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Abstract 
 
The development of low conductivity and high temperature capable thermal barrier coatings requires 

advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity under 
future high-performance and low-emission engine heat-flux conditions. In this paper, a unique steady-state 
CO2 laser (wavelength 10.6 µm) heat-flux approach is described for determining the thermal conductivity 
and conductivity deduced cyclic durability of ceramic thermal and environmental barrier coating systems at 
very high temperatures (up to 1700 °C) under large thermal gradients. The thermal conductivity behavior of 
advanced thermal and environmental barrier coatings for metallic and Si-based ceramic matrix composite 
(CMC) component applications has also been investigated using the laser conductivity approach. The 
relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient 
at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux 
conductivity approach has been demonstrated as a viable means for the development and life prediction of 
advanced thermal barrier coatings for future turbine engine applications. 

 
 

Introduction 
 
Ceramic thermal and environmental barrier coatings (T/EBCs) have received increasing attention for 

advanced gas turbine engine applications. The advantages of using T/EBCs include potentially higher 
engine efficiency by increasing gas temperatures, and improved engine reliability by reducing engine hot-
section component temperatures. The development of advanced ceramic barrier coatings is aimed at 
significantly increasing engine operating temperature and simultaneously reducing air cooling, in order to 
meet future engine low emission, high efficiency and improved reliability goals. The future ceramic 
coating systems must be designed with increased high temperature stability, lower thermal conductivity, 
and improved thermal stress and erosion resistance.  

Advanced low conductivity and high temperature capable T/EBC development requires testing 
techniques that can accurately and effectively evaluate coating thermal conductivity and stability under 
expected engine high-heat-flux and thermal cycling conditions. In this paper, a unique steady-state CO2 
laser (wavelength 10.6 µm) heat-flux approach is described for determining the thermal conductivity and 
the conductivity-deduced cyclic durability of T/EBC systems at high temperatures under large thermal 
gradients within the coating that are encountered in advanced engine systems. The laser heat-flux thermal 
conductivity approach emphasizes the real-time monitoring and assessment of the coating thermal 
conductivity under steady-state, cyclic, and engine-like heat-flux thermal gradient conditions. The 
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conductivity increases due to coating sintering and the conductivity decreases due to coating delamination 
have been demonstrated. 

The thermal conductivity behavior of advanced thermal and environmental barrier coatings has also 
been investigated using the laser conductivity approach for metallic turbine airfoil and Si-based ceramic 
matrix composites (CMC) combustor liner and vane applications. The coating internal and external 
radiation flux resistance has been evaluated by measuring the apparent coating conductivity response 
under large coating internal thermal gradients, and by using a laser-heated external radiative-flux 
approach, respectively. The relationships between the lattice and radiation conductivities as a function of 
heat flux and thermal gradient at high temperatures have been examined for the ceramic coating systems. 
 
 
Laser Steady-State Heat Flux Thermal Conductivity Measurement Technique 
 

The CO2 laser (wavelength 10.6 µm) can efficiently deliver well-characterized and well-controlled 
heat energy to the material surface to investigate the thermal fatigue and sintering behavior of ceramic 
thermal barrier coatings under simulated engine heat-flux conditions [1–3]. The steady-state CO2 laser 
heat-flux thermal conductivity technique is developed based on laser thermal fatigue testing, but the 
modified test capability, using a uniform laser heat-flux distribution and continuous real-time monitoring 
of both the front heating surface and the backside surface temperatures, allows one to characterize the 
temperature difference across the ceramic coating system or monolithic ceramic specimen under a given 
delivered laser heat flux [4–5]. 

A schematic diagram showing the laser thermal conductivity rig is given in figure 1. This test rig 
consists of a high power laser system, 3.0 to 3.5 kW CO2 continuous-wave laser, a motor-driven rotating 
test station, and temperature measurement instruments such as a thermography system and infrared 
pyrometers. In the laser steady-state heat-flux thermal conductivity test, the specimen surface heating was  
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Figure 1.—Schematic diagram showing the laser heat-flux rig for determining thermal conductivity of thermal and 

environmental barrier coatings or coating materials. During the test, the ceramic surface and the metal backside 
temperatures are measured by infrared pyrometers. The metal substrate mid-point temperature can be obtained 
by an optional, embedded miniature type-K thermocouple. The interfacial temperatures, and the actual heat-flux 
passing through the thermal barrier coating system, are therefore determined under the steady-state laser heating 
conditions by a one-dimensional (one-D) heat transfer model. 
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provided by the laser beam, and backside air cooling was used to maintain the desired specimen 
temperatures. The laser surface heating and the backside air cooling determine appropriate steady-state 
temperature gradients across the coating systems. A uniform laser heat flux was obtained over the  
23.9 mm diameter aperture region of the specimen surface by using an integrating ZnSe lens combined 
with the specimen or laser beam rotation. Platinum wire coils (wire diameter 0.38 mm) were used to form 
air gaps between the top aluminum aperture plate and stainless-steel back plate to minimize the specimen 
heat losses through the fixture. 

The thermal conductivity kceramic of ceramic materials can be determined from the pass-through heat 
flux qthru and measured temperature difference ∆Tceramic across the ceramic specimen (or the ceramic 
coating) thickness lceramic under the steady-state laser heating conditions 

 
 kceramic = qthru ⋅ lceramic/∆Tceramic  (1) 

 
The actual pass-through heat flux qthru for a given ceramic specimen can be obtained by subtracting 

the laser reflection loss (measured by a 10.6 µm reflectometer) and the radiation heat loss at the ceramic 
coating surface from the laser delivered heat-flux. Note that the non-reflected laser energy is absorbed at 
the specimen surfaces because of the high emissivity and absorption values at the 10.6 µm laser 
wavelength region for the oxides and silicates typically used as thermal and environmental barrier 
coatings at high temperatures [6]. The pass-through heat flux qthru was also verified with an internal heat 
flux gauge within the substrates (instrumented specimens) via an embedded miniature thermocouple. For 
the hot pressed bulk specimens, the temperature difference ∆Tceramic in the ceramic was directly measured 
by using surface and backside pyrometers. For the coating specimens, the temperature difference in the 
ceramic coating ∆Tceramic was obtained from the measured coating surface and substrate backside 
temperatures using an 8 µm pyrometer and a two-color pyrometer, respectively, and subtracting the 
temperature drops in the substrate and bond coat 
 

 
( ) ( )0 0

bond substratel lthru thru
ceramic ceramic surafce substrate back

bond substrate

q dl q dl
T T T

k T k T− −
⋅ ⋅

∆ = − − −∫ ∫  (2) 

 
where Tceramic-surface and Tsubstrate-back are measured ceramic surface and substrate backside temperatures, 
lbond, lsubstrate, and kbond(T) and ksubstrate(T) are the thicknesses and the temperature-dependent thermal 
conductivity of the bond coat and substrate, respectively. 
 
 

Thermal Conductivity of ZrO2-8wt%Y2O3 Thermal Barrier Coatings 
 

Thermal Conductivity Increase Due to Sintering 
 

The coating thermal conductivity kinetics of plasma-sprayed ZrO2-8wt%Y2O3 thermal barrier coatings 
have been determined using the steady-state laser heat-flux testing under a fixed heat flux (64W/cm2). 
Because a thermal conductivity gradient is expected across the ceramic coating under the high thermal 
gradient conditions (due to the more rapid thermal conductivity increase near the ceramic surface as 
compared to near the ceramic/bond coat interface), the observed ceramic thermal conductivity increase 
reflects an overall effect of the conductivity change in the coating. The coating shows faster initial 
conductivity increases, presumably due to the fast microcrack sintering rate at the initial stage. After long-
term testing, the coating conductivity seems to reach saturation conductivity values. The experimental 
coating thermal conductivity change kinetics for the ZrO2-8wt%Y2O3 can be expressed as [7] 
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RT
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(3b) 

 
where kc is the coating thermal conductivity at any given time t, 0

ck  and inf
ck  are ceramic coating thermal 

conductivity values at the initial time and at infinitely long time, respectively, R is gas constant, and τ is 
relaxation time. 

From the temperature dependence of the thermal conductivity change kinetics, the thermal 
conductivity gradients in the coatings as a function of time can be derived. Typical thermal conductivity 
distributions in a plasma-sprayed ZrO2-8wt%Y2O3 thermal barrier coating, modeled based on the laser 
heat flux thermal conductivity test data, are given in figure 2. It can be seen that the conductivity increase 
near the surface is more significant than that near the interface under the thermal gradient testing 
conditions.  
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Figure 2.—Thermal conductivity distributions in a plasma-sprayed ZrO2-8wt%Y2O3 thermal barrier coating, 

modeled based on the laser heat flux thermal conductivity test data. (a) The ceramic thermal conductivity  
as a function of temperature and time; (b) Thermal conductivity gradients and corresponding average thermal 
conductivity values <k> in the ceramic coating tested at three different interface temperatures after  
20000 seconds (surface temperature Ts = 1315.5 °C; interface temperatures Ti are 871, 982, and 1093 °C, 
respectively). 
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Thermal Conductivity Reduction Due to Coating Delamination 
 

Figure 3 shows thermal conductivity changes of a plasma-sprayed ZrO2-8wt%Y2O3 coating under a 
combined steady-state and cyclic laser heat-flux test conditions, measured in-situ by the laser heat-flux 
technique. As expected, the coating conductivity increases with time due to coating sintering during the 
steady-state testing. However, upon the cyclic testing, the coating conductivity continuously decreases 
with time. The conductivity reduction indicates the accumulated damage with the cycle number until the 
final coating spallation. In this particular test, the large initial conductivity drop may suggest that 
significant coating delamination occurred after the first sintering cycle, which may have accumulated the 
highest strain energy after the long test cycle. 

The laser thermal fatigue and crack propagation study can also be based on a modified laser thermal 
conductivity test for a pre-center-penny-shape cracked coating specimen. Figure 4 shows typical test 
results for a 127 µm thick, pre-cracked TBC specimen under the laser cyclic testing. The surface 
temperature increases continuously due to the crack initiation and propagation. The metal backside 
temperature and the predicted metal/ceramic interface temperature, however, remains relatively constant 
or a slightly decreasing trend. The initial rise in the measured conductivity is attributed to the ceramic 
sintering effect. It is also noted that a sudden drop in thermal conductivity that is corresponding to a large 
surface temperature jump, was observed at about 30 hr, due to a coating spallation event which occurred 
at that time. The coating propagation process, confirmed independently by a high sensitivity video 
camera, has been used to evaluate the coating thermal fatigue behavior [9]. 
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Figure 3.—Thermal conductivity changes of a 127 µm plasma-sprayed ZrO2-8wt%Y2O3 coating under a combined 

steady-state and cyclic laser heat-flux test conditions, measured in-situ by the laser heat-flux technique. The 
coating showed the thermal conductivity increase due to coating sintering and the coating conductivity decrease 
due to accumulated delamination (pass-through heat flux qthru = 120W/m-K). 
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Figure 4.—Laser thermal fatigue test result of a 127 µm thick, pre-center penny-shape-cracked (diameter about  
1 mm) coating specimen showing the coating temperature and thermal conductivity changes as a function of 
cycle number under 10 min heating and 2 min cooling laser cycling. The ceramic surface temperature increases 
and the metal backside temperature slightly decreases as the delamination crack is propagated. The effective 
ceramic coating conductivity shows an initial increase due to the coating sintering, and then a monotonic 
decrease due to the crack propagation. The insert is a schematic diagram showing the coating specimen. 

 
 
 

Advanced Thermal Barrier Coatings Development Using  
Laser Heat Flux Approaches 

 
The laser heat-flux testing approach can play a significant role in the development of advanced low 

conductivity and high thermal stability coatings. Since the coating conductivity increases with time due to 
ceramic sintering, the coating surface temperature will continuously drop under the fixed laser heat-flux 
condition. The measured initial coating conductivity (k0), the conductivity at 20 hr (k20), and the 
conductivity rate of increase have been used for evaluating the candidate coating performance. It should 
be mentioned that for some of the EB-PVD oxide coating systems, the coating conductivity after 5 hr 
testing (k5) can be used for characterizing the coating behavior, because the EB-PVD coatings can usually 
reach a steady-state sintering conductivity increase stage after 5 hr of testing. 

Figure 5 illustrates typical high temperature thermal conductivity behavior of advanced multi-
component plasma-sprayed and EB-PVD oxide cluster thermal barrier coatings as a function of test time, 
determined by the laser heat-flux technique at temperature of 1316 °C. The advanced oxide coatings 
consist of ZrO2-Y2O3, and also are co-doped with additional paired rare earth oxides Nd2O3-Yb2O3 or 
Gd2O3-Yb2O3 (i.e., ZrO2-Y2O3-Nd2O3-Yb2O3 and ZrO2-Y2O3-Gd2O3-Yb2O3 coating systems). These 
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advanced coating systems are found to possess much lower thermal conductivity and better temperature 
stability than the conventional ZrO2-8wt%Y2O3 coatings [10–12]. From figure 6, it can be seen depending 
on the test temperature and coating composition, the conductivity reduction of 50 to 66% can be achieved 
for the advanced coating systems as compared to the ZrO2-8wt%Y2O3 coatings. Both the advanced low 
conductivity plasma-sprayed and EB-PVD coatings have demonstrated 100 to 200 hr long-term cyclic 
durability in the temperature range of 1360 to 1540 °C testing temperatures [11]. 
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Figure 5.—Thermal conductivity of advanced multi-component plasma-sprayed (a) and EB-PVD (b) oxide cluster 

thermal barrier coatings, as compared to determined by laser heat-flux technique. 
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Figure 6.—Thermal conductivity of advanced multi-component, zirconia-based thermal barrier coatings as a 
function of test temperature after 20 hr testing (k20), determined by the laser heat-flux technique tested at the 
surface temperature. Depending on the test temperature and coating composition, the conductivity reduction of 
50 to 66% can be achieved for the advanced coating systems as compared to the ZrO2-8wt%Y2O3 coatings after 
the 20hr sintering test. 

 
 

Advanced Thermal/Environmental Barrier Coating Applications 
 

Advanced T/EBCs are being developed for the low emission SiC/SiC CMC combustor liner and vane 
applications by extending the component temperature capability to 1650 °C (3000 °F) in oxidizing and 
water vapor containing combustion environments [8]. The coating system is required to have increased 
phase stability, lower lattice and radiation thermal conductivity, and improved sintering and thermal stress 
resistance under the future engine high-heat-flux and thermal cycling conditions. The simulated 
combustion water-vapor environment is also being incorporated into the laser heat-flux testing 
capabilities. 

Figure 7 shows thermal conductivity and durability of the 1650 °C plasma-sprayed HfO2-based 
thermal/environmental barrier coatings using the laser heat-flux technique. From figure 7(a) it can be seen 
that the initial and 20-hr sintering thermal conductivity of the HfO2-Y2O3 coatings generally decreases 
with increase in Y2O3 dopant content. The more stable cubic phase structured HfO2-15mol%Y2O3  
(15YSHf) and HfO2-25mol%Y2O3 (25YSHf) have been shown to have lower conductivity and less 
conductivity increases as compared to the tetragonal phase structured HfO2-5mol%Y2O3 (5YSHf) [8]. 
However, the advanced multi-component rare earth doped HfO2-Y2O3-Gd2O3(Nd2O3)-Yb2O3 coatings 
have achieved even lower thermal conductivity and better thermal stability. Figure 7(b) shows the  
1650 °C sintering and cyclic behavior of a multi-component HfO2-Y2O3-Gd2O3-Yb2O3 coating that was 
coated on the mullite-based EBC/Si on SiC substrates. The advanced multi-component HfO2 coating had 
relatively low conductivity increase during the first 20hr steady-state testing, and also showed essentially 
no cracking and delamination during the subsequent 100, 30 min cyclic testing at 1650 °C, indicating its 
excellent sintering resistance and cyclic durability. The 5YSHf showed severe spallation partially due to 
the large amount of monoclinic phase formation (>25 mol%) due to the phase destabilization [8]. 
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Figure 7.—Thermal conductivity and durability evaluation using the laser heat flux technique for 1650 °C thermal 
and environmental barrier coatings. (a) The initial and 20-hr sintered thermal conductivity of plasma-sprayed 
HfO2-Y2O3 coatings, tested at 1650 °C with the pass through heat flux 95 to 100 W/cm2, as a function of the 
Y2O3 concentration. The k0 and k20 denote the initial and 20 hr sintered thermal conductivity of the HfO2-Y2O3 
system. As also indicated in the plot, advanced multi-component HfO2 coatings have achieved even lower 
thermal conductivity and better thermal stability. (b) The 1650 °C sintering and cyclic behavior of a multi-
component HfO2-Y2O3-Gd2O3-Yb2O3 coating that coated on the mullite-based EBC/Si on SiC substrates, as 
compared to the baseline 5YSHf and 15YSHf coatings. 

 
 

Figure 8 shows the internal radiation conductivity component of the ZrO2-based coatings and 
monolithic hot-pressed ceramic specimens, determined by the laser heat-flux technique, as a function of 
the imposed thermal gradient (and thus heat flux) and surface temperature. The internal radiation 
component is defined as the ratio of the radiation thermal conductivity kradiation (kradiation = kapparent – klattice, 
where kapparent is the measured apparent conductivity and klattice is the lattice conductivity, respectively) to 
the lattice thermal conductivity klattice. The radiation conductivity contribution generally increases with 
increasing the thermal gradient and surface temperature. The dense hot-pressed specimens showed 
significantly higher internal radiation conductivity as compared to the plasma-spared coatings due to the 
lack of the micro-crack and micro-porosity scattering effect in these dense materials.  

Figure 9 shows the external radiation flux resistance ln (qrad/ qrad0), defined as the ratio of the pass-
through radiation heat-flux qrad to the imposed radiation flux qrad0, of a plasma-sprayed HfO2-Y2O3-
Nd2O3-Yb2O3 coating, as a function of coating thickness, as determined by a laser activated black-body 
emitting source-flux technique [13]. It can be seen that compared to the baseline plasma-sprayed  
ZrO2-8wt%Y2O3 coating, the advanced HfO2-Y2O3-Nd2O3-Yb2O3 coating showed the significantly 
improved radiation resistance. The advanced high stability and low conductivity 1650 °C HfO2 coatings 
will be expected to significantly impact future low emission combustor technology. 
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Figure 8.—The internal radiation component, determined for the ZrO2-based coating and monolithic ceramic 
specimens using the laser heat-flux technique, increases with increasing the thermal gradient (and thus heat 
flux) and surface temperature. The dense hot-pressed specimens show significantly higher internal radiation 
conductivity contribution compared to the plasma-spared coatings due to the lack of the micro-crack and micro-
porosity scattering. 
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Figure 9.—Significantly improved radiation resistance is demonstrated for an advanced plasma-sprayed  
HfO2-Y2O3-Nd2O3-Yb2O3 coating as compared to a baseline plasma-sprayed ZrO2-8wt%Y2O3 coating. 
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Conclusions 
 

1. A laser steady heat-flux approach has been established for ceramic thermal and environmental barrier 
coating thermal conductivity measurements and advanced coating development. 

2. Real-time monitoring of coating thermal conductivity has been demonstrated as an effective 
technique to assess coating performance under simulated engine conditions. 

3. The multi-component ZrO2-based thermal barrier coatings, as compared to the baseline  
ZrO2-8wtY2O3 coating, have demonstrated significantly lower thermal conductivity, improved long-
term high temperature stability and cyclic durability required for advanced turbine airfoil and 
combustor liner and vane applications. 

4. The multi-component HfO2-based T/EBC systems have shown the great potential for future 1650 °C 
(3000 °F) CMC and metallic combustor coating applications. 

5. The lattice and radiation conductivity of 1650 °C (3000 °F) T/EBC systems at high temperatures have 
been evaluated using the laser heat-flux techniques. 
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The development of low conductivity and high temperature capable thermal barrier coatings requires advanced testing

techniques that can accurately and effectively evaluate coating thermal conductivity under future high-performance and

low-emission engine heat-flux conditions. In this paper, a unique steady-state CO
2
 laser (wavelength 10.6 µm) heat-flux

approach is described for determining the thermal conductivity and conductivity deduced cyclic durability of ceramic

thermal and environmental barrier coating systems at very high temperatures (up to 1700 °C) under large thermal gradi-

ents. The thermal conductivity behavior of advanced thermal and environmental barrier coatings for metallic and Si-based

ceramic matrix composite (CMC) component applications has also been investigated using the laser conductivity

approach. The relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient

at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux conductivity

approach has been demonstrated as a viable means for the development and life prediction of advanced thermal barrier

coatings for future turbine engine applications.






