12H23) Water (H20) 
A -128.032 33.933 
B 1.4622 -0.0084186 
C -0.00086193 0.000029906 
D 0.00000018462 -0.000000017825 
E 0.00000000000036227 3.6934E-12 

Table A.6 – Coefficients for Specific Heat at constant pressure of fuel vapor [
Kmol

J
−

] in 

Group 2 fuel. 
 
 

Thermal conductivity of fuel vapor [
Km

W
⋅

]: 

 
 2

rrFv CTBTAk ++=  (A.11) 
 

Coefficients Jet-A (C12H23) Water (H20) 
A -0.01184 0.00053 
B 0.000061839 0.000047093 
C 0.000000025082 0.000000049551 

Table A.7 – Coefficients for Thermal Conductivity for fuel vapor [
Km

W
⋅

] in Group 2 fuel. 
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Vapor pressure [mmHg]: 
 

 2
1010 loglog sss

s
vap ETDTTC

T
BAP ++++=  (A.12) 

 
Then, let 
 
 ( )svapsF TPP =,  (A.12a) 
       

Coefficients Jet-A (C12H23) Water (H20) 
A -50.5512 29.8605 
B -2705.3 -3152.2 
C 28.273 -7.3037 
D -0.045702 0.00000024247 
E 0.000020443 0.000001809 

 

Table A.8 – Coefficients for Vapor Pressure [mmHg] in Group 2 fuel. 
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Appendix B—Air Properties 
 
Variation of air properties with temperature (range 100K through 2000K) can be obtained from 
correlation provided in Incorpera5. Air properties are all calculated in subroutine air().  
 

Thermal conductivity [
Km

W
⋅

]: 

 
 3328311 108289.0100969.0105102 −−−− ⋅+⋅−⋅−⋅= rrrA TTTk  (B.1) 
 

Specific heat at constant pressure [
kg
kJ ]: 

 
 0041.1101102105 527311

, +⋅−⋅+⋅−= −−−
rrrAp TTTc  (B.2) 

 

Viscosity [ 2m
Ns ]: 

 
 7238 10)761.186227.00003.0107( −

∞∞∞
− ⋅++−⋅= TTTAµ  (B.3) 

 
Prandtl number: 
 
 8632.00009.010210102Pr 2639413 +−⋅+−⋅= ∞∞

−
∞

−
∞

− TTTTA  (B.4) 
 

Density [ 3m
kg ]: 

 
 0032.191.355 −

∞= TAρ  (B.5) 
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Appendix C—Microsoft® Visual Basic Code  
 

In the Microsoft® Excel spreadsheet, select ‘Tools Macro Visual Basic Editor’, a new 
window will open showing all the numerical codes in different sheets or modules.  
 

Main Code 
 
Private Sub CommandButton3_Click() 
'Declare ballistics variables 
     
    Dim n As Long, nn As Double, nnnn As Long, speedup As Long 
    Dim Cdm As Double, Rems As Double 
    Dim dtt As Double 
    Dim k1 As Double, k2 As Double, k3 As Double, k4 As Double, l1 As Double, l2 As Double, l3 As Double, l4 
As Double 
    Dim kz1 As Double, kz2 As Double, kz3 As Double, kz4 As Double, lz1 As Double, lz2 As Double, lz3 As 
Double, lz4 As Double 
    Dim Urm As Double 
    Dim a As Double, b As Double 
    Dim location 
    Dim sf 
    Dim a1, b1, c1, d1, e1, f1, g1, h1 
    Dim unitconv 
     
'Adding these inputs for drop evaporation '(3/26/03) 
    Dim md1 As Double, md2 As Double, md3 As Double, md4 As Double 
    Dim mt1 As Double, mt2 As Double, mt3 As Double, mt4 As Double 
    Dim evap As Double 
         
'Variable time 
    Dim begin, last, switch 
        begin = Second(Time) + Minute(Time) * 60 + Hour(Time) * 3600 
    switch = 0 
 
     
'Clear data 
    Call Macro2 
    Halt = False 
    Msg = "Do you want to continue ?" 
    Style = vbYesNo 
    Style1 = vbOKOnly 
    Title = "Jet Flow in CrossFlow" 
    Title1 = "Evaporation Time Estimate" 
    Msg3 = "Drop vaporizes completely!" 
    Msg_size = "Please reduce droplet size!" 
    Msg_size1 = "Can't estimate. Drop size too big!" 
     
    Call taperd 
     
'Dynamic array size 
    asize = kl + 2 
    ReDim xx(0 To asize) As Double, xp(0 To asize) As Double 
    ReDim zz(0 To asize) As Double, zp(0 To asize) As Double 
    ReDim D(0 To asize) As Double, Ts(0 To asize) As Double 
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     'Sheets("Process").Cells(9, 10) = kl 
     'Sheets("Process").Cells(10, 10) = asize 
    If flag = 4 And r > 0.0001 Then 
        Response = MsgBox(Msg_size, Style1, Title1) 
        Cells(5, 3).Select 
        GoTo 50 
    End If 
     
    Pi = 22# / 7# 
     
        Worksheets("Process").CommandButton1.Width = 0 
        Worksheets("Process").CommandButton1.Visible = True 
 
        n = 0    'used for array value index 
        nn = -1  'used for writing data into cell 
        nnn = 2  'used for writing into sequence cell 
        dtt = 0 
        evap = 0# 
        nl = 0   'used to keep track the time level recorded when drop vaporizes completely 
        ss = 0   'used to turn on/off switch if temperature has reached steady 
        sst = 0  'used to print steady state time 
        speedup = Int(kl / 50) 'used to update the percentage bar 
 
        'initial position and velocity 
        xx(n) = xxi 
        xp(n) = xpi 
        zz(n) = zzi 
        zp(n) = zpi 
         
        'Assume uniform temperature within the drop 
        Ts(n) = Tinit 
         
        D(n) = 2# * r 
        D02 = D(n) ^ 2 
         
        If flag = 3 Or flag = 4 Then Sheets("Process").Cells(18, 10) = "Temperature is not steady" 
         
        'Determine fuel type then select one of two approach to calculate fuel properties 
        ' 0 - Lebefvre's, 1 - Yaws' 
        fuel_type = Sheets("Process").ComboBox1.Value 
        Select Case fuel_type 
        Case "DF 2" 
            otherfuel = 0 
        Case "Jet-A (C12H23)" 
            otherfuel = 1 
            Apv = -50.5512 
            Bpv = -2705.3 
            Cpv = 28.273 
            Dpv = -0.045702 
            Epv = 0.000020443 
            ' 
            Arho = 0.29292 
            Brho = 0.26661 
            nrho = 0.298 
            ' 
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            Akfv = -0.01184 
            Bkfv = 0.000061839 
            Ckfv = 0.000000025082 
            ' 
            Acpfv = -128.032 
            Bcpfv = 1.4622 
            Ccpfv = -0.00086193 
            Dcpfv = 0.00000018462 
            Ecpfv = 3.6227E-13 
            ' 
            Acpf = 142.238 
            Bcpf = 1.5261 
            Ccpf = -0.0034477 
            Dcpf = 0.0000032968 
            ' 
            Alat = 73.509 
            nlat = 0.347 
 
        Case "JP 4" 
            otherfuel = 0 
        Case "JP 5" 
            otherfuel = 0 
        Case "n-Heptane" 
            otherfuel = 0 
        Case "Water" 
            otherfuel = 1 
            Apv = 29.8605 
            Bpv = -3152.2 
            Cpv = -7.3037 
            Dpv = 0.00000024247 
            Epv = 0.000001809 
            ' 
            Arho = 0.3471 
            Brho = 0.274 
            nrho = 2# / 7# 
            ' 
            Akfv = 0.00053 
            Bkfv = 0.000047093 
            Ckfv = 0.000000049551 
            ' 
            Acpfv = 33.933 
            Bcpfv = -0.0084186 
            Ccpfv = 0.000029906 
            Dcpfv = -0.000000017825 
            Ecpfv = 3.6934E-12 
            ' 
            Acpf = 92.053 
            Bcpf = -0.039953 
            Ccpf = -0.00021103 
            Dcpf = 0.0000005347 
            ' 
            Alat = 52.023 
            nlat = 0.321 
        Case Else 
            otherfuel = 0 
        End Select 
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    If onoff_flag = 0 Then 
      Tref = Tinit + (Tinf - Tinit) / 3# 
      'air: viscosity 
       mu = 0.00000007 * Tref ^ 3 - 0.0003 * Tref ^ 2 + 0.6227 * Tref + 18.761 
       mu = mu * 0.0000001 'Ns/m^2 
        
       If otherfuel = 0 Then 
        'fuel: liquid density 
         rhof = rhofr * (1# - 1.8 * cexp * (Tinit - 288.6) - 0.09 * ((Tinit - 288.6) / (Tcrit - 288.6)) ^ 2#) 'kg/m^3 
       Else 
        'fuel: liquid density 
         Tdocrit = Tinit / Tcrit 
         rhof = 1000# * Arho * Brho ^ ((-1#) * (1# - Tdocrit) ^ nrho) 'convert g/cm^3' to 'kg/m^3 
       End If 
 
      'air: density 
       rhog = 355.91 * Tref ^ (-1.0032) 'kg/m^3 
    End If 
 
         
Sheets("Process").Cells(14, 12) = "Calculating" 
20 
        dtt = dtt + dt 
        If flag = 1 Or flag = 2 And onoff_flag = 1 Then Call driver_for_runge(Ts(n)) 
        If flag = 3 And ss = 0 And onoff_flag = 1 Then Call driver_for_runge(Ts(n)) 
        If flag = 4 And ss = 0 And onoff_flag = 1 Then Call driver_for_runge(Ts(n)) 
        Call Runge(xp(n), zp(n), D(n), Ts(n)) 
                 
        If (SuperExit) Then GoTo 50 
        k1 = dt * xp(n) 'replaced xp(n) 3/26/03 
        l1 = dt * A_x 
        kz1 = dt * zp(n) 'replaced zp(n) 3/26/03 
        lz1 = dt * A_z 
        If onoff_flag = 1 Then 
          md1 = dt * (-0.5) * lambda / D(n) '3/28/03 
          mt1 = dt * ct 
          If ((D(n) + 0.5 * md1) < 0.00000001) Then 
             evap = 1# 
             nl = n 
             GoTo 15 
          End If 
        End If 
        If flag = 1 And onoff_flag = 1 Then Call driver_for_runge(Ts(n) + 0.5 * mt1) 
        If flag = 3 And ss = 0 And onoff_flag = 1 Then Call driver_for_runge(Ts(n) + 0.5 * mt1) 
        Call Runge(xp(n) + l1 / 2#, zp(n) + lz1 / 2#, D(n) + 0.5 * md1, Ts(n) + 0.5 * mt1) 
        
        If (SuperExit) Then GoTo 50 
        k2 = dt * (xp(n) + l1 / 2#) 'replaced xp(n) 3/26/03 
        l2 = dt * A_x 
        kz2 = dt * (zp(n) + lz1 / 2#) 'replaced zp(n) 3/26/03 
        lz2 = dt * A_z 
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  If onoff_flag = 1 Then 
          md2 = dt * (-0.5) * lambda / (D(n) + 0.5 * md1) '3/28/03 
          mt2 = dt * ct 
          If ((D(n) + 0.5 * md2) < 0.00000001) Then 
             evap = 1# 
             nl = n 
             GoTo 15 
          End If 
        End If 
        If flag = 1 And onoff_flag = 1 Then Call driver_for_runge(Ts(n) + 0.5 * mt2) 
        If flag = 3 And ss = 0 And onoff_flag = 1 Then Call driver_for_runge(Ts(n) + 0.5 * mt2) 
        Call Runge(xp(n) + l2 / 2#, zp(n) + lz2 / 2#, D(n) + 0.5 * md2, Ts(n) + 0.5 * mt2) 
             
        If (SuperExit) Then GoTo 50 
        k3 = dt * (xp(n) + l2 / 2#) 'replaced xp(n) 3/26/03 
        l3 = dt * A_x 
        kz3 = dt * (zp(n) + lz2 / 2#) 'replaced zp(n) 3/26/03 
        lz3 = dt * A_z 
        If onoff_flag = 1 Then 
          md3 = dt * (-0.5) * lambda / (D(n) + 0.5 * md2) '3/28/03 
          mt3 = dt * ct 
          If ((D(n) + md3) < 0.00000001) Then 
             evap = 1# 
             nl = n 
             GoTo 15 
          End If 
        End If 
        If flag = 1 And onoff_flag = 1 Then Call driver_for_runge(Ts(n) + mt3) 
        If flag = 3 And ss = 0 And onoff_flag = 1 Then Call driver_for_runge(Ts(n) + mt3) 
        Call Runge(xp(n) + l3, zp(n) + lz3, D(n) + md3, Ts(n) + mt3) 
         
         
        If (SuperExit) Then GoTo 50 
        k4 = dt * (xp(n) + l3) 'replaced xp(n) 3/26/03 
        l4 = dt * A_x 
        kz4 = dt * (zp(n) + lz3) 'replaced zp(n) 3/26/03 
        lz4 = dt * A_z 
        If onoff_flag = 1 Then 
          md4 = dt * (-0.5) * lambda / (D(n) + md3) '3/28/03 
          mt4 = dt * ct 
        End If 
         
        If flag = 3 Or flag = 4 And ss = 0 And onoff_flag = 1 Then 
          If Abs(ct) < sstemp Then ss = 1 
        End If 
         
        If flag = 3 And ss = 1 And sst = 0 And onoff_flag = 1 Then 
          Sheets("Process").Cells(18, 10) = "Temperature is steady at t = " & dtt * 1000# & "milliseconds" 
          sst = 1 
        End If 
         
         
        xp(n + 1) = xp(n) + (1# / 6#) * (l1 + 2# * l2 + 2# * l3 + l4) 
        zp(n + 1) = zp(n) + (1# / 6#) * (lz1 + 2# * lz2 + 2# * lz3 + lz4) 
 
        xx(n + 1) = xx(n) + (1# / 6#) * (k1 + 2# * k2 + 2# * k3 + k4) 
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        zz(n + 1) = zz(n) + (1# / 6#) * (kz1 + 2# * kz2 + 2# * kz3 + kz4) 
         
        If onoff_flag = 1 Then 
          D(n + 1) = D(n) + (1# / 6#) * (md1 + 2# * md2 + 2# * md3 + md4) '3/28/03 
         Ts(n + 1) = Ts(n) + (1# / 6#) * (mt1 + 2# * mt2 + 2# * mt3 + mt4) 
        End If 
        DoEvents 
        If (Halt) Then 
          DoEvents 
          Halt = False 
          Response = MsgBox(Msg, Style, Title) 
          If Response = vbNo Then 
            evap = 2# 
            nl = n 
            GoTo 15 
          End If 
        End If 
         
        If 0 = (n Mod speedup) Or n >= kl Then 
          Worksheets("Process").CommandButton1.Width = ((n / kl) * 165.75) 
          Worksheets("Process").CommandButton1.Caption = ((n / kl) * 100) & "%" 
          Worksheets("Process").CommandButton1.Height = 20.25 
        End If 
                 
        If flag = 4 And ss = 1 And onoff_flag = 1 Then 
          Sheets("Process").Cells(14, 12) = "Estimation done" 
          Sheets("Process").Cells(18, 10) = "Temperature is steady at t = " & dtt & "seconds" 
          Sheets("Process").Cells(6, 10) = D02 / lambda 
          Sheets("Process").Cells(5, 10) = lambda 
          dt_temp = dt 
          dt = dt_old 
          'Sheets("Process").Cells(9, 10) = n 
          'Sheets("Process").Cells(10, 10) = kl 
          'Sheets("Process").Cells(7, 10) = dt '9/10/03 
          'Sheets("Process").Cells(8, 10) = dt_temp 
          GoTo 50 
        Else 
          If flag = 4 And n >= kl And ss = 0 Then 
            Response = MsgBox(Msg_size1, Style1, Title1) 
            dt_temp = dt 
            dt = dt_old 
            GoTo 50 
          End If 
        End If 
         
        If (D(n + 1) < 0.00000001) And onoff_flag = 1 Then 
           evap = 1# 
           nl = n 
           GoTo 15 
        End If 
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 n = n + 1 
        If n <= kl Then 
          GoTo 20 
        End If 
         
15 
        Sheets("Process").Cells(14, 12) = "Writing data into cells" 
        If evap = 1# Then 
          nf = nl - 1 
        ElseIf evap = 2# Then 
          nf = nl - 1 
        ElseIf evap = 0# Then 
          nf = kl 
        End If 
n = 0 
ttldata = Sheets("Process").Cells(35, 5) 
sd = Sheets("Process").Cells(35, 5) 
speedup = Int(sd / 10) 
 
25 
        Urm = (((xp(n) - ug) ^ 2) + ((zp(n) - wg) ^ 2)) ^ 0.5 
        If onoff_flag = 1 Then Rems = rhog * Urm * D(n) / mu 
        If onoff_flag = 0 Then Rems = rhog * Urm * D(0) / mu 
         
        If Rems <= 1000 Then 
          If Rems = 0# Then 
            Cdm = 0# 
          Else 
            Cdm = (((Rems ^ (2# / 3#)) / 6#) + 1#) * 24# / Rems 
          End If 
        Else 
            Cdm = 0.424 
        End If 
        Sheets("Data").Cells(nnn, 1) = n * dt 
        Sheets("Data").Cells(nnn, 2) = xx(n) 
        Sheets("Data").Cells(nnn, 3) = zz(n) 
        Sheets("Data").Cells(nnn, 4) = xp(n) 
        Sheets("Data").Cells(nnn, 5) = zp(n) 
        Sheets("Data").Cells(nnn, 6) = Cdm 
        If onoff_flag = 1 Then 
          Dplot = (D(n) / D(0)) ^ (2#) 
          Sheets("Data").Cells(nnn, 7) = Dplot 
          Sheets("Data").Cells(nnn, 8) = Ts(n) 
        End If 
         
        If 0 = (nnn Mod speedup) Or n >= nf Then 
          Worksheets("Process").CommandButton1.Width = (((nnn - 1) / ttldata) * 165.75) 
          Worksheets("Process").CommandButton1.Caption = (((nnn - 1) / ttldata) * 100) & "%" 
          Worksheets("Process").CommandButton1.Height = 20.25 
        End If 
                             
        DoEvents 
        If (Halt) Then 
          DoEvents 
          Halt = False 
          Response = MsgBox(Msg, Style, Title) 
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          If Response = vbNo Then 
            GoTo 10 
          End If 
        End If 
                     
        n = n + userchoice 
        nnn = nnn + 1 
        If n > nf Then 
            GoTo 10 
        Else 
            GoTo 25 
        End If 
 
10 
    last = Second(Time) + Minute(Time) * 60 + Hour(Time) * 3600 
    Sheets("Process").Cells(16, 10) = last - begin 
    If onoff_flag = 1 Then 
      Sheets("Evap").Cells(4, 10) = D02 / lambda 
      Sheets("Evap").Cells(3, 10) = lambda 
    End If 
    If (evap = 1#) Then 
'        nnn = nnn + 1 
'        Sheets("Data").Cells(nnn, 1) = (nf + 1#) * dt 
'        Sheets("Data").Cells(nnn, 7) = 0# 
        Response = MsgBox(Msg3, Style1, Title) 
    End If 
     
    Macro1 'plot data on chart 
    'sd = Sheets("Process").Cells(35, 5) 
        'print variables in a file (Tecplot format) 
    If Sheets("Process").Cells(46, 9) = "YES" Then 
      location = Sheets("Process").Cells(23, 11) 
      Sheets("Process").Cells(14, 12) = "Writing data into file : " + location 
      Open location For Output As #1 
      Print #1, "TITLE = "; Spc(2); """"; "Spray Jet In CrossFlow"; """" 
      If onoff_flag = 1 Then 
        If Sheets("Process").Cells(47, 9) = "millimeter" Then 
          unitconv = 1000# 
          Print #1, "Variables ="; Spc(2); """"; "Time(sec)"; """"; Spc(2); """"; "X(mm)"; """"; Spc(2); """"; "Z(mm)"; 
""""; Spc(2); """"; "U(mm/s)"; """"; Spc(2); """"; "W(mm/s)"; """"; Spc(2); """"; "Cd"; """"; Spc(2); """"; 
"D(Normalized)"; """"; Spc(2); """"; "T(K)"; """" 
        Else 
          unitconv = 1# 
          Print #1, "Variables ="; Spc(2); """"; "Time(sec)"; """"; Spc(2); """"; "X(meter)"; """"; Spc(2); """"; 
"Z(meter)"; """"; Spc(2); """"; "U(m/s)"; """"; Spc(2); """"; "W(m/s)"; """"; Spc(2); """"; "Cd"; """"; Spc(2); """"; 
"D(Normalized)"; """"; Spc(2); """"; "T(K)"; """" 
        End If 
      Else 
        If Sheets("Process").Cells(47, 9) = "millimeter" Then 
          unitconv = 1000# 
          Print #1, "Variables ="; Spc(2); """"; "Time(sec)"; """"; Spc(2); """"; "X(mm)"; """"; Spc(2); """"; "Z(mm)"; 
""""; Spc(2); """"; "U(mm/s)"; """"; Spc(2); """"; "W(mm/s)"; """"; Spc(2); """"; "Cd"; """" 
        Else 
          unitconv = 1# 
          Print #1, "Variables ="; Spc(2); """"; "Time(sec)"; """"; Spc(2); """"; "X(meter)"; """"; Spc(2); """"; 
"Z(meter)"; """"; Spc(2); """"; "U(m/s)"; """"; Spc(2); """"; "W(m/s)"; """"; Spc(2); """"; "Cd"; """" 
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        End If 
      End If 
      sdd = 0 
       
'plot data in a file (Tecplot format) 
      Print #1, "ZONE I ="; nnn - 2 & ","; Spc(2); "F = POINT" 
      nnn = nnn - 1 
      For sf = 2 To nnn 
        a1 = Sheets("Data").Cells(sf, 1) 
        b1 = Sheets("Data").Cells(sf, 2) 
        b1 = b1 * unitconv 
        c1 = Sheets("Data").Cells(sf, 3) 
        c1 = c1 * unitconv 
        d1 = Sheets("Data").Cells(sf, 4) 
        d1 = d1 * unitconv 
        e1 = Sheets("Data").Cells(sf, 5) 
        e1 = e1 * unitconv 
        f1 = Sheets("Data").Cells(sf, 6) 
        If onoff_flag = 1 Then 
          g1 = Sheets("Data").Cells(sf, 7) 
          h1 = Sheets("Data").Cells(sf, 8) 
        End If 
        If onoff_flag = 1 Then 
          Print #1, a1; Spc(2); b1; Spc(2); c1; Spc(2); d1; Spc(2); e1; Spc(2); f1; Spc(2); g1; Spc(2); h1 
        Else 
          Print #1, a1; Spc(2); b1; Spc(2); c1; Spc(2); d1; Spc(2); e1; Spc(2); f1 
        End If 
      Next sf 
      Close #1 
    End If 
    Sheets("Process").Cells(14, 12) = "Completed" 
50 
    SuperExit = False 
End Sub



NASA/TM—2004-212910 50 

Other Subroutines 
 
 
Sub driver_for_runge(Ts) 
 
  Call transfernumber(Ts) 
  Call reference_cond(Ts) 
  Call air 
  Call fuel_thermal_prop(Ts) 
   
  'fuel-air mixture 
  kg = yar * ka + yfr * kfv 
  cpg = yar * cpa + yfr * cpfv 
   
  BT = cpg * (Tinf - Ts) / lat 
   
  'evaporation contant 
  lambda = 8# * Log(1# + BM) * kg / (cpg * rhof) 
End Sub 
----------------------------------------------------------------------------------------------------------------------------- 
 
Sub transfernumber(Ts) 
 
  If (otherfuel = 1) Then 
    Log10T = Log(Ts) / Log(10#) 
    Log10P = Apv + Bpv / Ts + Cpv * Log10T + Dpv * Ts + Epv * Ts * Ts 
    pfs = 10# ^ (Log10P) * 0.13333 'convert 'mmHg' to 'Kpa' 
    pfs = Application.WorksheetFunction.Min(p, pfs) 
  Else 
    pfs = Exp(acc - bcc / (Ts - 43#)) 'unit='Kpa' 
    pfs = Application.WorksheetFunction.Min(p, pfs) 
  End If 
   
  yfs = 1# / (1# + (p / pfs - 1#) * (mwg / mwd)) 
  BM = yfs / (1# - yfs) 
End Sub 
----------------------------------------------------------------------------------------------------------------------------- 
 
Sub reference_cond(Ts) 
 
  Tref = Ts + (Tinf - Ts) / 3# 
  yfr = 2# * yfs / 3# 
  yar = 1# - yfr 
End Sub 
----------------------------------------------------------------------------------------------------------------------------- 
 
Sub air() 
  'air: density 
  rhog = 355.91 * Tref ^ (-1.0032) 'kg/m^3 
   
  'air: viscosity 
  mu = 0.00000007 * Tref ^ 3 - 0.0003 * Tref ^ 2 + 0.6227 * Tref + 18.761 
  mu = mu * 0.0000001 'Ns/m^2 
   
  'air: prandtl number 
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  Pra = 0.0000000000002 * Tref ^ 4 - 0.000000001 * Tref ^ 3 + 0.000002 * Tref ^ 2 - 0.0009 * Tref + 0.8632 
   
  'air: thermal conductivity 
  ka = 0.00000000002 * Tref ^ 3 - 0.00000005 * Tref ^ 2 + 0.0000969 * Tref + 0.0008289 'W/(mK) 
   
  'air: specific heat 
  cpa = -0.00000000005 * Tref ^ 3 + 0.0000002 * Tref ^ 2 - 0.00001 * Tref + 1.0041 'kJ/kg 
  cpa = cpa * 1000# 'multiply by 1 kilo => J/(kgK) 
End Sub 
----------------------------------------------------------------------------------------------------------------------------- 
 
Sub fuel_thermal_prop(Ts) 
  If (otherfuel = 1) Then 
    'fuel: liquid density 
    Tdocrit = Ts / Tcrit 
    rhof = 1000# * Arho * Brho ^ ((-1#) * (1# - Tdocrit) ^ nrho) 'convert g/cm^3' to 'kg/m^3 
     
    'fuel: vapor thermal conductivity 
    kfv = Akfv + Bkfv * Tref + Ckfv * Tref * Tref 'W/(mK) 
     
    'fuel: vapor specific heat at constant pressure 
    cpfv = Acpfv + Bcpfv * Tref + Ccpfv * Tref * Tref + Dcpfv * Tref * Tref * Tref + Ecpfv * Tref * Tref * Tref * 
Tref 
    cpfv = cpfv * 1000# / mwd 'convert to J/(kgK) 
     
    'fuel: liquid specific heat at constant pressure 
    cpf = Acpf + Bcpf * Ts + Ccpf * Ts * Ts + Dcpf * Ts * Ts * Ts 
    cpf = cpf * 1000# / mwd 'J/(kgK) 
     
    'fuel: liquid latent heat of vaporization 
    lat = Alat * (1# - Tdocrit) ^ nlat 
    lat = lat * 1000000# / mwd 'J/kg 
  Else 
    'fuel: liquid density 
    rhof = rhofr * (1# - 1.8 * cexp * (Ts - 288.6) - 0.09 * ((Ts - 288.6) / (Tcrit - 288.6)) ^ 2#) 'kg/m^3 
     
    'fuel: vapor thermal conductivity 
    nkfv = 2# - 0.0372 * (Tref / Tbn) ^ 2 
    kfv = 0.000001 * (13.2 - 0.0313 * (Tbn - 273#)) * (Tref / 273#) ^ nkfv 'W/(mK) 
     
    'fuel: vapor specific heat at constant pressure 
    cpfv = (0.363 + 0.000467 * Tref) * (5# - 0.001 * rhofr) 'kJ/(kgK) 
    cpfv = cpfv * 1000# 'J/(kgK) 
     
    'fuel: liquid specific heat at constant pressure 
    cpf = (0.76 + 0.00335 * Ts) * (0.001 * rhof)  'kJ/(kgK) 
    cpf = cpf * 1000# 'J/(kgK) 
     
    'fuel: liquid latent heat of vaporization 
    lat = latbn * ((Tcrit - Ts) / (Tcrit - Tbn)) * (0.38) 'kJ/kg 
    lat = lat * 1000# 'J/(kgK) 
  End If 
End Sub 
----------------------------------------------------------------------------------------------------------------------------- 
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Sub taperd() 
   
    fl = Sheets("Process").ComboBox2.Value 
    If fl = "Option 1" Then flag = 1 
    If fl = "Option 2" Then flag = 2 
    If fl = "Option 3" Then flag = 3 
    If fl = "Evap time estimate" Then flag = 4 
     
    fl = Sheets("Process").ComboBox3.Value 
    If fl = "ON" Then onoff_flag = 1 
    If fl = "OFF" Then onoff_flag = 0 
     
'Getting the input 
    r = Sheets("Process").Cells(5, 3) 
    r = r / 1000000# 
    rhofr = Sheets("Process").Cells(8, 3) 
    Tcrit = Sheets("Process").Cells(9, 3) 
    Tbn = Sheets("Process").Cells(10, 3) 
    cexp = Sheets("Process").Cells(11, 3) 
    latbn = Sheets("Process").Cells(12, 3) 
    mwd = Sheets("Process").Cells(13, 3) 
    acc = Sheets("Process").Cells(14, 3) 
    bcc = Sheets("Process").Cells(15, 3) 
     
    xxi = Sheets("Process").Cells(17, 3) 
    xpi = Sheets("Process").Cells(18, 3) 
    zzi = Sheets("Process").Cells(19, 3) 
    zpi = Sheets("Process").Cells(20, 3) 
    Tinit = Sheets("Process").Cells(21, 3) 
     
    mwg = Sheets("Process").Cells(23, 3) 
    ug = Sheets("Process").Cells(24, 3) 
    wg = Sheets("Process").Cells(25, 3) 
     
    Tinf = Sheets("Process").Cells(27, 3) 
    p = Sheets("Process").Cells(28, 3) 
    g = Sheets("Process").Cells(29, 3) 
     
       
    dt = Sheets("Process").Cells(31, 3) 
    kl = Sheets("Process").Cells(32, 3) 
    If flag = 4 And onoff_flag = 1 Then 
       dt_old = dt 
       dt = 0.000001 
       kl = 400000 
       If r > 0.00005 Then kl = 800000 
    End If 
    userchoice = Sheets("Process").Cells(33, 3) 
    sstemp = Sheets("Process").Cells(34, 3) 
     
    area_noevap = Sheets("Process").Cells(6, 3) 
    volume_noevap = Sheets("Process").Cells(7, 3) 
 
End Sub 

-----------------------------------------------------------------------------------------------------------------------------
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