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“2100: A Space Odyssey?”
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Index Map Showing the Apollo 17 Landing Site and
Major Geographic Features of Taurus-Littrow Region
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Volcanic Glass from the Apollo 17 Mission to
Taurus-Littrow is Attractive for LUNOX Production

Oxygen yield is directly related to iron abundance for the full range of
soil compositions. Highest yields are from “ FeO-rich” volcanic glass. 

The best lunar oxygen ore found during the Apollo Program is the volcanic glass,
(“orange soil”) found at Taurus-Littrow. The glass beads are ~40 µm in diameter.
The orange beads are clear glass, while the black beads cooled at bit more slowly 
and had a chance to crystallize.

• Oxygen production from “FeO-rich” volcanic glass is a 2 step process:
FeO + H2 -------> Fe + H2O                                                2 H2O -------> 2H2 + O2 (LUNOX)

(Hydrogen Reduction & Water Formation)   (Water Electrolysis & Hydrogen Recycling)

Ref: Carlton Allen, “Prospecting for Oxygen on the Moon”, Ad Astra, Nov. / Dec. 1996, pg. 34 
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Rover / NERVA* Program Summary
(1959-1972)

• 20 Rocket/reactors designed, built and 
tested at cost of ~$1.4 billion

• Engine sizes tested
– 50-250 klbf

• H2 exit temperatures achieved
– 2,350-2,550 K (Graphite fuel)

• Isp capability
– 825-850 sec (hot bleed cycle)

• Burn duration
– 62 min (NRX-A6 - single burn)
– > 4 hrs (NRX-XE - 28 burns  

/ accumulated burn time)
• Engine thrust-to-weight

– ~3 for 75 klbf NERVA

• “Open Air” testing at Nevada Test Site

* NERVA: Nuclear Engine for Rocket Vehicle 
Applications

NERVA program experimental engine (XE)  
demonstrated 28 startup / shutdown cycles 
during tests in 1969.
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• “Current” focus is on smaller NTR sizes
– 5–15 klbf (Code S science–humans) 

• Higher temp. fuels being developed
– 2,700K (Composite),  2,900K (Cermet)

and ~3,100K (Ternary Carbides)

• Isp capability
– 915–1005 sec (expander cycle)

• Advances in chemical rockets/materials
– ~3–6 for small NTR designs

• Small NTR allows full power testing in
– “Contained Test Facility” at INEL with 

“scrubbed” H2 exhaust

• Engine sizes tested
– 50–250 klbf

• H2 exit temps achieved
– 2,350–2,550K (Graphite)

• Isp capability
– 825–850 sec (hot bleed)

• Engine thrust-to-weight
– ~3 for 75 klbf NERVA

• Testing (Rover/NERVA)
– “Open Air” exhaust at 

Nevada test site

Then (Rover/NERVA:1959–72) Now

For Public
Acceptance

Environmentally
“Green”

Easier to test

Smaller, Higher
Performance

Nuclear Thermal Rocket (NTR) Propulsion 
What’s New?
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15 klbf NTR
1.56m

Nuclear Thermal Rocket (NTR) Propulsion
-- Key Technology / Mission Features  --

• NTR engines have negligible radioactivity at launch / simplifies handling 
and stage processing activities at KSC
- < 10 Curies / 3 NTR Mars stage vs ~400,000 Curies in Cassini’s 3 RTGs

• High thrust / Isp NTR uses same technologies as chemical rockets

• Short burn durations (~25-50 mins) and rapid LEO departure

• Less propellant mass than all chemical implies fewer ETO launches

• NTR engines can be configured for both propulsive thrust and electric power 
generation -- “bimodal” operation

• Fewest mission elements and much simpler space operations 

• Engine size aimed at maximizing mission versatility 
-- robotic science, Moon, Mars and NEA missions

• NTR technology is evolvable to reusability and “in-situ” resource 
utilization (e.g., LANTR -- NTR with LOX “afterburner” nozzle)

3.24m
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“LOX-Augmented” NTR (LANTR) Concept
--Engine, Vehicle and Mission Benefits--
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“LOX-Augmented” Nuclear Thermal Rocket (LANTR)
“Afterburner” Nozzle Concept Demonstration

3 GO2 Supersonic
Cascade Injectors

Fuel-rich H/O Engine 
Used to Simulate NTR

GO2

GH2

Supersonic Combustion
& Thrust Augmentation
Goal: >30% or more

Cascade Injectors
(2 of 3)

Baseline H/O Thrust: 2100 lbf at 1000 psia and MR = 1.5. With GO2
injection into nozzle, measured thrust due to supersonic combustion
is 3200 lbf (~52% thrust augmentation achieved at 50:1 and MRL~3.0 )

• LANTR Concept and Benefits:
- “Afterburner” nozzle increases thrust by injecting &  

combusting  GO2 downstream of the NTR throat
- Enables NTR with variable thrust and Isp capability 

by varying the nozzle O/H mixture ratio (MR)
- Operation at modest MRs (<1.0) helps increase bulk  

propellant density for packaging in smaller volume   
launch vehicles

- LANTR’s bipropellant operation enables smaller, faster 
Moon / Mars vehicles when using extraterrestrial 
sources of H2 and O2

• LANTR Test Program Objectives: (Aerojet & GRC)
- Measure thrust augmentation from oxygen injection 

and supersonic combustion using  small, fuel-rich    
H/O engine with two different area ratio nozzles 

(@ 25:1 and 50:1) as “non-nuclear” NTR simulator.
- Use results to calibrate reactive CFD assessment of  

bimodal LANTR engine

• Status: LANTR afterburner nozzle demonstrated
- Oxygen injection into hot supersonic flow
- Supersonic combustion in the nozzle
- Elevated nozzle pressures measured
- Benign nozzle wall environment observed
- Increase O2 consumption rate with nozzle length
- Thrust augmentation >50% measured
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Implementation Approach for “LANTR-Based”
Lunar Space Transportation System Architecture

• Objectives:

• Reduce “up-front” investment costs for “in-space” assembly infrastructure
• Eliminate need for developing new ~130 t “Saturn V”-class HLLV -- major cost 

element of a lunar transportation system (LTS)
• Maximize delivered payload to the surface on each lunar landing mission
• Minimize LTS “recurring costs” so that commercialization and human settlement    

of the Moon can become practical

• Strategy:

• Utilize “all LH2” NTR-powered LTV operating initially in an “expendable mode”
• Expendable approach reduces support infrastructure, IMLEO / allows use of  

Shuttle-C or “Shuttle-derived” heavy lift vehicle (SDHLV) for Earth-to-orbit launch
• Cargo missions precede piloted with surface payloads “dedicated” primarily to 

LUNOX production and habitation requirements
• LUNOX used for refueling LLVs initially, then LANTR-powered LTVs

• Transitioning to “reusable” LTS architecture at the earliest possible date
improves life cycle costs

• Accumulated cost savings reinvested “gradually” in support infrastructure 
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Ref: S. K. Borowski, et al., “2001: A Space Odyssey” Revisited – The Feasibility of 24 Hour Commuter Flights 
to the Moon Using NTR Propulsion with LUNOX Afterburners,” NASA/TM—1998-208830 (December 1998)

“Shuttle-Derived” Heavy Lift Vehicle (SDHLV) 
Options for Future Human Lunar Mission
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Reference “Lunar Orbit Rendezvous” (LOR)
Mission Ground Rules and Assumptions

Ref: S. K. Borowski, et al., “2001: A Space Odyssey” Revisited – The Feasibility of 24 Hour Commuter Flights 
to the Moon Using NTR Propulsion with LUNOX Afterburners,” NASA/TM—1998-208830 (December 1998)

• Payload Outbound:

• Payload Inbound:

• Parking Orbits:

• Trans-lunar injection ²V  assumed to be 3100 m/s + g-losses
• Lunar orbit capture/trans-Earth injection ² V’s assumed to be 915 m/s
• Earth return:  Direct capsule entry
• Earth gravity assist disposal ² V assumed to be 194 m/s (for NTR missions)
• Mission duration:  54 days* (2 in LEO, 7 in transit, 45 days at Moon)
• ETO type/payload capability:  Shuttle-C or SDHLV / 66 t to 407 km circular
• LTV assembly scenario: 2 ETO launches with EOR&D (IMLEO < 132 t)

*Chemical TLI and NTR “core” stages in LEO for 30 days prior to second ETO
launch.
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Lunar NTR / LANTR Space Transportation 
System Assumptions

Ref: S. K. Borowski, et al., “2001: A Space Odyssey” Revisited – The Feasibility of 24 Hour Commuter Flights 
to the Moon Using NTR Propulsion with LUNOX Afterburners,” NASA/TM—1998-208830 (December 1998)

• NTR / LANTR
Systems:

• RCS System:

• Cryogenic
Tankage:

= 15 klbf/4904 lbm (LH2 NTR)
= 15 klbf/5797 lbm (LANTR @ MR=0.0)
= Tricarbide/Cryogenic LH2 and LOX
= 940 s (@ O/F MR = 0.0/LH2 only)
= 647 s (@ O/F MR = 3.0)
= 514 s (@ O/F MR = 7.0)
= 2.84 kg/MWt of reactor power
= 1% of total tank capacity
= 1.5% of total tank capacity
= 3% of usable LH2 propellant

= N2O4/MMH
= 320 s
= 5% of total RCS propellants

= “Weldalite” Al/Li alloy
= 4.6 - 7.6 m
= Cylindrical tanks with ¦ 2/2 domes
= 2 inches MLI + micrometeoroid debris
       shield
= 1.31/2.44 kg/m2/month (LEO @ ~ 240 K)
= 0.56/0.90 kg/m2/month (in-space @ ~ 172 K)
= 1.91/3.68 kg/m2/month (LLO @ ~ 272 K)

• Contingency Engines, shields and stage dry mass = 15%

kheed Eqn” heat flux estimates for MLI ² t ~ 2 inches
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    LANTR LTV 
    With LUNOX

e) "24 hr" Shuttle 
     Reusable LANTR 
     With LUNOX

b) "84 hr" 
    Expendable NTR 
    LH2 Only
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    LOX/LH2
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No 
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c) "84 hr" 
    Reusable NTR 
    LH2 Only

Evolution of NTR-Based Lunar Transportation
System With LUNOX Development & Utilization

Ref: Borowski et al., NASA/TM--1998-208830

Required LUNOX Levels:

~20 t ~80 t ~210 t

∆V ( TLI + LOI ) ~ 4.1 km / s                   ~ 6.9 km / s
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LUNOX Production Requirements

• 24 Hour “1-way” Transits (15 t / 20 Passenger Transport Module):

• LTV: (94.0 t LUNOX / mission*) x 52 weeks / year = 4888 t / year
• LLV: (28.8 t LUNOX / flight+) x (1 flight / LLV / week)

x 4 LLVs x 52 weeks / year = 5990 t / year

Annual  LUNOX Production Rate =10878 t / year
---------------------------------------------------------------------------------------------------------
*Assumes LUNOX Usage on “Moon-to-Earth” Transit only
+Assumes LLV Transports ~25 t of LUNOX to LLO and Returns to
Lunar Surface with Empty 5 t “Mobile” LUNOX Tanker Vehicle
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Lunar Mining Concept Comparisons

Comp arison  of Differe nt Lun ar Mi ning  Concepts
—P lant Mass, Power  and  Regolith Th roughput—

• Hydrogen R eduction  of “Iron- rich” V olcanic Glass: (LUNOX Produc tion @ 100 0 t/yr)

• Plant Mass (Mining, “ limi ted” B eneficiation, Processing and Power) = 167  t
• Power Req uirements (Mining, “ limi ted” Be neficiation and P rocessing) = 2.4 MWe
• Regolith T hrough put ( “limited” beneficiation, direc t pro cessing of “iron -rich”
volcan ic glass (“orange soil”) w ith 4% O 2 yield and  MM R = 25 to 1) = 2.5x104 t/yr

• Lun ar He lium-3 Extraction *: (50 00 kg (5 t ) He3/year)

• Mobile Mi ners (15 0 miners re quired  each we ighing 18 t/ = 2700  t
 each miner pr oduc es 33 kg H e3 per  year)

• Power Req uirements (200 kW d irect solar power/mi ner) = 30.0 MW
• Regolith T hrough out ( processing and  capture o f Solar W ind
 Implanted (SW I) volatiles occurs aboa rd the mi ner ) = 7.1x108 t/yr

*NOTE: The processing of lunar regolith for solar wind implanted He3 for terrestrial fusion power also produces large quantities 
of volatile by-product. For each metric ton (1000 kg) of He3 mined, ~6100 t of H2 and ~3300 t of H2O are also produced! 
This activity would therefore provide very large supplies of LH2  and LOX for LANTR, NEP/MPD and chemical engines. 
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Mining Area & LUNOX Production Rates to
Support “24 Hour” Lunar Commuter Flight

At the S.E. edge of the “Sea of Serenity” (Latitude: ~ 21o North / Longitude: ~29o East)
lies a vast deposit of iron-rich volcanic glass beads tens of meters thick 

(one of many sites on Moon)

Could supply enough LUNOX for daily 24 hour commuter flights to Moon for next 9000 yrs.!
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Future Artificial Gravity Station (AGS) 
Using 500 kWe Fission Power System
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Passenger Transport Module (PTM) Departing LEO Station 
for Docking with LANTR-powered Lunar Transfer Vehicle (LTV)
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“24 Hours” to the Moon Using LANTR
-- Leaving Orbit: “Aloha Earth” --
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LANTR “Afterburner” Nozzles in Operation 
During the LTV Earth Departure Phase
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“24 Hours” to the Moon Using LANTR
-- The Outbound Leg --
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Approaching the Western Rim 
Destination: SE Edge of the “Sea of Serenity”
(Latitude: ~ 21o North / Longitude: ~29o East)
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PTM Transfer from “Sikorsky-style” Lunar Landing
Vehicle (LLV) to “Flat-bed” Electric Surface Transport
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“Commercial” LUNOX Production
Facility & Supporting Hardware
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LUNOX Tanker LLV on Route to the 
Orbiting NEP Propellant Depot
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Human-tended NEP “Tanker/Propellant Depot” 

Supporting 24 Hour Lunar Commuter Flights



15

Exploration
Transportation

Significant Technology Development is Underway
To Support Design Definition for Future 

Bimodal NTR Robotic and Human Missions
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Human Exploration Possibilities Using NTR  

High thrust and Isp, power generation and ISRU allow significant
downstream growth capability--"Revolution through Evolution"

■ 

Earth

Moon

Jupiter

Mars

LH2 and LOX

LUNOX
/Polar Ice

Phobos

Deimos

Ganymede

H2O

H2O

Asteroids

Europa

Callisto

Mission possibilities:
     - Reusable Lunar and Mars Transfer Vehicles
     - "24 Hour" Commuter Flights to the Moon
     - Reusable Mars Ascent/Descent Vehicles

H2O


