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ABSTRACT

The curing kinetics and viscosity of an epoxy resin system, SI-ZG-5A, have been
characterized for application in the vacuum assisted resin transfer molding
(VARTM) process. Impregnation of a typical carbon fiber perform provided the
test bed for the characterization. Process simulations were carried out using the
process model, COMPRO [8], to examine heat transfer and curing kinetics for a
fully impregnated panel, neglecting resin flow. The predicted viscosity profile and
final degree of cure were found to be in good agreement with experimental
observations.

INTRODUCTION

The VARTM process has been developed over the last ten years for application in
both commercial and military, ground-based and marine composite structures [1-3].
The process has advantages over conventional RTM by eliminating the costs
associated with matched-metal mold making, volatiles emission, and allowing high
injection pressures [4].

VARTM is typically a three-step process including lay-up of a fiber preform,
impregnation of the preform with resin, and cure of the impregnated panel. The
reinforcement, in the form of woven carbon or glass fabric, is laid onto a rigid tool
surface. The matched metal top commonly found in RTM is replaced in the
VARTM process by a formable vacuum bag material. The resin is injected through
a single or multiple inlet ports depending upon part size and shape. A vacuum port
allows the fiber preform to be evacuated prior to injection and provides the
mechanism for transfer of the resin into the part. In addition to the pressure
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gradient caused by the vacuum pressure, gravity and capillary flow effects must be
considered [5]. The preform infiltration time is a function of the resin viscosity, the
preform permeability and the applied pressure gradient. The infiltration time can be
greatly reduced by utilizing a distribution medium with a higher permeability than
the preform [6,7]. Consequently, the resin flows in the medium first and then the
infiltration process continues through the preform thickness.

Work at NASA Langley Research Center has focused on further developing of the
VARTM process for fabrication of aircraft-quality composite parts. In order to
succeed, it is important to achieve the high mechanical properties and dimensional
tolerances required in these applications. The development or selection of the
matrix material for application in advanced composite structures cannot be divorced
from the manufacturing processes and the specific application geometries. Rather,
it is necessary to develop material systems that meet a variety of requirements to
ensure successful applications. In addition to the required strength and durability of
the polymer matrix, properties that govern the processing characteristics must be
considered.  Traditionally, development or selection of the matrix for a particular
application has been based on a limited number of factors like toughness, glass
transition temperature (7,) and viscosity. Consequently, process difficulties have
often been encountered which prevented successful application of the matrix in the
structure of interest. The use of process models allows sensitivity analyses that
determine the influence of a larger number of polymer properties on final part
quality. Material development and characterization efforts can then be focused on
the most important parameters for a given application. For example, it was found
that the interaction between resin modulus development and cure shrinkage has a
profound effect on part dimensional stability [8].

In the present work, the cure kinetics and viscosity of a typical VARTM resin
system were characterized. The cure kinetics and viscosity models were validated
by processing a carbon fiber composite panel with a typical process cycle. Finally,
a processing model was used to study the resin curing behavior for different process
cycles and panel thicknesses.

MATRIX CHARACTERIZATION

Accurate prediction of many of the key material properties required in composites
process models such as resin viscosity, modulus development and cure shrinkage
depend on an accurate knowledge of the cure state of the resin during processing.
Furthermore, an understanding of resin viscosity behavior is also required to predict
the flow of resin during VARTM infiltration. Cure kinetics and viscosity models
are obtained for the resin using a combination of isothermal and dynamic
differential scanning calorimeter (DSC) and parallel-plate rheometer scans,
respectively. In this work, SI-ZG-5A, a commercially available epoxy blend
VARTM resin developed at A.T.A.R.D Laboratories” [9] was selected.

* Use of trade names or manufacturers does not constitute and official endorsement, either
expressed or implied, by the National Aeronautics and Space Administration



Cure Kinetics model

All tests were preformed on a Shimadzu DSC-50 differential scanning calorimeter.
The total heat of reaction (Hy) was measured from dynamic scans at 1.1°C/minute
from room temperature up to 250°C. The isothermal tests were preformed at
temperatures ranging from 50°C to 140°C. In these tests, the specimens were
heated rapidly to the desired temperature where they were maintained for a total of
2 hours, and then rapidly cooled. The isothermal tests were followed by a dynamic
scan at 1.1°C/minute to measure the residual heat of reaction.

Raw data from the DSC experiments consisted of measurements of heat flow and
total resin heat of reaction as calculated by the apparatus software. The dynamic
runs produced very similar heat flow curves (Figure 1) and the measured Hy was
nearly the same in all cases: 350 kJ/kg. From the baseline heat flow (g,,,,,,. ) and

the total heat flow, the resin cure rate was then determined using:

d_a — (q.baseline - qin ) / msample
dt H,(1-a,)

(1)

where ¢, is the measured heat flow, mgmp 1s the sample mass and o is the

starting resin degree of cure, assumed to be 0.01 in all cases. Resin degree of cure
as a function of time was determined by integrating the calculated cure rate.

In this work, the equation chosen for the cure kinetics model is a modified auto-
catalitic equation modified to account for a shift from kinetics to diffusion control
[10].

do _ Ko"(l-a)"
df - 1+ec{0‘—(aco+0‘(,‘7'T)} (2)

K = Ao "AE/RT)

The significance of the various terms in Equation 2 is presented in Table 1. The
first step in calculation of the appropriate model constants is determination of the
activation energy, AE. This parameter was calculated from the slope of the natural
logarithm of the isothermal cure rate, /n(dovdt), vs. 1/T at a number of different
resin degrees of cure. All other model constants were determined using a weighted
least-squares analysis, which included data from both isothermal and dynamic DSC
measurements. The calculated equation constants are shown in Table 1.

As shown in Figure 2, the model provides an excellent fit to the isothermal cure
tests at all temperatures examined. The only discrepancy between the model and
the experiments is found at o. > 0.8 for the 120°C and 140°C case.



Table 1 Parameters used in SIZG-5A kinetics model (Equation 2).

Parameter Value
Activation energy AE = 62 klJ/gmole
Pre-exponential cure rate coefficient A=3.03x10"/s
First exponential constant m=0.377
Second exponential constant n=0.295
Diffusion constant Cc=16.5
Critical degree of cure at 7= 0°K. Ocp=0.65
Constant accounting for increase in critical resin ocr=-1.5x10"/K
degree of cure with temperature

Viscosity model

A Rheometric Ares Systems parallel-plate rheometer was used to measure the neat
resin viscosity. The viscosity model constants were determined by a series of
isothermal cure tests ranging from 50°C to 140°C. A series of dynamic cures at
1.1°C/minute and a typical cure cycle test were conducted to validate the model.
The samples were sheared between two 30 mm parallel discs. A dynamic or
sinusoidal wave torque signal was applied to the sample. The frequency of the
signal was 10 rad/s at a maximum shear strain of 10%. The test was stopped when
the resin reached its gel point or after two hours, whichever came first. The room
temperature viscosity of the resin was measured at 0.34 Pa-s and no significant
curing occurred up to 79 hours at this temperature.

The viscosity model [10] used in this study is as follows:
=4, exp(E, /RT)[ag /e, ) 3)

where A,,, E., A and B are experimentally determined parameters, R is the
universal gas constant and ¢ is the degree of cure at gelation. The slope of a linear
regression through the data of Inu versus 1/7" at low resin degree of cure (0=0)
yields the value of E|,. The data from the dynamic runs at 1.1° C/minute results was
used. The degree of cure remains very low in the initial stages of the cure (0.01 <
a< 0.07). The gel point degree of cure is evaluated to be 0.6 from the viscosity
tests. To evaluate the other constants, a best fit was done by changing the constants
Ay, A and B to fit the experimental data from the isothermal and dynamic tests. The
best-fit constants are given in Table 2.

The comparison with the dynamic test (Figure 3) confirms that the model describes
the rapid increase in viscosity as the resin reaches the gel point as well as the initial
stage of the test. Furthermore, the model prediction is found to agree with results
for a typical cure cycle (Figure 4).



Table 2 Parameters used in SIZG-5A viscosity model (Equation 3).

Parameter Value
Activation energy E, = 54803 J/gmole
Pre-exponential coefficient A, = 9.6x10™"" Pa-s
First exponential constant A=3
Second exponential constant B=38
Degree of cure at gel point 0, =0.6

PANEL MANUFACTURING

A composite panel, having dimensions of 60 cm by 30 cm, was fabricated by the
VARTM process using four stacks [-45,90,45,90,0]4 of SAERTEX® [11] multi-
axial non-crimp carbon fiber fabric and the SI-ZG-5A epoxy resin. Eight hundred
grams each of part A and B were mixed by hand stirring. The mixed resin was
degassed at room temperature under full vacuum for approximately one hour.

A schematic diagram of the bagging procedure is shown in Figure 5. A 0.32 cm
thick stainless steel plate was used as a rigid tool. The preform was cut and placed
on the tool so that the 0° rovings were length-wise, or parallel to the direction of
resin flow. A layer of Armalon fabric was placed both above and beneath the
preform to serve as release film. The distribution media, containing three layers of
nylon mesh screen, was laid on top of the preform and release layer. The media was
cut to dimensions of 60 cm by 27.4 cm allowing a 1.3 cm gap between the edge of
the media and the edge of the preform along the length. The distribution media
ended at a distance 2.5 cm before the end of the preform. These gaps prevent race-
tracking of the resin as it flows through the media and the fiber. A 5 cm portion of
the media was set off of the panel at the inlet side for inlet tube placement. Spiral-
wrap tubing was stretched across the width of the panel on top of this section of
media providing an even supply of resin to the part. A 0.95 cm inside diameter
reinforced-vinyl tube was used to supply resin to the part. Both the vinyl and spiral
tubing were also used on the vacuum side of the part. This outlet tubing was
connected to a resin trap and vacuum pump. A thermocouple probe was inserted 5
cm into the preform between the second and third stacks of fabric (Figure 5). The
bagging procedure was completed when the preform, media and tubing were sealed
to the steel tool using a conformable vacuum bag and sealant tape.

The sealed bag and tubing were evacuated under full vacuum and checked for leaks
using a vacuum gage and pressure sensor. The free end of the inlet tube was placed
in the bucket containing the degassed resin. A tube clamp was released to allow the
resin to flow into the spiral tubing, through the distribution media and into the fiber
preform. When the preform was fully impregnated, as evidenced through visual
inspection, the inlet and then the outlet tube were clamped. The part was then
placed in an oven to cure.



The cure cycle utilized for the VARTM panel consisted of a ramp from room
temperature to 67°C at 1.1°C/minute and hold for 2.75 hours, followed by a ramp at
1.4°C/minute to 123°C and held for 2.75 hours. The part was then cooled at
1.0°C/minute to room temperature. The part was released from the tool, rebagged,
and postcured under full vacuum for six hours at 177°C. The part temperature
(Figure 6) followed the oven temperature and no exotherm was observed. The
predicted resin degree of cure using Equation 2 is also shown on Figure 6. The
final predicted resin degree of cure is 0.96 which is slightly higher than the 0.93
value obtained from the residual heat of reaction measurement for a resin sample
cured with the same cure cycle. In Figure 7, the predicted viscosity profile using
Equation 3 was compared to the measured viscosity of a resin sample in a
rheometer subjected to the same temperature profile measured in the panel (Figure
6). The model captures the magnitude and location of the minimum viscosity point
as well as the onset of gelation, around 180 minutes. These results indicate that the
cure kinetics and viscosity models developed in this work are adequate for studying
the processing of VARTM panels with SI-ZG-5A resin.

CURE SIMULATIONS

A process model was used to simulate the cure of 5 mm and 25 mm thick panels
with three different cure cycles with specifications summarized in Table 3. Cycle 1
is the resin manufacturer recommended cycle, cycle 2 is the Seemann Composites
Inc. suggested cure cycle and cycle 3 is a cure cycle designed to reduce the resin gel
time. The cure simulations were preformed using the process model COMPRO [8].
The cure kinetics and viscosity model developed in this work for SI-ZG-5A were
used in the simulations. The panel was assumed to be fully saturated with resin at a
fiber volume fraction of 0.55. Thermal properties for the resin and the fiber were
taken for a typical epoxy and carbon fiber. The panel and a 5 mm thick steel tool
were modeled with a one-dimensional column of elements in the thickness
direction. A convective heat transfer boundary condition (30 W/m?°C heat transfer
coefficient) was assumed on the top and bottom of the tool-part assembly. The heat
transfer and resin cure kinetics were solved and resin flow during cure was
neglected.

Figures 8-10 present the maximum part temperature and minimum resin viscosity
profiles predicted by the model. The two recommended cure cycles for SI-ZG-5A
(cycles 1 and 2) produce similar temperature and viscosity profiles. With cycle 1,
the 5 mm and 25 mm panels geled at 255 minutes and 215 minutes, respectively.
With cycle 2, the gel point for the 5 mm and 25 mm panels was 220 minutes and
195 minutes, respectively. For cycles 1 and 2, the 5 mm panel exhibited no
exotherm while the 25 mm had a 9°C exotherm during the first hold. With cycle 3,
the resin gel point was significantly quicker at 95 minutes for the 5 mm panel and
100 minutes for the 25 mm panel. An exotherm of 26°C was observed for the
25mm panel. To reduce curing time, a robust oven control system must be used to
reduce the magnitude of the exotherm for thick parts. Another option would be to
use the process model and optimize the cure cycle for the part shapes and sizes of
interest. Nevertheless, it was found that a resin system like SI-ZG-5A was designed



mainly to insure a long processing window at room temperature and to maximize
the infiltration time for VARTM. However its curing behavior can be significantly
altered depending on the geometry and cure cycle considered.

Table 3 Cure cycle used in simulations.

Cycle 1 Cycle 2 Cycle 3

Heat to 66°C @ 0.56°C/min | Heat to 66°C @ 1.11°C/min | Heat to 121°C @ 0.83°C/min

Hold 4 hours Hold 2.5 hours Hold 2 hours

Heat to 177°C @ 0.56°C/min | Heat to 121°C @ 0.83°C/min | Heat to 177°C @ 0.56°C/min

Hold 6 hours Hold 2.5 hours Hold 6 hours

Cool to RT @ 0.56°C/min Heat to 177°C @ 0.56°C/min | Cool to RT @ 0.56°C/min
Hold 6 hours
Cool to RT @ 0.56°C/min

CONCLUSIONS

The observed viscosity profile and curing kinetics for a carbon fiber perform fully
impregnated with the epoxy resin, SI-ZG-5A were found to be in good agreement
with predictions of the process model, COMPRO [8]. Relationships for resin
viscosity and degree of cure were shown to accurately model the observed resin
characteristics with only modest differences at the extremes of performance
variables. The modified auto-catalytic cure kinetics model was shown to provide an
accurate representation of the curing phenomenon. The three curing cycles
examined showed that time to resin gel and exotherm are strong functions of the
cure cycle characteristics and resin properties. Gel times ranged from 95-255
minutes for the panel of 5 mm thickness and 100-215 minutes for the 25 mm panel.
Exotherms of 9-26 degrees Celsius were observed for the 25 mm panel.
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Figure 1 Typical dynamic scan for SI-ZG-5A at 1.1 °C/min. showing a total heat of reaction of
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Figure 2 Comparison between measured and predicted SI-ZG-5A resin degree of cure in isothermal
curing condition.
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