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ABSTRACT

The prediction of ducted fan engine noise using a boundary integral equation method (BIEM)

is considered.  Governing equations for the BIEM are based on linearized acoustics and describe

the scattering of incident sound by a thin, finite-length cylindrical duct in the presence of a

uniform axial inflow.  A classical boundary value problem (BVP) is derived that includes an

axisymmetric, locally reacting liner on the duct interior.  Using potential theory, the BVP is recast

as a system of hypersingular boundary integral equations with subsidiary conditions.  We describe

the integral equation derivation and solution procedure in detail.  The development of the

computationally efficient ducted fan noise prediction program TBIEM3D, which implements the

BIEM, and its utility in conducting parametric noise reduction studies are discussed.  Unlike

prediction methods based on spinning mode eigenfunction expansions, the BIEM does not require

the decomposition of the interior acoustic field into its radial and axial components which, for the

liner case, avoids the solution of a difficult complex eigenvalue problem.  Numerical spectral

studies are presented to illustrate the nexus between the eigenfunction expansion representation

and BIEM results.  We demonstrate BIEM liner capability by examining radiation patterns for

several cases of practical interest.
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§ 1. INTRODUCTION

Advanced analytical tools for predicting the sound radiated from engine ducts facilitate the

design of active and passive noise abatement technology.  To be useful in design studies,

prediction tools should be fast, versatile, accurate, valid for a wide range of engineering

situations, and implementable on mainstream computer systems.  The ability to compute any

portion of the sound field without the need to calculate the entire field is an important attribute in

this regard.  Conventional computational approaches such as Finite Element Methods, CFD, and

Computational Aeroacoustics (CAA) lack this property which limits their usefulness for

conducting parametric noise studies.  On the other hand, boundary integral or boundary element

prediction methods calculate the acoustic field pointwise allowing the designer to compute noise

only at acoustically sensitive regions of space.

In this paper, we present a boundary integral equation method (BIEM) for predicting ducted

fan engine noise.  The BIEM is based on the equations of linearized acoustics with uniform inflow

and predicts the sound scattered by an infinitesimally thin, finite length cylindrical duct that has

been irradiated by some simple source process.  Boundary conditions on the duct interior allow

for an axisymmetric, axially segmented, locally reactive liner with circumferentially uniform

impedance.  The liner can be positioned anywhere inside the duct (see figure 1).  The special case

of a hard wall interior was considered in reference [1].

Simple acoustic sources, such as point or line monopoles and dipoles, are used to generate

incident sound.  Source configurations are composed of N  symmetrically spaced

(circumferentially) line or point sources and are situated on a disc perpendicular to the duct axis

(see figure 1).  If the source strengths are constant in time and the source disk spins with uniform

angular speed 
~Ω , then classical spinning modes appear inside the duct.  Spinning modes can also
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be generated by nonrotating sources with time harmonic strengths.  By suitable choices of

monopole and dipole strengths, rotating source configurations can be constructed to simulate the

loading and thickness components of fan noise.

In the early 1960’s, Tyler and Sofrin first introduced the concept of applying linear infinite

duct, spinning mode analysis to the prediction of ducted fan engine noise [2].  In this pioneering

research, simple propagation and radiation models were applied to single radial modes incident on

the duct inlet.  Reflection and inflow effects were ignored and only hard wall boundary conditions

were considered.  Many investigators have since expanded these concepts to include enhanced

radiation models, inflow effects, and liner capability.  The volume of research on this subject is

considerable and will not be reviewed in any detail here.  Comprehensive surveys can be found in

references [3-5].

The finite duct BIEM presented here provides two fundamental improvements over simple

infinite duct prediction methods.  First, the coupling of radiation and propagation for the infinite

duct methods requires an estimate of the generalized impedances at the inlet and exhaust planes.

These quantities are then used as input to some radiation model, such as Rayleigh’s formula for

sound radiation from a flanged cylinder, to calculate the acoustic farfield.  For the finite duct

BIEM, knowledge of the generalized impedances is not required.  Reflections at the duct

openings are determined implicitly.  Furthermore, unlike Rayleigh’s formula, the BIEM accounts

for edge diffraction and permits noise predictions in the duct shadow region.  Second, infinite duct

methods require the solution of an eigenvalue problem in which the internal acoustic field is

written as a linear combination of circumferential, radial, and axial eigenfunctions.  For the liner

case, the eigenvalue problem is difficult to solve due to the appearance of Bessel functions with

complex argument.  A body of research, which is reviewed in reference [3], has been devoted to
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the solution of this very difficult eigenvalue problem.  The BIEM does not involve the solution of

the eigenvalue problem because only a circumferential decomposition of the acoustic field is

required.  If desired, the radial and axial content of the computed BIEM interior field can be

obtained using Hankel and Fourier transform techniques.

Application of the BIEM to ducted fan noise prediction is a four step process which we

summarize below:

Step 1) In accordance with the preceding assumptions we derive a classical mixed boundary value

problem (BVP) for the scattered acoustic pressure..

Step 2) Using single and double layer Helmholtz potentials, the BVP is converted to a system of

hypersingular integral equations for the unknown layer densities.

Step 3) The system of integral equations is solved numerically by the method of collocation in

which the layer densities are approximated by finite series of orthogonal polynomials.

Step 4) The scattered sound field is computed pointwise by numerically integrating the Helmholtz

potential representation.

Theoretical details of the BIEM form the bulk of this paper.  Much analysis is devoted to the

integral equation development and solution technique.  The authors contend that innovations in

these areas have yielded enhanced numerical procedures that simplify calculations and lead to

rapid noise predictions.  A ducted fan noise prediction program, TBIEM3D [6], that implements

the BIEM has been developed.  Computational results are presented to illustrate TBIEM3D noise

prediction capabilities and to compare with eigenfunction expansion prediction methods.
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§ 2. BOUNDARY VALUE PROBLEM DERIVATION

We consider the scattering of sound by an infinitesimally thin, finite length cylindrical duct in

the presence of a uniform axial inflow with Mach number M.  The duct is irradiated by incident

sound produced by a collection of N simple point or line monopoles and/or dipoles.  Acoustic

propagation and radiation are based on the assumption of linearity.  The N sources have equal

strengths, are located on a disk perpendicular to the duct axis, and are arranged symmetrically

about the disk (refer to figure 1).  The source disk is centered on the duct axis and either spins or

is stationary.  Source strengths are chosen so that the incident acoustic field can be written as a

superposition of time harmonic, circumferential modes.

In the analysis that follows, all quantities are nondimensional: length by ~rD , mass by ~ ~ρ 0
3rD , and

time by 
~

~
r

c
D .

2.1. GOVERNING DIFFERENTIAL EQUATIONS

We adopt the point of view that the duct is translating in the axial (+z) direction with uniform

speed 
~

U  and initially consider an Eulerian description of the acoustic field.  The total acoustic

pressure in the sound field is split into known incident and unknown scattered parts

′ = ′ + ′p r z t p r z t p r z ti s, , , , , , , , ,ψ ψ ψ� � � � � �. (1)

In regions of space and time that contain no scattering surfaces, ′ps  is governed by the

homogeneous wave equation
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Acoustic pressure and radial velocity are related through the radial component of the acoustic

momentum equation
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∂
∂

∂
∂

′
+ ′ =

u

t

p

r
r 0. (3)

In a frame of reference moving with the duct, the symmetry of the source process is such that

all dependent acoustic variables can be expressed as linear superpositions of time harmonic

circumferential modes.  For example, the scattered pressure has the form

′ = −

=−∞

∞

∑p r Z t P r Z es s
n i kt nN

n

, , , ,ψ ψ� � � � 0 5 (4a)

and the radial component of total acoustic velocity is written

′ = −

=−∞

∞

∑u r Z t U r Z er r
n i kt nN

n

, , , ,ψ ψ� � � � 0 5 , (4b)

where the stretched, moving axial coordinate Z  is given by

Z
z Mt= −

β
. (5)

Incident and total acoustic pressures are written similarly.  Modal amplitudes in the BIEM are

calculated term by term.  For notational convenience, we drop the superscript n  on the modal

coefficients and define the circumferential mode number m by the equation m nN= .

If the source disk rotates with angular speed 
~Ω  and the strengths of the N sources are time

independent in the moving frame, then k
m r

c
D=

~ ~

~
Ω

 and equations (4a-b) yield the classical

spinning mode representations.  In this case, the incident field can be made to simulate that

produced by an N-bladed fan.  This is accomplished by manipulating monopole and dipole

strengths to approximate the loading and thickness components of fan noise.  For non-spinning

sources whose strengths are time harmonic with excitation frequency ~ω, we have k
r

c
D=

~ ~

~
ω

 and

the time harmonic factor in (4a-b) can be removed from the summations.
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Rather than work with the customary convected wave equation, we simplify the governing

equations by defining new dependent variables Q , Qs , Qi , and Vr  by the relations

Q r Z P r Z e i MZ, ,� � � �= κ (6a)

Q r Z P r Z es s
i MZ, ,� � � �= κ (6b)

Q r Z P r Z ei i
i MZ, ,� � � �= κ (6c)

V r Z U r Z er r
i MZ, ,� � � �= κ (6d)

Combining (4-6) with (2) yields the two dimensional Helmholtz equation

1
0

2

2

2

2
2

r r
r

r Z

m

r
Qs

∂
∂

∂
∂

∂
∂

κ
�
��

�
�� + − +

	

�

�
�

= (7)

for the m-th modal coefficient of scattered pressure.  Using (3-6), the m-th radial component of

the momentum equation (3) can be written as

e V r Z
M

e
Q

r
r Z dZ

i
M

Z

r

i
M

Z

Z

− − ′

−∞

= ′ ′�
��

κ κβ ∂
∂

, ,� � � � . (8)

If the duct is stationary, then (7) and (8) reduce to

1
0

2

2

2

2
2

r r
r

r Z

m

r
k Ps

∂
∂

∂
∂

∂
∂

�
��

�
�� + − +

	

�

�
�

= (9)

and

U r Z
i

k

P

r
r Zr , ,� � � �= ∂

∂
. (10)

We note that (7-10) are valid for points not lying on the stretched duct.

2.2. BOUNDARY CONDITIONS

To meet noise certification requirements, it is necessary to treat the engine duct with noise

suppression devices.  We consider an axisymmetric, locally reactive liner on the duct interior wall

whose surface admittance is circumferentially uniform.  The admittance in the axial direction is

assumed to be piecewise constant.  This property implies that any portion of the duct interior may
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be lined or hard and allows for inclusion of an axially segmented liner.  The hardwall boundary

condition is used for the duct exterior wall.

We introduce the concept of a surface function to facilitate discussions of the boundary

condition and subsequent integral equation derivations.  Let f r Z,� � be an arbitrary field function

and assume that the stretched, moving axial coordinates of the duct trailing and leading edges are

a and b respectively.  Define the surface functions f Z± � �  by the formulas

f Z f r Z Z a b
r

±

→
= ∈

±
� � � � � �lim , ,

1
. (11)

Note that the positive (negative) superscript refers to the duct exterior (interior) surface.

On the outer duct wall the hardwall boundary condition implies that

V Z Z a br
+ = ∈� � � �0 ,  . (12a)

In reference [7] it is shown that if α  represents the circumferentially uniform and axially

piecewise constant specific acoustic admittance on the duct interior surface, then in the stretched,

moving frame of reference, the surface modal coefficients of radial velocity and pressure satisfy

the boundary equation

− +
�
��

�
�� = ∈

− − − −e V Z
iM d

dZ
e Q Z Z a b

i
M

Z

r

i
M

Z
κ κα

β κ
� � � � � �2

0 ,  . (12b)

In the absence of flow, the boundary conditions reduce to

U Z Z a br
+ = ∈� � � �0 , (13a)

and
− + = ∈− −U Z P Z Z a br � � � � � �α 0 , . (13b)

The momentum equation (8) is used to eliminate the radial velocity from (12a-b) yielding

∂
∂
Q

r
Z Z a b

�
��

�
�� = ∈

+

� � � �0 , , (14a)

−
�
��

�
�� +

�
��

�
�� = ∈

−
−

− −e
Q

r
Z

iM d

dZ
e Q Z Z a b

i
M

Z i
M

Z
κ κ∂

∂
α

β κ
� � � � � �

2

3

2

2 0 , , (14b)
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and

e
Q

r
Z dZ

i
M

Z

a

− ′

−∞

′ ′
�
��

=
κ ∂

∂
1 0,� �   . (15)

Equations (14a-b) are obtained by differentiating (12a-b) and (15) results by evaluating (12a) at

the trailing edge.  These equations are valid for 0 1≤ <M  but (15) is satisfied trivially for M → 0

and provides no additional information.  Note that for M = 0 and α = 0 (hardwall interior) we

have the classical Neumann boundary conditions.  Also, if we add a second coannular duct, then

boundary conditions similar to (14-15) also apply to the second duct.

2.3. FARFIELD RADIATION CONDITION AND EDGE CONDITIONS

In order to have a uniquely solvable BVP we must constrain the behavior of the acoustic

pressure in the farfield and at the duct edges.  To ensure continuity of velocity at the trailing edge

we impose the Kutta condition

lim
Z a

Q Z Q Z
→

+ −
+

− =� � � � 0 . (16)

For physically reasonable solutions to exist we also require the acoustic pressure to be integrable

everywhere and particularly in any neighborhood about the leading edge.

The boundary value problem is finalized by applying the Sommerfeld farfield radiation

condition, yielding the constraint

lim
ρ

ρ ∂
∂ρ

κ
= + →∞

+
�
��

�
�� =

r Z

Q
i Q

2 2
0 . (17)

2.4. BVP SUMMARY

We summarize the above results by listing a complete two-dimensional BVP for the unknown

scattered acoustic pressure in terms of the known incident pressure.  It is assumed that the
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functions Qi  and its derivatives are known, satisfy (17), and are continuous across duct surface.

For M ≥ 0

1
0

2

2

2

2
2

r r
r

r Z

m

r
Q r Zs

∂
∂

∂
∂

∂
∂

κ�
��

�
�� + − +

	

�

�
�

= ,� � not on duct surface (18a)

Q r Z Q r Z Q r Z r Zi s, , , ,� � � � � � � �= + ∀ (18b)

∂
∂
Q

r
Z Z a b

�
��

�
�� = ∈

+

� � � �0 , (18c)

−
�
��

�
�� +

�
��

�
�� = ∈

−
−

− −e
Q

r
Z

iM d

dZ
e Q Z Z a b

i
M

Z i
M

Z
κ κ∂

∂
α

β κ
� � � � � �

2

3

2

2 0 , (18d)

e
Q

r
Z dZ

i
M

Z

a

− ′

−∞

′ ′�
�� =

κ ∂
∂

1 0,� � (18e)

lim
Z a

s sQ Z Q Z
→

+ −
+

− =� � � � 0 (18f)

Q ds ℜ < ∞ ℜ
ℜ
�  any neighborhood about leading edge (18g)

lim
ρ

ρ
∂
∂ρ

κ
= + →∞

+
�
��

�
�� =

r Z

s
s

Q
i Q

2 2
0 . (18h)

§ 3. THE BOUNDARY INTEGRAL EQUATION FORMULATION

In this section, we convert the two-dimensional boundary value problem (18a-h) to a system

of boundary integral equations using Helmholtz potentials [8].  This approach is motivated by its

computational simplicity relative to purely numerical methods based on finite differences or finite

elements.

These latter methods involve the calculation and storage of the entire acoustic field and must

resort to special treatment at the farfield boundary.  Consequently, high frequency, farfield
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predictions require excessive computer memory and computational time.  It is shown in reference

[9] that these drawbacks can be diminished somewhat by coupling nearfield finite-element results

to Kirchhoff’s radiation formula.

Potential methods, as applied here, involve the pointwise calculation of the acoustic field by

evaluating duct surface integrals.  Noise predictions are calculated at user defined locations only

and computer storage is minimal.  The potential representation satisfies the Sommerfeld radiation

condition implicitly.  Thus, numerical treatment at a fictitious farfield boundary is avoided.  Input

to the potential integrals is obtained by solving a system of hypersingular integral equations for

unknown surface functions.  The difficulties associated with solving singular integral equations are

mitigated by employing innovative analytical and numerical techniques.

There is extensive research in the literature on the application of integral equation techniques

to acoustic scattering problems, much of which is discussed in reference [10].  Of particular

relevance to the BIEM is the work in references [11-14].  The theory and integral equation

terminology presented in reference [11] provide the foundation for the BIEM theoretical

discussions.  Martinez in references [12-14] has applied singular integral equation methods to the

study of sound scattered by a thin, finite-length duct.  We expand upon this original research by

applying advanced integral equation solution methods and include the ability to treat arbitrary

circumferential modes, uniform inflow, enhanced liner models, and a wider range of operating

parameters.

3.1. HELMHOLTZ POTENTIAL REPRESENTATION

The analysis begins with an analytical expression for the Green’s function, G r r Z Z, ,′ − ′� �, for

the two-dimensional Helmholtz operator (18a).  G satisfies the radiation condition (18h) and can
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be written

G r r Z Z m
e

R
d

i R

, , cos′ − ′ = �
��

−

� � 1

2
0

π
ψ ψ

κ
π

(19)

where

R r r rr Z Z= + ′ − ′ + − ′2 2 2
2 cosψ � � . (20)

To facilitate integral equation analysis and numerical computation, we introduce an integral

operator notation.  For an arbitrary integrable surface function f, define single and double layer

field operators, s and d, by the equations

s f r Z f Z s r Z Z dZ
a

b

, ,� � � � � �= ′ − ′ ′� (21)

and

d f r Z f Z d r Z Z dZ
a

b

, , ,� � � � � �= ′ − ′ ′� (22)

where the kernels s  and d  are given by

s r Z Z G r Z Z, , ,− ′ = − ′� � � �1 (23)

and

d r Z Z
G

r
r Z Z, , , .− ′ = −

′
− ′� � � �∂

∂
1 (24)

The integrals in (21-22) are well defined for points r Z,� �  not on the stretched duct surface and

are equivalent to the classical single and double layer potentials.  Care must be exercised when

evaluating (21-22) on or near the duct surface.

We define additional field operators by calculating the first radial derivative of s and d.

Denote by sr  and dr the operators

s sr f r Z
r

f r Z f Z s r Z Z dZr
a

b

, , ,� � � �� � � � � �= = ′ − ′ ′�∂
∂

(25)

and

d dr f r Z
r

f r Z f Z d r Z Z dZr
a

b

, , ,� � � �� � � � � �= = ′ − ′ ′�∂
∂

 , (26)

where
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s r Z Z
s

r
r Z Zr , ,− ′ = − ′� � � �∂

∂
(27)

and

d r Z Z
d

r
r Z Zr , , .− ′ = − ′� � � �∂

∂
(28)

By applying the Helmholtz potential representation, the scattered pressure can be written as a

sum of single and double layer Helmholtz potentials yielding

Q r Z q r Z q r Zs , , ,� � � � � �= +s d1 2   . (29)

Equation (29) is a solution of (18a) and (18h).  The unknown layer densities q1 and q2  are related

to the jumps in acoustic pressure and its radial derivative across the duct surface.  The densities

are a solution to a system of hypersingular integral equations, which we derive below, and once

determined provide input to (29) for the pointwise calculation of the acoustic pressure field.

3.2. SURFACE OPERATOR NOTATION

To apply the boundary conditions (18c-e) to the potential representation (29), it is necessary

to evaluate directly the single and double layer potentials and their derivatives on the stretched

duct surface.  The resulting integrals yield one-dimensional surface operators with singular kernels

that require analytical treatment for their evaluation.

For Z a∈ ,b  and sufficiently smooth f, we define the surface operators S  and D  by directly

evaluating the field operators (21-22) on the duct surface.  Thus

S f Z f Z S Z Z dZ
a

b

� � � � � �= ′ − ′ ′� (30)

and

D f Z f Z D Z Z dZ
a

b

� � � � � �= ′ − ′ ′� , (31)

where the kernels S  and D  are given by

S Z Z s Z Z− ′ = − ′� � � �1, (32)
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and
D Z Z d Z Z− ′ = − ′� � � �1, . (33)

Similarly, we form the operators Sr  and Dr  by direct evaluation of the differentiated field

operators (25-26) which yields

Sr f Z f Z S Z Z dZr
a

b

� � � � � �= ′ − ′ ′� (34)

and

Dr f Z f Z D Z Z dZr
a

b

� � � � � �= ′ − ′ ′�  , (35)

where

S Z Z
s

r
Z Zr − ′ = − ′� � � �∂

∂
1, (36)

and

D Z Z
d

r
Z Zr − ′ = − ′� � � �∂

∂
1,  . (37)

3.3. SURFACE KERNEL PROPERTIES

The kernels (32-33) and (36-37) are singular for Z Z− ′ = 0 .  It is important both theoretically

and computationally to determine the precise nature of the singularities.  We analytically separate

the singular portions of the kernels from the bounded parts by applying small argument analysis.

Details are given in appendix A.  In equations (38-41) below, the kernels are written as a sum of

singular and bounded terms.  The bounded parts of the kernels are denoted by a superscript B and

are written out explicitly in appendix A.

S Z Z Z Z S Z ZB− ′ = − − ′ + − ′� � � �1

2π
ln (38)

D Z Z Z Z D Z ZB− ′ = − − ′ + − ′� � � �1

4π
ln (39)

S Z Z D Z Zr − ′ = − − ′� � � � (40)
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D Z Z
Z Z

m
Z Z D Z Zr r

B− ′ = −
− ′

+
− +

− ′ + − ′� � � �
� � � �1

2

4 3

162

2 2

π

κ
π

ln (41)

The leading behavior of the kernels (38-40) is logarithmic.  Therefore, the associated

operators are weakly singular.  The leading term of the kernel (41) is of the strongly singular

Hadamard type [15].  Consequently, the integral in (35) is divergent and must be interpreted in

the Hadamard finite part sense.

3.4. LAYER CONTINUITY PROPERTIES

Using the above surface operator notation, we state well-known continuity properties for the

single and double layer field operators (21-22) and their radial derivatives (25-26) as field points

approach the stretched duct surface from the interior or exterior of the duct.  For a sufficiently

smooth surface function f, we have the following results [8]:

lim ,
r

f r Z f Z
→ ±

=
1

s S� � � � (42)

lim ,
r

f r Z f Z f Z
→ ±

= +
1

1

2
d D� � � � � �# (43)

lim ,
r

f r Z f Z f Z
→ ±

= −
1

1

2
s Dr � � � � � �# (44)

lim ,
r

f r Z f Z
→ ±

=
1

d Dr r� � � � (45)

Applying (42-45) to (29) establishes the formulas

Q Z Q Z q Zs s
+ −− = −� � � � � �2 (46)

and

∂
∂

∂
∂

Q

r
Z

Q

r
Z q Zs s�

��
�
�� −

�
��

�
�� = −

+ −

� � � � � �1 (47)

which relate the layer densities to the jumps in scattered pressure and its radial derivative across

the stretched duct surface.
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3.5. BOUNDARY INTEGRAL EQUATIONS

By applying the continuity results (42-47), we replace the boundary conditions (18c-e) with an

equivalent set of integral equations for the unknown surface functions q1 and q2  in terms of the

known incident pressure and its radial derivative.

The exterior boundary condition (18c) can be written

− +�
�

�
� + = − ∈1

2
11 2I D Drq Z q Z

Q

r
Z Z a bi� � � � � � � �∂

∂
, ,  , (48)

where I is the identity operator.  This integral equation is hypersingular due to the presence of the

operator Dr .  It is worth mentioning here that in many applications, such as lifting wing

problems, it is customary to work with (48) after performing an axial integration (recall the

comments following equations (14-15)).  In this case, the dominant kernel has a less singular

Cauchy term.  However, no advantage is obtained by this extra calculation because the singular

operators are computed analytically.  Furthermore, for numerical work, we find that working with

the integrated version of (48) is much more cumbersome.

The interior boundary condition (18d) is replaced by the sum of (18c) and (18d) yielding the

system of equations

− +
�
��

�
�� = ∈

− − −e q Z
iM d

dZ
e Q Z Z a b

i
M

Z i
M

Z
κ κα

β κ1

2

3

2

2
0� � � � � �, (49)

and

Q Z Q Z q Z q Z Z a bi
− = + + +�

�
�
� ∈� � � � � � � � � �1

1

21 2, ,S I D  . (50)

Equations (49-50) can be combined to yield a single equation by computing two tangential

derivatives of Q−.  The resulting integral equation contains both Cauchy and Hadamard type

kernels.  It is computationally simpler to introduce a third unknown function, namely Q−, and
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work with the integro-differential equations (49-50).  We expound on this in the integral equation

solution section 4.4.  For small Mach number and large κ, (49-50) can be approximated by the

much simpler equation

β ακ ακ ακ3
1 2

1

2
1I S I D+ + +�

�
�
� = − ∈i q Z i q Z i Q Z Z a bi� � � � � � � � � �, ,  . (51)

The boundary integral equations are supplemented by (18e), which after substitution of the

radial derivative of (29) produces the auxiliary equation

e
Q

r
Z q Z q Z dZ

i
M

Z
i

a

− ′

−∞

′ + ′ + ′
���

���
′

�
��

=
κ ∂

∂
1 1 1 01 2, , ,� � � � � �s dr r  . (52)

As mentioned earlier, this equation is satisfied trivially for M = 0  and provides no additional

information.

If the interior wall is hard α ≡ 0� � , then equations (48-52) reduce to the familiar Neumann

problem

q Z Z a b1 0� � � �= ∈ ,  , (53)

Dr q Z
Q

r
Z Z a bi

2 1� � � � � �= − ∈
∂
∂

, ,  , (54)

with auxiliary condition

     e
Q

r
Z q Z dZ

i
M

Z
i

a

− ′

−∞

′ + ′
���

���
′

�
��

=
κ ∂

∂
1 1 02, ,� � � �dr  . (55)

The solution of (53-55) was considered in reference [1].

3.6. EDGE CONDITIONS

The system of integral equations (48-52) admits infinitely many solutions and must be

supplemented with additional conditions for uniqueness.  The as yet unsatisfied BVP edge
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conditions (18f-g) provide the required constraints by restricting the behavior of the double layer

density, q2 , at the duct leading and trailing edges.  We omit the edge condition derivations, which

involves asymptotic expansions of the hypersingular portion of the singular integral equation (48).

See reference [16] for a detailed discussion of this analysis.

We finalize the boundary integral equation formulation by stating the asymptotic behavior of

q2  near the duct edges:

q Z O Z a Z a2 � � � �= − → + (56a)

and

q Z O
M

b Z
O b Z Z b2 � � � �=

−
�
��

�
�� + − → −  . (56b)

Note that for M > 0 , q2  has an infinite singularity at the duct leading edge, which is a well-known

result in lifting surface theory.  This term disappears for the no inflow case.

3.7. BOUNDARY INTEGRAL EQUATION SUMMARY

We have succeeded in replacing the BVP (18a-h) by an equivalent boundary integral equation

formulation which we now summarize.

For 0 1≤ <M , the m-th circumferential mode of total acoustic pressure is given by

Q r Z

Q r Z q r Z q r Z r Z

Q r Z q Z q Z Z a b r

i

i

,

, , , ,

, ,

� �
� � � � � � � �

� � � � � � � �
=

+ +

+ + +�
��

�
�� ∈ → ±

�

�
�
��

�
�
��

s d1 2

1 2

1

2
1

 not on stretched duct surface

S I D#

, (57)

where q1 and q2  satisfy

1) the system of strongly singular integral equations

− +�
�

�
� + = − ∈1

2
11 2I D Drq Z q Z

Q

r
Z Z a bi� � � � � � � �∂

∂
, ,  , (58a)
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Q Z Q Z q Z q Z Z a bi
− = + + +�

�
�
� ∈� � � � � � � � � �1

1

21 2, ,S I D  , (58c)

2) the auxiliary condition

e
Q

r
Z q Z q Z dZ

i
M

Z
i

a

− ′

−∞

′ + ′ + ′
���

���
′

�
��

=
κ ∂

∂
1 1 1 01 2, , ,� � � � � �s dr r  , (58d)

and 3) the edge conditions
q Z O Z a Z a2 � � � �= − → + (58e)

q Z O
M

b Z
O b Z Z b2 � � � �=

−
�
��

�
�� + − → −  . (58f)

For coannular ducts, additional integral operators and layer densities must be defined to

accommodate both ducts.  In this case, (57) and (58a-f) have to be coupled to similar sets of

equations to account for scattering by the second duct.  Theoretically, this procedure does not

change the singular character of the integral equation system nor the solution method.  However,

the computational complexity is nearly double.

§ 4. INTEGRAL EQUATION SOLUTION

In this section we present details of the numerical solution of (58a-f).  Existence and

uniqueness results are briefly discussed for the hard wall interior case.  A theoretical discussion on

the solvability of the entire system (58a-f) is lengthy and will be the subject of a future paper by

the authors.

Due to edge conditions for the double layer density (58e-f) we are motivated to seek a

solution to (58a-f) in the form
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q Z A
Z a

b Z
b Z Z a q Z Z a b2 � � � �� � � � � �= −

−
+ − − ∈ ,  . (59)

In (59), A is an unknown constant and q an unknown Hölder continuous function.

There are no restrictions on the edge behavior of the single layer density.  We note however,

that since the interior wall admittance can be discontinuous it follows from (58b) that q1 is also

discontinuous at the points of discontinuity in α .

Our solution methodology is best understood by first examining the simple case of a hardwall

interior with no inflow.  We next discuss the hardwall interior case in the presence of inflow,

which complicates the solution process due to the infinite singularity in the double layer density at

the duct leading edge.  Finally, we expand the method to include the liner case.

4.1. HARDWALL INTERIOR WITH NO INFLOW

We simplify the analysis by the introduction of additional operator notation.  Let f be an

arbitrary Hölder continuous function and let K  denote any of the previously defined integral

operators, then we define new operators K±  by the formulas

K K± = − ′ ′ − ∈±
f Z b Z Z a f Z Z a b� � � � � � � � � �1

2
1

2 ,  . (60)

For M = 0  and α ≡ 0 , application of (59-60) to (58a-f) produces the single integral equation

Dr
+ = − ∈q Z

Q

r
Z Z a bi� � � � � �∂

∂
1, ,  . (61)

Equation (61) is a one-dimensional, first kind integral equation with a Hadamard kernel.  Integral

equations of this type appear frequently in the literature and have been applied to problems in

acoustics, aerodynamics, elasticity, and electrodynamics (see references [17-18], for example).

Due to the appearance of the weight function b Z Z a− −� �� � , it is natural to seek a solution
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to (61) in the form

q Z a U
Z a b

b an n
n

� � = − −
−

�
�

�
�=

∞

∑ 2

0

 . (62)

It is shown in reference [19] that if the source term in (61) is expandable in a series of second kind

Chebyshev polynomials, then (61) is uniquely satisfied by a series solution such as (62) except

possibly at a countable set of eigenfrequencies.  In section 5.2, we demonstrate numerically that

some of the eigenfrequencies of Dr
+  correspond approximately to the transverse resonant

frequencies of the infinite duct problem.

In practice, (62) is truncated and the unknown constants an  must be determined numerically,

usually by some projection technique such as the method of collocation or Galerkin.  The

collocation method is simple to implement and requires fewer calculations than other popular

methods.  For these reasons it is the solution method of choice here.

To apply the collocation method, we consider the approximate solution

q Z a U
Z a b

b an n

n

N

� � = − −
−

�
�

�
�

=
∑ 2

0

2

(63)

and define N2 1+  distinct collocation points

Z Z a b jj j

N

j ! � �
=

+
∈ ∀

1

12
,   . (64)

We next require the approximate solution to satisfy (61) at the collocation points, which yields the

linear system of equations

a U Z
Q

r
Z j Nn n j

n
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i
jDr
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=
∑ = − = +� � � �

0

2

2

1 1 1
∂
∂

, , ,� (65)

for the an ’s.  Golberg has shown that if the collocation points are chosen as the zeroes of UN2 1+ ,

then (65) is solvable, except at eigenfrequencies, and the series (63) converges to the actual
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solution q [19].

The evaluation of (65) involves the calculation of integrals with finite-part and logarithmic

integrands.  To avoid time consuming numerical integration of these terms, we apply the

analytical results of appendixes A and B.  The bounded portion of the integral operator is

computed using Gaussian quadrature with weights and nodes based on the second kind

Chebyshev polynomials.  The above combination of collocation points and numerical integration

scheme yields results as accurate as those obtained by the more computationally intensive

Galerkin method [19].

4.2. HARDWALL INTERIOR WITH INFLOW

For α ≡ 0  and 0 1< <M  equations (58a-f) reduce to

A Z q Z
Q

r
Z Z a biD Dr r

− ++ = − ∈1 1� � � � � � � �∂
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, , (66)

and
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In (66-67), A and q Z� � are unknown.  We briefly show, under certain conditions, that if the no

inflow problem (61) is uniquely solvable, then so is (66-67).  Furthermore, under the same

conditions A and q Z� � can be determined separately which we also prove below.

Define the linear functionals gd
±  and the known constant C0  by the relations

g dd r
± ±= ′ ′

− ′

−∞

f e f Z dZ
i
M

Z
a κ

1,� �" (68)

and

C e
Q

r
Z dZ
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Z
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0 1= − ′ ′�
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− ′

−∞

κ ∂
∂

,� �   . (69)

Using (68-69) we rewrite (67) as
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A q Cg gd d
− ++ =1 0   . (70)

Assume that conditions are such that (61) is uniquely solvable, then the operator Dr
+  has a left

inverse, which we denote by Dr
+�

�
�
�

−1

.  Consequently, we “solve” (66) for q to yield

q Z Z A Z Z a b� � � � � � � �= + ∈φ φ1 2 ,   , (71)

where
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Dr ,   , (72)

φ2 1Z Z Z a b� � � � � �= ∈−D1 ,   , (73)

and

D D D1 r r= + −−# $ 1

  . (74)

Note that φ1 and φ2  are known functions.

We obtain an explicit expression for the unknown constant A in terms of known quantities by

applying (71-74) to (70).  This substitution gives

A
C

=
−

−

+

− +
0 1

21

g

g g
d

d d

φ
φ

  . (75)

If g gd d
− +≠1 2φ , it follows that A is finite and (71) defines a meaningful expression for q.

The above results suggest the following algorithm for solving the hardwall interior integral

equations with inflow:

Step 1) Solve the no inflow case, i.e., invert Dr
+ .

Step 2) Calculate A via (72-75).

Step 3) Calculate q using (71) and (75).

Theoretically, this approach is equivalent to the no inflow case, which implies that the results

of Golberg apply [19].  Furthermore, since the computational time required for the calculation of
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the functionals (68) is negligible compared to the time needed to compute the matrix for Dr
+ , it

follows that the above algorithm is also computationally equivalent to the no inflow case.

In reference [1], a slightly different approach was used to separate A and q.  The resulting

algorithms were subsequently shown to be convergent [20].

4.3. LINED INTERIOR WITH NO INFLOW

In this case, (58a-f) reduce to the system of integral equations

I S I D+ + +�
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, , (76b)

We defer a detailed theoretical discussion of the singular system (76a-b) to a future publication

and, instead, focus on the solution technique.

To solve (76a-b) numerically we again apply the collocation method.  The double layer

density q is approximated as in the no inflow, hardwall case.  Since there are no restrictions on the

single layer edge behavior and the weight function for the Legendre polynomials is unity we seek

an approximation to q1 of the form

q Z b P
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=
∑   . (77)

Further motivation is provided by the fact that the numerical accuracy achievable by the expansion

(77) is commensurate with that for the double layer density approximation (63).

We collocate (76a) at the zeroes of PN1 1+ , Yj j

N !
=

+

1

12
, and (76b) at the zeroes of UN2 1+ ,

Z j j

N !
=

+

1

12
, yielding the N N N N1 2 1 2� � � �×  linear system
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for the unknown expansion coefficients.  No theoretical results exist regarding the solvability and

convergence of this numerical method.  However, computational evidence suggests that the linear

system (78a-b) is stable and the discretized solutions converge to the actual solution of the system

of integral equations (76a-b).

4.4. LINED INTERIOR WITH INFLOW

Define the functional gs  by the formula

g ss rf e f Z dZ
i
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Z
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1,� �"   . (79)

For a lined interior and 0 1< <M , equations (58a-f) assume their most complex form:
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g g gs d dq A q C1 01+ + =− + (80d)

Equations (80a-b) can be combined to form one equation by substituting (80a) into (80b).

The resulting hypersingular integral equation contains two axial derivatives of the single and
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double layer surface operators.  It is far simpler computationally to introduce a third unknown

function Q−, which we again approximate by a finite sum of Legendre polynomials.  A linear

system is obtained by applying the usual collocation method and the unknown constant A is

determined by a manner similar to that used for the hardwall case.

We simplify the solution process even further by replacing (58b-c) with the approximate

equation (51).  Thus, (80a-b) reduce to

β ακ α κ

ακ ακ

3
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 . (81)

This equation is valid for small values of the parameter M
κ  and is similar to the no inflow

integral equation (76a).  The system of equations (81) and (80c-d) is then solved by first

separating the determination of the constant A and then applying the collocation scheme described

in the previous section.

§ 5. RESULTS

In this section, computational results are presented that demonstrate BIEM features.  We first

discuss the ducted fan noise prediction code TBIEM3D [6] and its application to parametric noise

reduction studies.  Next, the relationship between the finite duct BIEM and infinite duct

prediction methods is established by analyzing the spectral content of the BIEM interior pressure

field.  Lastly, we illustrate BIEM liner capability by conducting a numerical experiment in which

the effects of interior admittance distributions on radiated sound are studied.
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5.1. THE DUCTED FAN NOISE PREDICTION CODE TBIEM3D

A PC based computer program, TBIEM3D (Thin duct, BIEM, Three-Dimensional), has been

developed which incorporates the BIEM solution features [6].  Results from a typical TBIEM3D

calculation are shown in figure 2.  In this simulation, 20 spinning point axial dipoles, situated on a

disk in the middle of a short duct, generate the twentieth circumferential mode of acoustic

pressure and its harmonics.  The duct walls are hard and sound propagates in the presence of a

uniform axial flow with M = 0 4. .  This configuration was chosen to approximate the thrust

component of loading noise produced by a 20-bladed fan.  Figure 2a shows a cut-a-way view of

the engine duct in which contours of instantaneous acoustic pressure for the m = 20

circumferential mode are plotted in the duct interior.  Conditions are such that only one radial

mode is cut-on.  Doppler effects and reflections from the duct openings are included.  Portions of

sound reaching the duct ends radiate to the farfield as indicated in figure 2b.  The combined

acoustic field in figure 2 is composed of 10,000 field calculations and consumed approximately 4-

5 minutes computational time on a laptop personal computer with a Pentium 133 processor and

32 megabytes of random access memory.

To demonstrate the effectiveness of TBIEM3D as a noise prediction tool, the authors and

coworkers have applied the code in several engineering studies.  In reference [21], TBIEM3D

was used to quantify the concept of generalized radiation impedance and to assess the accuracy of

combining infinite duct propagation results with Rayleigh’s radiation formula.  Results from this

research clearly illustrate the similarities and differences between the BIEM and infinite duct

prediction methods.

TBIEM3D has been applied to both passive and active noise control research [22-25].  For

given liner length and location, optimal liner impedances were calculated for a host of operating
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situations in which circumferential mode number, inflow Mach number, and excitation frequency

were varied [22].  Optimal liner impedance is also a function of the designer’s definition of noise

attenuation.  In this regard, TBIEM3D can be easily adapted to accommodate noise metrics that

are based on the radiated or internal acoustic pressure fields.  For example, in reference [22] liner

impedance was chosen so that the maximum sound pressure level along an arc of farfield

observers in the direction of the principal radial mode was minimized.  Active noise control

research based on TBIEM3D has focused on using simple point control sources and a

feedforward algorithm to minimize the sound along a particular farfield direction produced by a

given source configuration [23].

A two dimensional version of the code has been used to examine the effect of a scarf inlet on

farfield noise radiation from a short duct [24-25].  Results from these studies indicate that the

scarf inlet is very effective at redirecting high order transverse modes away from noise sensitive

regions over a wide range of excitation frequencies.  This phenomenon is well known at high

frequency [26].  Calculations suggest that the scarf inlet also redirects lower order transverse

modes but to a lesser degree.  In the absence of flow, the scarf inlet has little affect on aft

radiation patterns.  However, the amount of distortion in the aft region due to the scarf inlet

appears to increase with increasing inflow Mach number.  It was further shown that the interior

acoustic field may be seriously altered by the presence of a scarf inlet, which provides an

additional mechanism for passive noise control.

5.2. HARDWALL INTERIOR: SPECTRAL ANALYSIS

In this two part numerical experiment, we analyze the spectral contents of the BIEM hardwall

interior field and relate the findings to the usual infinite duct eigenfunction expansion.  To
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simulate infinite duct conditions with TBIEM3D, we consider a long duct LD = 6 0.� � with the

source disk located at one end.

For an infinitely long hardwall duct with unit radius, it is well-known that, due to the

phenomenon of transverse resonance, the interior Helmholtz problem is unsolvable at the cut-on

wavenumbers kr

mn

n
% &

=

∞

1

, where ′ =J km r
mn� � 0 .  It is intuitive to assume that the discretized linear

system for the long, finite duct problem should experience some ill-conditioning near the infinite

duct eigenwavenumbers.

In figure 3, we plot the L1 condition number of the Dr
+  matrix (see equation 65) as a function

of excitation wavenumber, k, for the circumferential mode numbers m = 4 and m = 10.  The

location of the infinite duct resonant wavenumbers are denoted by dashed lines.  As expected,

serious ill-conditioning occurs near the cut-on wavenumbers.  Also present are lesser spikes of ill-

conditioning.  The cause of the finite duct ill-conditioning is probably due to the organ-pipe

resonance phenomenon.  This subject and the viability of the BIEM solution at these organ-pipe

eigenwavenumbers will be addressed in a future paper by the authors.

Part two of this experiment involves comparing BIEM interior axial wavenumber spectra with

the discrete infinite duct results.  The infinite duct axial wavenumbers are given by the formula [3]
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= − ± −
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  . (82)

The duct mode m n,� �  is cut-on if κ > kr
mn .  To compute the axial spectrum of the BIEM interior

field, the acoustic pressure is calculated along a line parallel to the duct axis and analyzed using

FFT techniques.  Axial BIEM spectra for two separate cases are presented in figure 4 and

compared to the infinite duct spectra.  Operating conditions were chosen so that three radial
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modes were cut-on.  There are two important observations from these results. First, the locations

of the BIEM spectral peaks are in excellent agreement with the infinite duct axial wavenumbers.

Second, reflections at the duct ends are included and the relative strengths of propagated and

reflected modes can be easily determined using BIEM results.

5.3. SAMPLE LINER CALCULATIONS

We illustrate BIEM liner capabilities by studying the effect of interior admittance distribution

on noise radiation patterns.  For this virtual experiment, we consider a short duct, LD = 0 5. , with

the source disk located in the middle of the duct.  Twenty spinning point axial dipoles generate

incident sound in the presence of a uniform inflow with M = 0 4. .  The rotational speed of the

source disk is chosen such that one radial mode is cut-on.

In figure 5, contours of sound pressure level are plotted in the acoustic field for four different

admittance distributions.  Figure 5a shows the scattered field for a hardwall interior.  Three

different liner configurations are considered in figures 5b-d.  As shown in figure 5b, a portion of

the inlet is lined L = 0 2.� �  with admittance chosen to be optimal in the sense of reference [22].

Significant noise reduction in the forward region is attained.  Figure 5c shows the results of lining

a portion of the exhaust duct.  For this case, the admittance is not optimal.  Some noise reduction

in the aft region is apparent with little or no reduction in the forward region.  In figure 5d, both

the inlet and exhaust are lined resulting in substantial noise reduction both forward and aft.  Each

case presented here required several minutes computational time on a Pentium 133 personal

computer.

§ 6. CONCLUDING REMARKS

A boundary integral equation method for the prediction of ducted fan engine noise has been

presented.  Based on the equations of linearized acoustics, a classical boundary value problem was
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derived in its entirety.  The ability to treat uniform, axial inflow and locally reacting, axially

segmented liners is included.  Using Helmholtz potentials, the BVP was recast in terms of a

system of hypersingular boundary integral equations.  The extension of the BIEM to coannular

ducts was described.

Innovations in the theoretical approach to solving the integral equation system and in the

analysis of the integral equation kernels have produced a computationally efficient solution

procedure.  The ducted fan noise prediction program TBIEM3D incorporates the BIEM solution

features and rapidly predicts the sound field produced by the scattering of incident sound by a

finite length cylindrical duct.

Unlike infinite duct prediction methods, the BIEM does not require the decomposition of the

acoustic field into its radial and axial components.  However, spectral evidence presented in the

results section clearly establishes the connection between the finite duct BIEM and infinite duct

prediction methods.  That is, for the hardwall case, the BIEM interior field displays the axial and

radial spectral characteristics that are predicted by the infinite duct theory.  Furthermore,

reflections due to the duct openings are accounted for implicitly without resorting to approximate

measures.  It was also demonstrated that noise predictions involving lined interiors are easily

calculated without the need to solve the complex eigenvalue problem.

It has been shown that TBIEM3D is accurate, executable on inexpensive computer platforms,

and applicable over a wide range of operating conditions.  Code versatility, ease-of-use, and rapid

prediction capability are necessary features for conducting cost-efficient parametric noise

reduction analyses.  In this regard, the effectiveness of TBIEM3D as an engineering analysis tool

has been amply demonstrated both here and in the literature [21-25].
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§ 8. APPENDICES

8.1. APPENDIX A: SINGULAR KERNEL ANALYSIS

We derive the singular surface kernel results (38-41) by applying small argument analysis to

the Green’s function (19) and its derivatives.  Since no simple closed form expression exists for

(19), it must be evaluated numerically.  Due to the singularities, conventional numerical

integration fails when evaluating the Green’s function on the stretched duct surface.  Thus,

analytical methods are required for resolution of the singular terms.  For each kernel, the singular

portion is separated from the bounded part by subtracting the singular terms from the Green’s

function integrand.  The resulting singular integrals are evaluated in closed form and the remaining

integrands are continuous everywhere and present no numerical problems.

From (32) and (19), we have
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is known in terms of elementary functions.  One such choice is
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We apply a similar analysis to the double layer surface kernel to obtain
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Analysis for the hypersingular kernel (41) proceeds like before producing
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The expressions for Dr
B are lengthy and will be given in two parts:
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8.2. APPENDIX B: SINGULAR INTEGRAL EVALUATIONS

In solving the system of integral equations (58a-g), hypersingular and logarithmic integrals

involving Legendre and second kind Chebyshev polynomials are encountered.  We list without

proof several pertinent integration results, which can be obtained by applying the Plemelj-

Sokhotski theorem and its logarithmic analog [27].  Some of these results are well-known and

appear in the literature (see reference [28], for example).
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§ 9. NOTATION

9.1. PARAMETERS AND VARIABLES

~ Denotes that a quantity is dimensional when appearing over a variable

a Axial coordinate of duct trailing edge in stretched, moving frame

b Axial coordinate of duct leading edge in stretched, moving frame

~c Ambient sound speed

Jm First kind Bessel function of order m

k =
~ ~

~
r

c
Dω

  Characteristic wave number
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kr
mn Radial wavenumbers

kz
mn Axial wavenumbers

L Liner length

LD Ratio of duct length to duct diameter

m Circumferential mode number

M =
~

~
U

c
  Inflow Mach number

n Radial mode number

N Number of sources

′p Eulerian description of total acoustic pressure field

′pi Eulerian description of incident acoustic pressure field

′ps Eulerian description of scattered acoustic pressure field

Pn Legendre polynomials

Qn Associated Legendre functions of the second kind of order zero

r z, ,ψ� � Cylindrical coordinates in Eulerian frame

~rD Duct radius

~,t t Time

Tn Chebyshev polynomials of the first kind

′ur Eulerian description of the radial component of acoustic velocity

~
U Axial speed of duct

Un Chebyshev polynomials of the second kind

Z Axial coordinate in stretched, moving frame
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α Specific acoustic admittance on duct interior surface

β = −1 2M  Stretching parameter

κ = k β   Stretched characteristic wave number

~ρ0 Ambient density

~ω Excitation frequency (radians/second)

~
Ω Shaft speed (radians/second)

9.2. INTEGRAL EQUATION OPERATORS AND KERNELS

d,  d Double layer field operator and kernel

D,  D Double layer surface operator and kernel

DB Bounded portion of double layer surface kernel

dr ,  dr Radial derivative of double layer field operator and kernel

Dr ,  Dr Radial derivative of double layer surface operator and kernel

Dr
B Bounded portion of double layer radial derivative surface kernel

s,  s Single layer field operator and kernel

S,  S Single layer surface operator and kernel

S B Bounded portion of single layer surface kernel

sr ,  sr Radial derivative of single layer field operator and kernel

Sr ,  Sr Radial derivative of single layer surface operator and kernel
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