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Abstract

This paper presents a computational study of the stability of simple lobed bal-
loon structures. Two approaches are presented, one based on a wrinkled material
model and one based on a variable Poisson’s ratio model that eliminates compressive
stresses iteratively. The first approach is used to investigate the stability of both a
single isotensoid and a stack of four isotensoids, for perturbations of infinitesimally
small amplitude. It is found that both structures are stable for global deformation
modes, but unstable for local modes at sufficiently large pressure. Both structures
are stable if an isotropic model is assumed. The second approach is used to investi-
gate the stability of the isotensoid stack for large shape perturbations, taking into
account contact between different surfaces. For this structure a distorted, stable con-
figuration is found. It is also found that the volume enclosed by this configuration
is smaller than that enclosed by the undistorted structure.
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1 Introduction and Background

Lobed, or “pumpkin”, design shapes are widely used in long-duration bal-
looning. The main characteristic of a lobed balloon is the presence of high-
curvature lobes formed by thin plastic foils bulging between stiff load-carrying
tapes, instead of the convex, smooth shape of, e.g. hot-air balloons. The
pumpkin shape, although attractive in terms of pressure-carrying efficiency
and statically-determinate stress distribution, has been found to be unstable
in some cases, with the result that several balloons have taken up a distorted,
non-symmetrical configuration, upon inflation (Nott 2004).
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Calladine (1988) explained this behaviour by showing that the volume enclosed
by a lobed balloon increases —if the number of lobes and the bulge formed
by the lobes are sufficiently large— for certain small-amplitude inextensional
deformations of the balloon. This led to a stability criterion for pumpkin
balloons based on an analogy between the geometric stiffness of a lobe of a
balloon and the elastic bending stiffness of an Euler strut. An experimental
study of balloons designed to lie on either side of Calladine’s stability boundary
was carried out by Schur (2004).

A detailed, semi-analytical study of the variation of the volume enclosed by
inextensional pumpkin balloons, with different number of lobes and different,
finite amounts of bulging in each lobe, was carried out by Lennon and Pel-
legrino (2000). This study examined the variation in the volume enclosed by
several pumpkin balloons, for certain prescribed deformation modes. Although
the volume was found to always decrease for small distortions, it increased
when a sufficiently large distortion was imposed. However, equilibrium con-
siderations were neglected in this study, despite the finite magnitude of the
shape changes considered.

A more realistic model of a pumpkin balloon, which can hence provide actual
estimates of the stability of a particular design shape, requires a more detailed
approach, which can only be pursued using sophisticated, and complex, com-
puter tools. There are two key effects that need to be taken into account, the
tension-only behaviour of thin foils, and contact between different parts of the
surface of a balloon.

Two geometrically non-linear finite-element models of a balloon structure will
be presented, which address these issues. The results obtained from these
models will be compared with existing analytical solutions for the shape and
stress distribution of pumpkin balloons, and provide considerable insight into
their stability.

The first model is based on a novel finite-element formulation for heavily
wrinkled membranes. It allows us to set up pressurized balloons where the
stress path is specified. Once the initial shape and stress distribution of a
balloon are known, the tangent stiffness matrix for the balloon is set up and
the stability of the balloon for small perturbations is analysed by computing
the eigenvalues of the stiffness matrix.

The second model is based on the variable Poisson’s ratio approach proposed
by Stein and Hedgepeth (1961), and its finite element implementation by
Miller and Hedgepeth (1982) and Miller et al. (1985). An implementation of
this approach through the Iterative Modified Properties (IMP) user-defined
subroutine in ABAQUS by Adler (2000) has been modified to deal with mem-
brane structures that are prestressed uniaxially, i.e. the minor principal stress
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Fig. 1. Lobed cylinder.

is zero. ABAQUS does not compute the eigenvalues of a non-symmetric stiff-
ness matrix (as it is the case for a pressure-loaded structure) but the ABAQUS
surface-contact model is very useful to study the stability of a balloon for finite
perturbations.

This paper is presented in seven sections. The particular type of lobed bal-
loon that is to be investigated is presented in the next section. It is a simpler
structure than the pumpkin balloons that are of current, practical interest,
but its behaviour has many of the features observed in practice. Then, Sec-
tions 3 and 4 present the two computational models that have been developed.
Section 5 studies the initial stability of the balloon structure by means of the
first computer model, for varying internal pressure and considering two dif-
ferent material models. Section 6 studies the stability of the balloon for large
distortions, by means of the second computer model. Section 7 concludes the
paper.

2 Lobed Cylinder

The structure whose stability will be studied in this paper is a weightless
“lobed cylinder” subject to uniform internal pressure. This cylinder is formed
by stacking a number of (mostly four) identical truncated isotensoids, rein-
forcing the seam lines, closing them off at the top and bottom with rigid
plates, and holding the ends of the two plates at a fixed distance by means of
a pin-jointed bar, see Figure 1.

Structures resembling this one, but with meridians of circular profile, were
studied by Calladine (1988) and Lennon and Pellegrino (2000). These studies
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Fig. 2. Definition of coordinate system and meridional stress.

showed that the sign of the rate of change of the enclosed volume (for an
assumed mode involving the axis of the stack bending into a circular arc)
depends on the number of elements in the stack and the amount of bulging of
the cylinder. Hence, the initial configuration can be either stable or unstable
depending on the value of these parameters.

The lobed cylinder that is studied in this paper is formed starting from the
isotensoid, which is the shape of the axisymmetric surface that carries a uni-
form pressure purely by meridional stress (Taylor 1919), i.e. the hoop stress is
zero everywhere. The meridian of the isotensoid is defined by the radius, R,
and vertical distance from the apex, z, as shown in Figure 2

R = R0 cn(u) (1)

and

z = −R0√
2

{
2
[
E − E(u)

]
− (K − u)

}
(2)

where

u = K − s
√

2
R0

(3)

Here cn is one of the Jacobi elliptic functions and E(u) is the complete elliptic
integral of the second kind, for modulus u; K = 1.8541 and E = 1.3506; R0 is
the radius at the equator; and s is the arc-length along the meridian, measured
from the axis.

These equations can be evaluated using the functions ellipj and ellipke in
Matlab (Mathworks 2002).

The meridian of an isotensoid with a radius at the equator of one unit is shown
in Figure 3. The extreme values of z/R0 are ±0.598.
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Fig. 3. Meridian of an isotensoid.

For a given uniform pressure, p, the meridional stress σφ is given by

σφ =
pR

2t sinφ
(4)

The building block for our lobed cylinder is obtained by truncating an isoten-
soid, i.e. by slicing off the top and bottom caps and leaving only the region
−z0 ≤ z ≤ z0, where z0/R0 = 0.55, see Figure 3. The value of the angle φ at
the truncation point is φ = 15.7 deg. Note that from now on the origin of the
z-axis will be moved to the top of the stack of truncated isotensoids, but the
same symbol will be used to denote this new coordinate.

Clearly, a truncated isotensoid is not in equilibrium unless a suitable distri-
bution of meridional forces is applied along the edge of the cuts. These forces
are applied either by the neighbouring isotensoids, or by additional structural
elements, as shown in Figure 4. First, consider the seam line between two
neighbouring truncated isotensoids. Denoting by Nr and Nv respectively the
radial and vertical components of the force per unit length along the cuts, note
that the Nv’s are in equilibrium and the Nr’s add to provide an in-plane radial
load of 2Nr on the seam line. By arranging an extensionally stiff circular hoop
along the seam, this load can be carried without significant deformation.

Next, consider the truncated isotensoid at the top of the stack. Here there is
only one Nv and so, to ensure equilibrium, a stiff circular plate is arranged to
carry both the in-plane radial loads Nr and the out-of-plane shear loads Nv.
Vertical equilibrium of this plate is ensured by a compressive axial force in the
rod, along the axis of the stack.
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Fig. 6. Wrinkle directions.

3 Wrinkled Membrane Model

We have formulated a novel three-node, constant-stress, constant strain, wrin-
kled membrane element. This element is formulated in the local coordinate
system shown in Figure 5, and the wrinkle direction is defined by the angle φ
between side 1-2 and the direction of the wrinkle. Depending on whether (a)
0 ≤ φ ≤ α, (b) α ≤ φ ≤ α + γ, or (c) α + γ ≤ φ ≤ π, we choose a reference
wrinkle that emanates from node 1, 3, or 2, as shown in Figure 6.

This element has a rank-deficient stiffness matrix, due to the presence of two
internal zero-energy modes, as shown in Figure 7. Mode (a) stretches the
element in the direction perpendicular to the wrinkles, mode (b) shears the
wrinkles. Only mode (c), which stretches the element in the direction of the
wrinkles, induces a change of strain energy.

The displacement field within the element is linear, and hence the strain is
uniform. The directions of principal strain are assumed to coincide with the
direction of the wrinkles and the direction perpendicular to them. The Green-
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Fig. 7. Deformation modes of wrinkled element.

Lagrange strain, εw, along the reference wrinkle is found, depending on the
wrinkle angle φ defined in Figure 6, by considering the line iP , where i is node
1, 2, or 3.

The corresponding linear-elastic stress along the wrinkle is found from

σw = Eεw (5)

where E is the Young’s Modulus of the material.

The strain components in the element coordinate system are found from a
standard strain transformation, where the strain perpendicular to the wrinkle
is taken as zero, and the corresponding stress components are found similarly,
by taking the stress perpendicular to the wrinkle also to be zero. Hence, letting
c = cosφ and s = sinφ 



εx

εy

γxy




=




c2

s2

2cs



εw (6)

where γxy is the engineering shear strain, and
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c2
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σw (7)

Therefore, considering an initially prestressed membrane,



σx

σy

σxy




= D
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σx0
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(8)

where

D = E




c4 c2s2 c3s

c2s2 s4 cs3

c3s cs3 c2s2




(9)
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and [σx0 σy0 σxy0]T are the components of prestress along the wrinkles, trans-
formed to the element coordinate system.

Further details on this element, including the material and geometric stiffness
matrices from which an iterative Newton-Raphson equilibrium iteration can
be set up, will be published elsewhere. The formulation of this element also
includes the computation of its non-symmetric load-stiffness matrix, which
accounts for the follower-type load applied by the internal pressure.

4 Non-Linear Material Model

Miller and Hedgepeth (1982) and Miller et al. (1985) proposed a finite element
implementation of the Stein-Hedgepeth (1961) wrinkle model. This model is
based on the observation that in a wrinkled element the geometric strain in the
direction perpendicular to the direction of the wrinkles —due to the material
deforming out-of-plane— can be modelled by introducing a variable effective
Poisson’s ratio for the membrane.

Hence, instead of the standard modulus matrix based on Hooke’s law for plane
stress

Dt =
E

1 − ν2




1 ν 0

ν 1 0

0 0 (1 − ν)/2




(10)

which is used in the regions where the membrane is taut, they used the matrix

Dw =
E

4




2(1 + P ) 0 Q

0 2(1 − P ) Q

Q Q 1




(11)

where P = (εx − εy)/(ε1 − ε2) and Q = γxy/(ε1 − ε2). 1 and 2 are the directions
parallel and perpendicular to the wrinkles, respectively, and are allowed to
rotate as the stress state changes.

Adler (2000) implemented this model as a user-defined material (UMAT) sub-
routine in the ABAQUS (2003) finite element package. At any stage of a stan-
dard ABAQUS iteration, given the current strain and strain increment in an
an element, this subroutine works out the corresponding stress components
using either Dt or Dw, depending on the state of the element.
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Specifically, Adler’s IMP subroutine begins by calculating the principal strain
and stresses using Dt, i.e. assuming the element to be taut, and then (denoting
by 1, 2 the major and minor principal stress/strain directions, respectively)

• If σ2 ≥ 0, then the element is taut and so no change is needed;
• If σ2 < 0 and ε1 ≤ 0, then the element is slack and so all stress components

are zero;
• If σ2 < 0 and ε1 > 0, then the element is wrinkled, and so the stress

components are recomputed using Dw.

We have modified this subroutine so that we can prescribe a load-carrying
path in a structure. Hence, to set up the correct pressure-induced stresses in
an isotensoid, we initially define all elements with their local y-axis in the
hoop direction. Then, when σ2 ≥ 0 (i.e. case 1 in Adler’s subroutine), we set
σy = 0 and leave σx and σxy unchanged.

Thus, once the correct initial stresses have been set up, we switch to the
standard IMP subroutine used by Adler.

4.1 Some Modelling Issues

Four-node quadrilateral membrane elements (M3D4) were used to model the
surface of the balloon. For each truncated isotensoid, 25 nodes were arranged
along the meridian —their coordinates being defined by Equations 1 and 2—
and were rotated about the z-axis to generate a mesh of 24 × 32 elements
for each isotensoid. ABAQUS also provides reduced integration membrane
elements (M3D4R), which may be more efficient than M3D4 in terms of com-
putational time. However, the performance of this element in combination
with Adler’s IMP subroutine is not known.

Beam elements (B31) were used to model the top and bottom plates, i.e. to
connect to a central point the nodes along the top/bottom edges of the stack.
Adjacent circumferential nodes were similarly connected by beam elements.
Thus, the whole balloon structure is modelled such that it has stiff top and
bottom “caps”. The use of shell elements (S4R, S3) to form these caps was
investigated, but poor convergence was observed.

Truss elements (T3D2) were used to form a stiffening hoop along the seam
between consecutive truncated isotensoids. Also, a stiff pin-jointed truss ele-
ment was used to hold the top cap at a fixed distance from the bottom one,
while allowing it to move sideways and to rotate.

Details on the element properties are given in Table 1.
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Membrane Beam Truss

Thickness t (mm) 0.05

Cross-sectional dimensions (mm) 100 × 100 100 × 100

Young’s modulus, E (N/mm2) 3,500 215,000 215,000

Shear modulus, G (N/mm2) 1350 80,000 80,000

Poisson’s ratio, ν 0.3 0.35 0.35

Table 1
Material properties

The first step of the analysis consisted in inflating the balloon to a certain
pressure, at which the truncated isotensoids take up an initial shape such
that the stress distribution is purely meridional. Two ways to achieve this in
ABAQUS were investigated, as follows.

The first method prescribes the correct initial stress in each element by means
of the *INITIAL CONDITION option. The corresponding initial pressure is
applied by follower forces using *DLOAD. A non-linear incremental analysis
is then carried out, which ends when the balloon has reached the required
stress level under the prescribed pressure.

The second method sets up the balloon initially unstressed, and simulates its
pressurization with the modified version of the IMP subroutine, explained in
the previous section.

Both methods have been found to work well, but the former suffers from the
limitation that, once a material subroutine is used, ABAQUS requires that
a user-defined material subroutine be used throughout the analysis. Hence,
because the standard IMP subroutine is needed for a subsequent part of the
simulation, the latter method had to be adopted.

To avoid that the boundary conditions affect the stress distribution in the
structure during pressurization, only one end of the central pin-jointed bar
was fixed. After pressurization, the response of the balloon to different geo-
metric imperfections was analysed and, to avoid that different parts of the
balloon go through one another, it is essential to properly model the contact
conditions. The three top and bottom rings of elements in each isotensoid were
defined as contact surfaces, using the *SURFACE option; the *SURFACE IN-
TERACTION option was used to define the type of interaction; and finally
the *CONTACT PAIR option was used to indicate which pairs of surfaces can
come into contact.
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Fig. 8. Inflation of cylinder with wrinkle lines in longitudinal direction.
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Fig. 9. Truncated isotensoids generated with inflation pressures of 0.75, 10, and
37.5 Pa, with contours of σφ due to p = 5 Pa.

5 Stability in Initial Configuration

The wrinkled membrane element presented in Section 3 can be used to gener-
ate a truncated isotensoid by setting up a cylindrical membrane, defining the
wrinkle directions to be parallel to the axis of the cylinder, and applying an
internal pressure, see Figure 8.

Depending on the magnitude of the pressure applied and the elastic stiffness
of the membrane, different shapes are obtained. The three surfaces shown in
Figure 9 were all obtained starting from a 4.2 m long cylinder with a radius
of 2.0 m. The figure shows that the surface in Figure 9(c) is a piece of an
isotensoid surface.

Consider the surface shown in Figure 9(c), whose meridian has an arc-length
of 5 m. A comparison between the analytical distribution of σφ, from Equa-
tion 4, with the meridional stresses obtained from a Matlab (Mathworks 2002)
finite-element program that implements this wrinkled element, shows the two
distributions to be essentially identical.
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Fig. 10. Comparison between analytical and numerical distribution of σφ (p = 5 Pa).

Fig. 11. Arrangement of pin-jointed bars at top and bottom of truncated isotensoid
or isotensoid stack, showing 4 kinematic constraints.

5.1 Truncated Isotensoid

The stability of an elastic structure in a given configuration and state of stress
is related to the positive definiteness of its stiffness operator, and hence to the
eigenvalues of its tangent stiffness matrix being positive (Riks 1998).

We have carried out such an analysis for the truncated isotensoid of Fig-
ure 9(c). The nodes along the top and bottom edges were connected to a
kinematically determinate arrangement of pin-jointed bars, connected to a
central pin-jointed bar, see Figure 11.

First, we determined the eigenvalues and corresponding eigenvectors of the
(non-symmetric) tangent stiffness matrix of this structure using the function
eigs (Mathworks 2002). The tangent stiffness matrix of the membrane was
based on the wrinkled membrane element presented in Section 3. The eigen-
vectors corresponding to the smallest eigenvalues, which correspond to the
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Fig. 12. Side views of eigenvectors of truncated isotensoid (wrinkled material model);
undeformed shape shown dotted. For the local mode in (d) a top view is also shown.
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Fig. 13. Variation of eigenvalues with pressure in a truncated isotensoid (wrinkled
material model). Other local modes are similar to (d).

incipient “buckling modes” of the structure. These eigenvectors can be di-
vided into two categories, namely global modes —shown in Figure 12(a-c)—
and local, or wrinkling modes — of which a sample is shown in Figure 12(d).

The global eigenvectors, of which only a small number have very small eigen-
values, involve overall distortion of the surface, such as twisting or lateral
swaying of the upper edge with respect to the bottom edge. The local eigen-
vectors involve coupled hoop-wise and radial distortion of the meridians of the
isotensoid, in an n-fold symmetric mode. There is a large number of this type
of eigenvectors, which further increases if the mesh density is increased.

Figure 13 shows the variation of the smallest eigenvalues with the pressure p.
An interesting feature is that the structure is stable, i.e. all eigenvalues are
positive, up to p ≈ 4600 Pa. Note that all global modes become more stable
when p increases, whereas the local modes become less stable.

Next, let us consider the same structure, but change the model to a standard
isotropic material (thus implicitly assuming that the skin of the pressurized
balloon is able to carry both tensile and compressive stress increments) then all
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Fig. 14. Side views of eigenvectors of truncated isotensoid (isotropic material model);
undeformed shape shown dotted.
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Fig. 15. Variation of eigenvalues with pressure in a truncated isotensoid (isotropic
material model).

the eigenvalues increase substantially, mainly as a result of having considered
a shear-stiff material, and the local modes disappear, Figure 14. Hence, since,
the modes are all global, when the pressure is increased all modes become
more stable, see Figure 15.

5.2 Stack of Truncated Isotensoids

The study in the previous section was extended to a stack of four isotensoids,
each identical both in terms of geometry and material properties to the single
isotensoid studied in Section 5.1. The boundary conditions at the top and bot-
tom of the stack were the same as the top and bottom of the single isotensoid,
but note that now the intermediate isotensoids are allowed to distort into a
non-circular shape at either end.

If the wrinkled material model is used for the isotensoid stack, then again the
eigenvectors corresponding to the smallest eigenvalues can be grouped into
global —Figure 16(a-c)— and local —Figure 16(d-f)— deformation modes.
Each type has similar characteristics to those noted for a single isotensoid.

Figure 17, showing the variation of the smallest eigenvalues with pressure,
indicates that the global modes are intially less stable than the local ones, as
the corresponding eigenvalues are now significantly smaller (even allowing for
the decrease due to the four-fold increase in the number of degrees of freedom).
Note that the eigenvalues of the local modes are substantially unchanged.
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Fig. 16. Side views and top views of eigenvectors of stack of four truncated isoten-
soids (wrinkled material model).
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Fig. 17. Variation of eigenvalues with pressure in stack of four isotensoids (wrinkled
material model).

However, as p increases, the global modes become gradually more stable while
the local modes become less stable and finally unstable at p ≈ 3000 Pa. Hence,
it can be concluded that the four isotensoid stack is less stable than the single
isotensoid.

The eigenvectors obtained from an isotropic material model of the isotensoid
stack are shown in Figure 18. Again, there are only global modes and all
eigenvalues are positive and increasing with p.
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Fig. 18. Side views and top views of eigenvectors of stack of four truncated isoten-
soids (isotropic material model).
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Fig. 19. Variation of eigenvalues with pressure in stack of four isotensoids (isotropic
material model).

6 Non-Linear Simulations

This section presents the results of a series of simulations, with ABAQUS, of
the response of an isotensoid stack to different geometric perturbations. These
simulations are generally carried out as three separate steps:

• Pressurization to p = 5 Pa, accompanied by a small amount of elastic
stretching of the material. Afterwards p remains constant.

• Distortion of the shape of the structure, by means of temporary geometric
constraints, to trigger any unstable modes.

• Removal of any temporary constraints, to test the stability of the structure
in the distorted configuration.

Note that no calculation of eigenvalues and eigenvectors is carried out, as
the results would not be accurate because pressure is a follower-type load
that leads to an unsymmetric load stiffness matrix. Eigenvalue extraction in
ABAQUS can be performed only on symmetric matrices.

All of the analysis steps are geometrically non-linear, incremental simulations,
using the *NLGEOM option. Automatic stabilization of any unstable modes
through the addition of numerical damping is allowed, using the STABILIZE
function. The amount of numerical damping was kept at the minimum required
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to achieve convergence.

For the pressurization step, Figure 20 shows a comparison of the results ob-
tained from the two different methods explained in Section 4.1. Both methods
are successful in achieving a distribution of σφ that agrees with Equation 4.
However, note that the initial stress method results in a small compressive σθ,
whereas with the modified IMP subroutine σθ ≈ 0 everywhere.
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σθ with initial stress
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Fig. 20. Stress distribution in stack of two truncated isotensoids, after pressurization
(p = 5 Pa).

In the second step, two different types of geometric distortions were investi-
gated. The first type is a simple end-displacement, δ, of the top, central node
of the balloon, see Figure 21(a). Note that all nodes along the bottom edge
are constrained in this analysis. The second type of distortion is based on
the buckling mode shape proposed by Lennon and Pellegrino (2000), see Fig-
ure 21(b). This distortion mode is based on the idea of imposing a uniform
curvature to the central axis of the balloon, while keeping the circumferential
hoops between adjacent isotensoids circular and perpendicular to the curved
axis. The distance between the end points of the central pin-jointed bar is un-
changed. Different amounts of distortion can be imparted by varying the angle
between the two ends of the balloon, 2ψ. This shape is imposed by means of
the *BOUNDARY option, by imposing suitable displacements to all the nodes
lying on the hoops.

Note that the second step induces severe wrinkling in the balloon, and the use
of a non-linear material model such as the standard IMP subroutine described
in Section 4 is essential to avoid the presence of any compressive stresses.

Finally, in the third step all the temporary constraints imposed during the
second step are removed using the *BOUNDARY, OP=NEW option, and a
“restart” analysis is carried out to find out if the distorted shape is stable or
not, in which case the balloon will seek an alternative equilibrium configura-
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Fig. 21. Geometric perturbations.

tion. Only the original constraints are kept.

This analysis requires great care, to go past numerical instabilities while avoid-
ing excessive numerical damping, which would change the outcome of the anal-
ysis. One of the tricks used to minimise this effect was to carry out further
restart analyses, each with a lower STABILIZE factor.

6.1 Results

For the type of perturbation shown in Figure 21(a) many different analyses
were carried out, varying the number of isotensoids in the stack, the magnitude
of the imposed displacement, etc.

A set of typical results are shown in Figure 22, for a balloon consisting of five
truncated isotensoids. This is a plot of the force that has to be applied at the
top of the balloon versus the horizontal displacement at the same point, δ.
It is interesting to note that when the displacement reaches about 0.1 m the
stiffness of the balloon begins to decrease, but a positive stiffness is maintained
despite a further increase of the displacement to 0.7 m. Further displacements
were imposed, but are not shown here.

After releasing the temporary constraint, the results of two restart analyses are
shown in the figure. When the higher (default) value of the STABILIZE factor
was used the balloon maintained its distorted configuration, however when the
lower factor was used, the balloon returned to its original configuration.

This analysis has shown that the particular stack of five isotensoids that has
been analysed is rather weakly stable for the perturbation of Figure 21(a). It
does not go back to its original configuration unless the numerical damping in
the simulation is very small.
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Fig. 22. Response of five-isotensoid balloon to imposed tip displacement, δ.

ABAQUS can display the contact area at each increment, and it is found that
the isotensoids at the bottom of the stack come into contact when δ = 1.551 m.
However, a separate analysis which did not include modelling of contact was
found to give an almost identical force-displacement relationship.

Next, we show the results obtained when the alternative perturbation, shown
in Figure 21(b), was imposed. This analysis was repeated for two different
values of the bend angle, ψ = 7.5◦ and ψ = 15◦, and in both cases the balloon
did not return to the original configuration.

Figure 23 is a plot of the displacement of a node on the central hoop. During
the first step, corresponding to the range 0 to 1 on the abscissa, the move-
ment of the node is driven by the imposed constraints. During the second
step, corresponding to the range 1 to 2 on the abscissa, the constraints are
released and the node, instead of returning to its original position, gradually
increases its displacement to about 2.4 m. Further restart analyses, with lower
numerical damping were carried out, but the balloon maintained the shape of
the last analysis step, which indicates that the structure is stable in its new
configuration.

Figure 24 shows contour plots of the horizontal displacement components,
drawn on top of the actual shape of the balloon, first when a perturbation
amplitude ψ = 7.5◦ is imposed, and then after completing the restart analysis.
The final configuration is visibly more distorted than the initial one.

It was noted during the analysis that contact modelling is essential to achieve
convergence during the final part of the third analysis step, as a model that
did not include contact was unable to converge when all the constraints were
released.

Following the analysis by Lennon and Pellegrino (2000), we have calculated
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Fig. 24. Contours of horizontal displacements, in metres, for (a) initial perturbation
mode and (b) final equilibrium shape.

the volumes of the four isotensoid stack in the three configurations that have
been considered. The results of this calculation are listed in Table 2. It is shown
that the buckled modes lead to smaller volumes. When all the constraints are
released after introducing the imperfection modes, the total volume decreases
even further.
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Bend angle ψ = 7.5◦ ψ = 15◦

Original volume after pressurization 591.96 591.96

Volume of distorted configuration 589.19 581.61

Final volume 575.57 571.151
Table 2
Volume of balloon (m3)

7 Discussion and Conclusion

This paper has introduced two computational approaches to the stability anal-
ysis of lobed balloons, one based on a wrinkled material model —which has
zero stiffness in the direction perpendicular to the wrinkles and also in shear—
and one based on a variable Poisson’s ratio model that eliminates compressive
stresses iteratively. The first approach has been implemented in Matlab, the
second approach has been implemented through a user-defined material model
in the ABAQUS finite-element package. Both approaches have been shown to
be able to produce the analytically known initial stress distribution of the
isotensoid.

The first approach has been used to investigate the stability of both a single
isotensoid and a stack of four isotensoids, for perturbations of infinitesimally
small amplitude. It has been found that both structures are stable for global
deformation modes, but unstable for local modes at sufficiently large pres-
sure. The local deformation modes disappear if —instead of using a wrinkled
material model— an isotropic model is assumed. For this latter model, both
structures have been found to be stable.

An important observation is that the wrinkled material model predicts much
smaller eigenvalues —due to the lack of shear stiffness— and hence a much
less stable structure.

The second approach has been used to investigate the stability of the two
structures for large shape perturbations, and here a key point is that contact
between different surfaces of the balloon has been properly accounted for. It
has been found that, even when analysing a structure that is known to be
stable in some distorted configurations, it is not a straightforward matter to
pick out the deformation path that will take the structure away from its initial
configuration. Part of the problem is that these alternative, stable, distorted
configurations have been found to enclose a smaller volume and hence will
probably correspond to a local energy minimum for the structure. Such local
minima can only occur as a result of the unilateral constraints associated with
surface contact, which usually are activated only by large shape distortions.
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Although this last result may seem surprising at first, as it is usually argued
that balloon structures subject to uniform pressure will achieve the shape
that maximises the enclosed volume, it is actually supported by analyses of
the telemetry data from pumpkin balloons that had deployed into a clefted
configuration.
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