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Abstract
With shrinking budgets and the requirements

to increase reliability and operational life of the
existing orbiter fleet, NASA has proposed various
upgrades for the Space Shuttle that are consistent
with national space policy. The cockpit avionics
upgrade (CAU), a high priority item, has been
selected as the next major upgrade. The primary
functions of cockpit avionics include flight control,
guidance and navigation, communication, and
orbiter landing support. Secondary functions
include the provision of operational services for
non-avionics systems such as data handling for the
payloads and caution and warning alerts to the
crew. Recently, a process to selection the optimal
commercial-off-the-shelf (COTS) real-time
operating system (RTOS) for the CAU was
conducted by United Space Alliance (USA)
Corporation, which is a joint venture between
Boeing and Lockheed Martin, the prime contractor
for space shuttle operations. In order to
independently assess the RTOS selection, NASA
has used the Bayesian network-based scoring
methodology described in this paper. Our two-stage
methodology addresses the issue of RTOS
acceptability by incorporating functional,
performance and non-functional software measures
related to reliability, interoperability, certifiability,
efficiency, correctness, business, legal, product
history, cost and life cycle. The first stage of the
methodology involves obtaining scores for the
various measures using a Bayesian network. The
Bayesian network incorporates the causal
relationships between the various and often
competing measures of interest while also assisting
the inherently complex decision analysis process
with its ability to reason under uncertainty. The
structure and selection of prior probabilities for the
network is extracted from experts in the field of
real-time operating systems. Scores for the various
measures are computed using Bayesian probability.
In the second stage, multi-criteria trade-off analyses

are performed between the scores. Using a
prioritization of measures from the decision-maker,
trade-offs between the scores are used to rank order
the available set of RTOS candidates.

1 Introduction
The Space Shuttle (figure 1) is a unique

vehicle with unrivaled capabilities and, with a 98.9
percent success rate, is the most capable, versatile
and reliable space-faring vehicle in the world. As a
major launch vehicle for all U.S. and many
international components of the International Space
Station (ISS), the Shuttle has kept the United States
on the cutting edge of space exploration and
scientific discovery for the last two decades. As
space transportation needs continue to evolve,
access to space must be assured. The continuing
development and upgrade of the Space Shuttle --
which was designed to have a 100 mission life --
poses the most effective means for assuring access
to space for missions requiring its unique
operational capabilities. Upgrades to the Space
Shuttle increase assurance by improving safety and
reliability, reducing operating costs, enhancing
performance, and incorporating new and better
technologies.

The CAU is a critical high-priority Space
Shuttle safety upgrade. The project is designed to
implement new Orbiter cockpit avionics hardware
and software to meet the man-machine interface
requirements identified by the Space Shuttle

Figure 1. The Space Shuttle
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Cockpit Council in an effort to enhance overall
crew safety [1]. Orbiter cockpit displays and crew
interface capabilities will be significantly improved
by replacing the existing integrated display
processors with higher performance command and
display processors. These units will provide
expanded processing performance to enable
dramatic improvements in information access and
display capability as well as the implementation of
new caution and warning software functions. The
CAU will increase crew situational awareness and
decrease crew workload in the cockpit to enable
more timely and accurate crew decisions.
Improving the crew’s ability to manage information
during critical flight operations will significantly
impact safety and reliability.

1.1 USA’s CAU RTOS Evaluation
The prime Space Shuttle contractor, USA

Corp., was responsible for CAU operation and
development, including integration of hardware and
software components into the vehicle. One of the
highest priority CAU program objectives involved
the evaluation and selection of the optimal COTS
RTOS for the CAU. A trade study was performed
by USA Corp. to determine the most applicable
RTOS for the CAU from available products on the
market [2]. USA utilized a linear three-filter process
for the RTOS trade study, which started with over
100 RTOSs and ended with one. The first filter
eliminated niche RTOSs and narrowed the available
set to ten potential candidates: VxWorks, OSE,
Integrity, Nucleus+, OS-9, Precise/MQX, Real-
Time Craft, SMX, Supertask, and VRTX. The
second filter applied technical and industry
performance conditions that helped to narrow the
ten candidates down to two: VxWorks and OSE.
The final filter employed benchmark testing which
narrowed the RTOS selection to VxWorks [3].

1.2 The Independent Assessment Process
There are three Independent Assessment (IA)

teams participating in the CAU project. One of the
teams is NASA’s Independent Program Assessment
Office (IPAO), a Langley Research Center based
organization that reports to the NASA chief
engineer and chief financial officer. The IA process
performed by the IPAO is a peer validation of a
proposed advanced aerospace systems concept

design using the best available, independent
systems analysis expertise and methodology in
accordance with NASA policy [4].

In order to perform an IA for the CAU RTOS
selection, the IPAO decided to use a Bayesian
Network-based scoring methodology. This two-
stage methodology was utilized in order to achieve
an objective, non-advocate, in-depth study of the
RTOS candidates. This methodology also served to
verify RTOS performance, design integrity, life-
cycle costs, inherent risks, and technology-related
issues, thereby validating or invalidating USA’s
RTOS selection. The methodology used an
approach that assessed key product features
(measures) from functional, non-functional, and
performance perspectives. Scores, computed using
probabilistic inference, were then used to rank
feature performance. Trade-off analyses between
the feature rankings determined the acceptability of
the RTOS.

The Bayesian Network scoring methodology
was selected for its ability to incorporate causal
relationships between the often-competing
measures of interest, and its proclivity for fusinga
priori knowledge from RTOS experts and product
specific evaluations. Using Bayes’ Theorem, this
approach performs statistical inference by taking
into account the probabilistic nature of the causal
influences of the measures of interest, thereby
encoding, to some degree, the uncertainty in the
decision analysis problem. The approach is
coherent, admissible, and consistent with an
acceptance methodology for COTS software [5].

1.3 Problem Description
NASA’s primary rationale for using a COTS

RTOS is to lower development costs and time, to
reduce maintenance effort, and to take advantage of
advances in technology. The integration of a COTS
RTOS in a safety-critical avionics system poses
inherent problems, such as hazardous threats
involving unreliability, software maintenance
issues, and obsolescence within the CAU life cycle.
The primary issue confronting the IA is the conflict
between cost and mission assurance.

The IPAO’s problem of evaluating COTS
RTOSs for the CAU can be expressed
mathematically in the following way. Given a set,
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X , of alternative software products, let )(X α
represent the set of objective attributes for each
alternative x , where the set ofm attributes is
expressed as the vector [ ]m,...,c,b,a=α . The

function ( ) pX:f ℜ→α is an aggregation

scoring function. LetY represents the space of
judgmental inputs with respect to context or product
fitness. Then, the fitness function rule

( ){ } qYXf:F ℜ→×α

describes how well the alternatives fit the decision
maker’s values and environmental constraints. The
COTS RTOS comparison and selection ranking
problem is expressed as

( ){ }[ ]
Xxthatsuch

Y,xfFdominate-max

∈
α

.

This is a standard multi-objective decision problem
characterized by an r -dimensional vector of
objective functions, i.e.,

( ) ( ) ( ) ( )[ ]X,...,X,XX r21 αααα =

and a feasible region defined by the scoring
function f . The solution seeks to find a set of
non-dominated solutions, which will be a subset of
the feasible region. For the RTOS problem, theα ’s
represent the RTOS data andr represents the
measures of interest.

2 Background  

To grasp the complexities involved with
selecting a COTS RTOS for the Space Shuttle,
background information in four primary areas is
required. The first area involves the current state of
COTS software and the dilemma that it introduces
into project management decisions. The second
area involves specific safety-critical concerns that
need to be addressed when integrating
commercially available software products into high-
priority safety-related systems. The third area of
concern involves understanding specifics of USA’s
RTOS acceptance process in order for the IPAO to
ensure process independence for the IA. The final
source of background information involves
understanding the appropriateness and applicability
of Bayesian networks. Each of these areas will be
discussed in succession.

2.1 The COTS Software Dilemma 

The proliferation and increased use of COTS
and modified-off-the-shelf (MOTS) software stems
from the realization that pre-existing software
products can be a means of lowering development
costs, shortening development time, and keeping
pace with the changing software market. The
Federal government has found that, particularly
with regards to safety-critical systems, COTS
software is currently not plug-and-play, has
significant tradeoffs (e.g., performance, safety,
costs, etc.), and usually contains a “cradle-to-grave”
dependence on the software manufacturer. Various
risks inherent with using COTS software include
incompatibility of the product with other COTS
products, lack of control over the product’s current
and future functionality, and immaturity of product
or vendor [6]. In addition, most COTS software
components have no warranty and are not usually
subject to rigid development or verification
processes [7]. In an effort to reduce the risks of
COTS software, various software standards,
maturity models, and software development
frameworks have been developed, but they provide
no specific guarantee of eliminating software faults.
Additionally, vendors prefer not to be responsible
for guaranteeing their software [8]. This is because
many of the faults found in COTS software are due
to business decisions made by the software
manufacturer. For instance, time-to-market is
commonly seen as the primary factor for a
product’s success [9]. In order to be first-to-market,
some COTS vendors will release software with
known defects [10]. The primary driver in many of
the trade-off decisions involves minimizing costs.

The government’s increased dependence on
COTS software has introduced substantial risks,
particularly those involved with safety and mission-
critical systems. Trade-offs, therefore, are
necessary in order to address the current software
dilemma, that is, the apparent conflict between
minimizing costs and improving mission assurance.

2.2 RTOS Safety-Critical Concerns 

COTS software may offer important
advantages in the creation of new systems or the
upgrading of existing systems. Unfortunately,
projects often find that unforeseen costs and
technical issues associated with COTS software
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products offset the benefits they hoped to achieve
from the use of these products. With respect to the
Space Shuttle, COTS usage is governed by policies
outlined in the Shuttle Master Verification Plan
[11]. The policy states that COTS software usage
in safety-critical systems should be evaluated and
reported as part of the normal risk assessment
process to determine any risk-related exposures. A
commercially available RTOS for use in the CAU is
considered “high criticality” software. Guidelines
state that a COTS certification process is expected
to make maximum use of prior vendor testing
results as well as analysis based on actual prior
“field usage” of software. The data can be procured
by test reports provided by the vendor or third party
sources. For the RTOS software, proof of extensive
analysis and/or testing must be required as part of
the certification process to meet the criticality level
of the system. At a minimum, COTS RTOS data
must include information related to vendor support,
reliability, product deficiencies, compatibility,
maintenance, visibility of code, and life cycle
concerns.

2.3 USA’s RTOS Acceptance Process 

In order to meet Shuttle requirements for
COTS integration, USA Corp. employed a three-
filter process to select the best RTOS [3]. In
addition to eliminating niche RTOS products (cell
phone, game, automotive, etc.), the first filter
selected products that supported target platforms.
The second filter applied technical and industry
criteria to narrow the number of RTOS candidates.
These criteria involved acquiring data in several
specific categories. The category areas included
RTOS process control, scheduler algorithms,
process coordination, multiple CPUs, memory
management, I/O support, network support, error
handling, company information, interrupt support,
support tools and certification. VxWorks and OSE
were the only two remaining candidates at this
point. The third filter involved bringing in both
vendors to test each RTOS on a target host used to
mimic the characteristics of the proposed system.
This was done to analyze the responsiveness of the
vendors to problems, real-time product stability,
and ease of use of the support tools. The three-filter
approach yielded VxWorks as the clear favorite.

Though limitations were present in USA’s
trade study, the process appeared to be simple and
straightforward. Some of the limitations involved
the lack of several key items. These items included
a clear and complete justification process, a clear
delineation of Shuttle CAU software specifications,
a priority ranking of the selection criteria, an
explicit list of necessary and sufficient conditions
the selection criteria must satisfy, and a
determination of necessary constraints. Regardless
of these limitations, the IPAO’s task was still to
independently validate or invalidate USA’s RTOS
selection. In order to produce an objective, non-
advocate, in-depth study of the RTOS candidates, a
Bayesian network scoring methodology was
adopted.

2.4 Bayesian Networks 
Bayesian networks are directed acyclic graphs

(DAGs) in which the nodes represent variables, the
arcs signify the existence of direct causal influences
between the variables, and the strengths of these
influences are expressed by forward conditional
probabilities [12]. An advantage of a Bayesian
network is its natural perception of causal
influences thus making it an unambiguous
representation of dependency. This is useful for the
RTOS problem in that it allows for the explicit
identification of influences between the attributes of
each product. Another advantage of a Bayesian
network is the requirement of strict positivity,
which allows it to serve as an inference instrument
for logical and functional dependencies. Moreover,
its ability to quantify the influences with local,
conceptually meaningful parameters allows it to
serve as a globally consistent knowledge base.

The independence criteria for Bayesian
networks, d-separation [12], allows the joint
probability distribution (JPD) to be efficiently
computed using small prototypical clusters of
variables forming local probability distributions. In
this way, Bayesian networks are a natural tool for
dealing with uncertainty and complexity.
Characterizations of Bayesian networks generally
involve determining whether the structure of the
model is known and whether the data is complete.
Bayesian networks with unknown structure and
incomplete data are known to be NP-hard [13]. The
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Figure 2. Bayesian Network Scoring Methodology

main use of Bayesian networks is in situations that
require statistical inference. In a typical inference
application, a user has some observed evidence and
wishes to infer the probabilities of other events,
which have not as yet been observed. Additionally,
Bayesian networks are a way of dealing with
complex probabilistic reasoning with their ability to
accommodate both subjective probabilities from
domain experts as well as probabilities based on
objective data.

3 Bayesian Network Scoring 

In this section, we provide a brief overview of
the Bayesian network acceptance methodology.
Detailed analyses of each of the two major stages of
the methodology are provided. Results of the CAU
RTOS IA are also discussed.

3.1 Bayesian Network Acceptance Methodology 

The Bayesian network scoring methodology is
a two-stage process used for RTOS software
acceptance. The first stage involves a scoring
process and the second stage involves trade-off
analyses. The first stage inputs data from each
RTOS and computes probabilistic scores for
measures of interest using causal influences and
conditional probability distributions (CPD)
extracted from the database of RTOS products. The
probabilistic scores represent how favorable the
RTOS performed in a particular measure. High
scores represent performance that is both favorable
and certain. Low probabilistic scores represent
performance that is unfavorable or uncertain. In
this way, the probabilistic scores provide a

performance ranking for each RTOS candidate. In
the second stage of the process, trade-offs between
the scores determine the feasibility of acceptance.
Figure 2 depicts the components and stages of the
Bayesian network scoring acceptance methodology.
Discussions of both stages follow.

3.2 Bayesian Net Scoring Process (1st Stage) 
Elements of the Bayesian network scoring

process include a database of RTOS information,
the establishment of measures, model development,
model validation, and the computation of
probabilistic scores. Figure 3 provides a pictorial
representation of the interrelations among these
elements. As seen in this diagram, a Bayesian
network is developed from existing data in a
database of RTOS products. The data in the
database are characterized as either evidential data
or measure data. Evidential data (nodes) are
objective or computed values that represent product
attributes. Measure data (nodes) are objective or

Figure 3. Bayesian Net Scoring Process (1st Stage)

estimated values that represent measures of interest
to the decision-maker. Initially, a macro model is
developed. The macro model represents only the
causal influences between the measures of interest.
Then a micro model is developed by adding
evidential nodes and influences to the macro model
structure. Generally, expert domain knowledge is
involved in the construction of the RTOS Bayesian
network at both the macro and micro model levels.
Expert domain knowledge helps to establish how
causal influences contribute to the measures of
interest when there is not enough objective product
data to justify the connection.

Given the network structure, the CPDs of the
nodes are extracted from the data in the database.
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Figure 4. Conditional Probability Distribution

Probabilistic scores for a particular RTOS are then
computed by incorporating the product’s data into
the evidential nodes of the network and acquiring
the propagated probabilities from the measure
nodes. After computing the probabilistic scores for
all the RTOS candidates, score rankings can be
determined by comparing each product’s scores to
those of the other products (see figure 3).

A brief example of the Bayesian network
scoring process can be shown using the generic
model shown in figures 2 and 3. In this generic
structure, evidential nodes are labeled withD’s (D1,
D2, D3, D4) and measure nodes are labeled with
M’s (M1, M2, M3). In the macro version of the
network, there are only three measure nodes that are
all independent since there are no direct causal
influences between them. Therefore, the generic
network in figure 3 is the micro model. Given this
micro model (M ), the JPD can be computed using

( ) ( )∏
=

====
n

1i
ijiikik M,|xXpM|xXp πΠ ,

where iπ = the parents of node ix .The JPD for the

Bayesian network in figure 3 is

( ) ( ) ( )
( ) ( ) ( )
( ) ( )114

131243

4322421k

dpd|dp

d|dpd|dpd|mp

d,d,d|mpd,d|mpM|xXp ==

The JPD can then be grouped into clusters of
conditional probabilities using

( ) ( ) ( ) ( )nn11ii ,xg,xg,xgM|Xp πππ •••== ∏ ,

where ( ) ( )42111 d,d|mp,xg =π , and so on. The

CPD for the local cluster ( ) ( )42111 d,d|mp,xg =π

can be computed from the data in the database. As
seen in figure 4, values for D2, D4 and M1 are
shown in the RTOS database for five products. The
options for D2 (e.g., multi-cpu capability) could be

21Dθ = “high” and 22Dθ = “low”. Also, two options

for data D4 (e.g., latency) could be 41Dθ = “fast”

and 42Dθ = “slow”. Values for the measure M1

(e.g., efficiency) may either be known directly from
the vendor or extracted from RTOS domain experts.
The CPD table for this cluster is shown in figure 4
where

( )41D421D211M11 d,d|mpp θθθ ====
can be computed from the data in the database
using Bayes Theorem. Details of each step of the
scoring process for the CAU RTOS selection
problem will follow.

3.2.1 Database Population
The Bayesian network scoring process begins

with the acquisition of RTOS data from USA Corp.
[2, 3]. Optimally, the RTOS database should be
accurate, complete, and mature. Unfortunately, as in
most practical applications, this was not the case.
Though USA Corp.’s RTOS trade study
investigated 10 primary operating systems
following the first filter of their process, careful
inspection of their data revealed that product
information for two of the ten candidates was
extremely sparse. For this reason, data from only 8
RTOSs was used to populate the database. In order
to develop a more robust data set, the RTOS data
was updated and augmented to include data from
additional sources. These sources included the
Securities and Exchange Commission (SEC),
interviews with previous RTOS principle
investigators who used them on space-related
flights, user groups, the ISO compliance database,
and various benchmarking RTOS analysis
organizations. A data fusion approach was utilized
to incorporate data from various sources.

3.2.2 Measure Development
Measures are continuous or discrete random

variables used to assess a particular feature of a
software product. In this methodology, measures
are grouped into functional, non-functional, and
performance classifications. The measures are
further segregated into product and environmental
categorizations depending on whether the measure
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Table 1. Measure Characterization

Assessment Component Measure
Product Functionality

Interoperability
Functional

Environment
Legal

Usability
Efficiency
Portability

Correctness
Reliability

Product

Certifiability
Software Design

Process
Business

Performance

Environment

Product History
Product Life CycleNon-

functional Environment Cost

was deemed to be intrinsic to the product or
primarily influenced by external factors. The
measure characterization is fairly consistent with
measures listed in the international standard ISO
9126 [14]. Fourteen (14) RTOS measures of interest
are listed in Table 1.

3.2.3 Model Development Process
Bayesian networks are constructed by

determining the nodes to represent as random
variables, the causal influences between the linked
variables (model structure), and the strengths of the
influences (CPDs). Steps for determining the model
structure and CPDs for the RTOS network were
developed using the iterative procedure shown in
figure 5. In this process, model development starts
with an initial macro model and then proceeds to
compute several micro models, which represent
clusters of random variables separated using thed-
separation criterion. After extracting the CPDs for
the micro model clusters (as expressed in an earlier
example), the process iterates to improve the overall
macro model until no improvement can be made in
the posterior probability. Explanations of this
process follow.

After constructing the macro model, several
micro models are developed using local clusters of
variables computed using the conditional
independence criterion. The algorithm that finds the
best micro model starts by decomposing the JPD of
the macro model into local contributions, i.e.,

Figure 5. Model Development Process

( ) ( ) ( ) ( )nn11ii ,xg,xg,xgM|Xp πππ •••== ∏ .

For each local contributiong , compute

( ) ( )
( )

( )
( )∏ +

+
=

αΓ
αΓ

αΓ
αΓπ n

n
,xg ii

using conjugate analysis of exponential families for
Dirichlet distributions. Also, for each “g ”, iπ
should be expanded to include the parent nodes that
give the largest contribution to ( )ii ,xg π . The

algorithm stops when there is no increase due to
local contributions.

Next, parametric learning commences with a
given modelM and decomposes the JPD with the
assumption that the parametersθ are conditional
probabilities that represent the observer’s belief
before observing the data, i.e., { }n1,...,θθθ = .

Given the data in the database, the prior density
( )θp is updated in the posterior density using

Bayes’ Theorem. A Bayesian estimate ofθ is
computed, i.e., ( )D|E θ , where the θ ’s are
assumed to be mutually independent with Dirichlet
distributions.

Finally, hyperparameters [16] are used to
update the posterior distribution using the frequency
of data in the database. A significant problem
encountered using this procedure involves missing
data. There are, however, several stochastic
procedures that can be used to estimate data for
incomplete databases. Unfortunately, stochastic
procedures are generally computationally
expensive. Ramoni and Sebastiani have developed a
deterministic technique called Bound and Collapse
[16], which can learn the parameters of a Bayesian
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network from possibly incomplete databases
thereby improving computational complexity.

By constructing a new macro model and
comparing it to the initial model, the model
development process can be iterated. The algorithm
to select the best macro model is analogous to the
one for the micro models in that it would chose the
model with the highest posterior probability and
then quit when there is no improvement due to
changes in the model structure.

3.2.4 Macro Model Development
As stated earlier, the macro model describes

the major causal influences between the measures
of interest (table 1) as it relates to real- time
operating systems. A macro model was determined
with the prior belief of a particular dependence
structure based on expert experience [15]. The
macro level RTOS Bayesian network is shown in
figure 6 where the measure nodes will serve as
probabilistic output nodes for the network.

Given a model structure M , the joint
probability of various random variablesX’s can be
computed as

( ) ( )∏
=

====
n

1i
ijiikik M,|xXpM|xXp πΠ

where iπ = the parents of nodeix .Given a database

{ }n1 x,...,xD = from which to select a modelM
of conditional dependencies among the variables in
the database, let ( )Mp = our belief about a

particular modelM . The posterior probability of
M given the data is

( ) ( )
( )Dp

D,Mp
D|Mp = .

Given several rival models, the one with the highest
posterior probability should be chosen using the
Bayes’ factor (BF), i.e.,

( )
( )D,Mp

D,Mp
BF

2

1= ,

where 1M should be chosen if 1BF > , 2M
should be chosen if 1BF < , and either should be
selected if 1BF = . A solution exists if the data
are independent given the parameters associated
with the model, the prior distribution of parameters
is conjugate to the sampling model, and the
parameters are marginally independent.

Figure 6. Macro Level RTOS Bayesian Network

3.2.5 Micro Model Development
Micro models are clusters of Bayesian

networks that tie product attributes from the
database to measures in the macro model. The
process involves determining which RTOS
attributes influence each measure and continues by
calculating the strength of those influences from
frequency counts in the database. Given a number
of salient RTOS features and various choices for
each feature, the RTOS problem can be constructed
in a form using multinomial sampling. In
multinomial sampling, let { }X,...,XX n1= be n

discrete random variables, each having r possible
states. The likelihood function is given by

( ) r,...,1k,|xXp k
r
ii === θθ ,

where { },..., r1 θθθ = are parameters associated
with physical probabilities. Also, let

{ }n1 x,...,xD = be a database of observations and

{ }z1 M,...,MM = a set of models each containing
dependency relationships among the random
variablesX.

For a class of distributions known as
exponential families, each member in this class has
sufficient statistics that are of fixed dimension for
any random sample and a simple conjugate prior.
Conjugate distributions are distributions connected
with Bayesian networks such that the natural
parametric family of posterior distributions belongs
to the family of prior distributions [17]. In
multinomial sampling, the simple conjugate prior is
the Dirichlet distribution, i.e.,
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Figure 7. Micro Level RTOS Bayesian Network.

( ) ( ) ( )
( )∏∏ =

−

=

≡= r

1k

1
kr

1k k

r1
k,...,|DirM|p αθ

αΓ
αΓααθθ

where ∑
=

=
r

1i
kαα , 0k >α , r,...,1k = , M = the

model, and s'α are the hyperparameters. The
posterior distribution is

( ) ( )rr11 N,...,N|DirM,D|p ++= ααθθ .

The marginal likelihood or evidence,( )M|Dp , is

( ) ( )
( )

( )
( )∏ =

+
+

= r

1k
k

kk N

N
M|Dp

αΓ
αΓ

αΓ
αΓ

.

Given a particular modelM , the JPD is computed
as before. Given a modelM andθ ,

( ) ( )∏
=

=
n

1i
ii M,|xpM,|Xp πθ .

Computation of the posterior distribution is
conditioned on the assumptions that the dataD is
complete and the parameter vectorsijθ are

mutually independent, i.e.,

( ) ( )∏∏
= =

=
n

1i

9

1j
ij M|pM|p θθ .

Using these assumptions, the parameters remain
independent given a random sample, i.e.,

( ) ( )∏∏
= =

=
n

1i

9

1j
ij M,D|pM,D|p θθ .

Using Bayes’ Theorem and the assumptions
(distributions are in an exponential family,
parameters are mutually independent, conjugate
priors have been selected, and there is complete
data), the marginal likelihood is computed as

( ) ( ) ( )
( )M,D|p

M,|DpM|p
M|Dp

θ
θθ= .

In accordance with conjugate analysis, various
cluster networks were constructed for the measures
with CPDs extracted from the RTOS database.
Figure 7 displays the micro level Bayesian network.
Calculations for the CPDs (not shown) were
computed using commercially available software.

3.2.6 Model Validation
After incorporating both expert domain

knowledge and objective data with respect to the
macro model structure, various micro Bayesian
networks were constructed and validated using the
log-likelihood criterion. It should be noted that
validation of the macro model was not performed
and is an area of future research.

3.2.7 RTOS Score Rankings
By applying data from the augmented RTOS

data set to the micro Bayesian network, scores for
each of the eight RTOSs were computed for 14
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measures of interest (table 1). The CPDs of the
augmented data set were used as priors for the
network. Score rankings for the 8 RTOSs are
shown in Table 2. Longer RTOS names were
abbreviated to fit the space provided, i.e., VxW =
VxWorks, Int = Integrity, N+ = Nucleus +, and ST
= SuperTask (see Table 2). As seen in the table,
several candidates were ranked equally depending
on their probabilistic scores for a particular
measure.

3.3 Trade-off Analysis (2nd Stage) 
Trade-offs provide a mechanism to mitigate

the risks of RTOS integration by selecting a product
that minimizes the incompatibilities between the
product and the decision-maker’s preferences and
constraints. The process assists in finding a product
that maximizes benefits while minimizing product-
environmental misfit. The following sections
describe how the RTOS scores for the measures of
interest were used in conjunction with a preference
ordering to rank the 8 RTOSs and select the optimal
RTOS from the set. Multi-attribute decision
analysis is the primary technique employed to select
the best RTOS. Finally, sensitivity analysis results
show the robustness of the final selection due to
changes in the preference ordering.

3.3.1 Preference Ordering
A preference order for the RTOS measures

was acquired from a USA Corp. decision-maker.
The preference ordering, obtained from USA, was
as follows (from highest to lowest preference):
Product History, Correctness, Efficiency,
Reliability, Functionality, Life Cycle,
Interoperability, Usability, Business, Software
Design, Certifiability, Portability, Cost, and Legal.
This preference ordering described the weighted
values of relative importance that the USA
decision-maker placed on the 14 measures of
interest.

3.3.2 Multi-Criteria Decision Analysis
After obtaining scores for each RTOS

candidate as well as the preference ordering of
measures (from USA), PRIME Decisions, a multi-
criteria decision analysis tool was used to determine
the optimal RTOS among the available candidates.
PRIME Decisions is a decision analytic tool which
implements a PRIME (Preference Ratios In Multi-
attribute Evaluation) technique developed by Ahti

Table 2. Score Rankings
Rankings

Measure 1 2 3 4 5 6 7 8

Product
History

VxW
Int

SMX OS9 OSE N+ ST MQX

Correctness VxW
Int

OSE ST N+ MQX SMX OS9

Efficiency VxW Int MQX OS9 N+ OSE SMX ST
Reliability Int VxW OSE N+ SMX OS9 MQX ST

Functionality VxW
Int

OSE
OS9
ST

N+
MQX
SMX

Life Cycle VxW
Int

OS9 MQX SMX N+ OSE ST

Inter-
Operability

VxW OSE Int OS9 N+ MQX ST SMX

Usability VxW
Int
N+

SMX

OSE OS9 ST MQX

Business VxW
Int

SMX OS9 OSE ST N+ MQX

Software
Design

VxW
Int

MQX OSE SMX OS9 ST N+

Certifiability Int
OSE

MQX VxW SMX OS9 N+ ST

Portability VxW
MQX

N+

OSE
OS9

Int
SMX
ST

Cost N+ Int SMX
ST

MQX VxW
OSE

OS9

Legal SMX VxW
Int

OS9

ST N+ OSE MQX

A. Salo and Raimo P. Hamalainen at the Helsinki
University of Technology [18]. PRIME seeks to
strike a balance between the theoretical soundness
of the trade-off method and the functionality of
decomposed ratio judgments [18]. Towards this
end, ratio elicitation is based on the comparison of
preference differences in pairs of measures. Such
comparisons may be specified either as exact point
estimates or, more typically, as interval judgments
which impose linear constraints on the single-
attribute scores of the alternatives. Through these
constraints, the preference model becomes
increasingly specific so that more conclusive
dominance results can be inferred. The use of
imprecise preference statements, modeled through
intervals, may be particularly appropriate for group
decision support as the decision-maker’s conflicting
views can be combined into an aggregate
preference model.

After incorporating scores for each of the 8
RTOS candidates, PRIME Decisions calculated the
value intervals (figure 8) for each candidate based
on the normalized weights for each measure. The
value intervals represent the spread (mean and
variance) for each candidate and the weights
represent the prioritized order of importance for
each measure.
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Value Intervals: RTOS Selection

Value
10.950.90.850.80.750.70.650.60.550.50.450.40.350.30.250.20.150.10.050

Al
te

rn
at

iv
es

MQX

SMX

Nucleus+

OS-9

Supertask

OSE

Integrity

VxWorks

0.009 ... 0.632

0.054 ... 0.817

0.066 ... 0.869

0.105 ... 0.838

0.105 ... 0.625

0.192 ... 0.995

0.78 ... 0.991

0.784 ... 0.995

Figure 8. Value Intervals for each RTOS.

Figure 9. RTOS dominance matrix.

Next, a dominance matrix was determined
(figure 9). Dominance is a situation in which one
RTOS candidate is preferred to another for all the
permissible combinations of measure preferences.
Dominance is generally considered when the value
intervals of two candidates overlap. PRIME uses
two types of dominance – absolute and pairwise.
Absolute dominance occurs when one RTOS
candidate is preferred to another without any doubt.
That is, alternative x is preferred to x' in the sense
of absolute dominance if and only if the smallest
value of x exceeds the largest value of x'. The set of
RTOS dominated alternatives is determined by the
other criterion of dominance - pairwise dominance.
According to this dominance criterion, alternative x
is preferred to x' if and only if the value of x
exceeds that of x' for all feasible scores.

In figure 9, a black square indicates that the
candidate on that row is dominated by the candidate
in that column. Circles indicate just the opposite.
As seen in figure 9, VxWorks and Integrity both
completely dominate Nucleus+, OS-9, MQX, SMX,
and Supertask while OSE completely dominates
only Supertask. Empty elements indicate
overlapping value regions. For example, neither
OSE nor OS-9 dominate each other.

3.3.3 RTOS Rankings and Selection
Decision rules were used by PRIME Decisions

to help the decision-maker in the determination of
the optimal CAU RTOS candidate. Four decision
rules (maximax, maximin, central values, and

Figure 10. RTOS decision analysis.

minimax regret) provided in this software are
described as follows:

Utopian Decision Rule - Maximax (an
optimistic decision rule) supposes that the most
probable value lies at or near the greater bound of
the candidates’ value intervals, hence it selects the
candidate with the greatest upper bound,

RISK Based Decision Rule- Maximin (a
pessimistic decision rule) supposes that the worst
case for the chosen candidate will happen and it
selects the candidate with the greatest lower bound
of the value interval,

Probabilistic Decision Rule (based on the
Central Limit Theorem)- Central Values selects the
candidate with the greatest midpoint, and

Pareto Optimal Decision Rule- Minimax
Regret calculates the possible loss of value for each
candidate by using dominance data and selects the
candidate with the smallest possible loss.

As seen in figure 10, all decision rules
unanimously computed VxWorks as the optimal
CAU RTOS given the data provided. Based on the
various decision rules provided by the multi-criteria
decision analysis software, VxWorks should be
selected as the optimal RTOS for the CAU. The
entire ranking of the 8 RTOS candidates is shown
in Table 3. IT should be noted that this selection is
only valid for the CAU given the available data and
the preference ordering from the decision-maker.
Any changes in these items may produce a different
optimal RTOS selection.

3.3.4 Sensitivity Analysis
Various preference orders were used to

evaluate the robustness of the final RTOS candidate
rankings. In all cases, VxWorks, Integrity, and
OSE were consistently placed in the top three
positions. Though most preference orderings
produced practically identical rankings to those
shown in table 3, two particular preference orders
were found that changed the order of VxWorks and
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Table 3. RTOS Rankings

Ranking RTOS
Candidate

1 VxWorks
2 Integrity
3 OSE
4 OS-9
5 Supertask
6 Nucleus+
7 SMX
8 MQX

Integrity. The first case involved switching the
third and fourth measures in USA’s preference
ordering, that is, ranking Reliability higher than
Efficiency. In this case, Integrity was selected as
the best RTOS using risk-based and probabilistic
decision rules. The second case involved selecting
the following preference order (from highest to
lowest preference): Certifiability, Reliability, Cost,
Product History, Correctness, Functionality, Life
Cycle, Business, Software Design, Usability,
Efficiency, Legal, Portability, and Interoperability.
Given this preference order, Integrity was selected
as the best RTOS using all four decision rules.

4 Conclusions 

A Bayesian network scoring methodology has
been used to select the best RTOS for the Space
Shuttle CAU. The process obtained scores for
various RTOS measures using a Bayesian network
and then performed trade-off analyses between the
scores using multi-criteria decision analysis
software to rank order the available set of RTOS
candidates. Using this methodology, the IPAO
validated USA’s RTOS selection for the Shuttle
CAU. The method allowed for an objective, non-
advocate, in-depth study of the RTOS candidates
and served to verify RTOS performance and
integrity in order to provide a clear justification
process to Space Shuttle decision-makers.
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