

Nuclear Thermal Rocket (NTR) Propulsion What's New?					
Then (Rover/NERVA:1959–72)		Now			
• Engine sizes tested - 50-250 klbf	Smaller, Higher	• "Current" focus is on smaller NTR sizes – 5–15 klbf (Code S science–humans)			
• H ₂ exit temps achieved - 2,350-2,550K (Graphite)	Performance	 Higher temp. fuels being developed 2,700K (Composite), 2,900K (Cermet) and ~3,100K (Ternary Carbides) 			
• Isp capability - 825-850 sec (hot bleed)	Easier to test	 Isp capability 915–1005 sec (expander cycle) 			
• Engine thrust-to-weight - ~3 for 75 klbf NERVA)	Advances in chemical rockets/materials - ~3–6 for small NTR designs			
	Environmentally "Green"				
• Testing (Rover/NERVA) – "Open Air" exhaust at Nevada test site	For Public Acceptance	• Small NTR allows full power testing in – "Contained Test Facility" at INEL with "scrubbed" H ₂ exhaust			
Exploration Transportation					

Space Transportation Project Office Glenn Research Center	Lun	ar NTR / LANTR Space Transportation System Assumptions		
	• NTR / LANTR Systems:	*Propelling Us to New Worlds* = 15 klbf/4904 lbm (LH ₂ NTR) = 15 klbf/5797 lbm (LANTR @ MR=0.0) = Tricarbide/Cryogenic LH ₂ and LOX = 940 s (@ O/F MR = 0.0(LH ₂ only) = 647 s (@ O/F MR = 3.0) = 514 s (@ O/F MR = 7.0) = 2.84 kg/MWt of reactor power = 1% of total tank capacity = 1.5% of total tank capacity		
	RCS System:	= 3% of usable LH ₂ propellant = N ₂ O ₂ /MMH = 320 s = 5% of total RCS propellants		
	• Cryogenic Tankage:	 Weidalite A/LL alloy 4.6 7.6 m Cylindrical tanks with ; 2/2 domes 2 inches MLI + micrometeoroid debris shield 1.31/2.44 kg/m²/month (LEO @ ~ 240 K) 0.56/0.90 kg/m²/month (in-space @ ~ 172 K) 1.91/3.68 kg/m²/month (LLO @ ~ 272 K) 		
	Contingency	Engines, shields and stage dry mass = 15%		
heed Eqn" heat flux estimates for MLI ² t ~ 2 inches				
Explorati	on ion	Ref: S. K. Borowski, et al., "2001: A Space Odyssey" Revisited – The Feasibility of 24 Hour Commuter Flights to the Moon Using NTR Propulsion with LUNOX Afterburners," NASA/TM—1998-208830 (December 1998)		

Space Transportation Project Office Other Research Center	LUNOX Production Requirem	ents Projeting Us to New Works			
• <u>24 Hour "1</u> -wa	ay" Transits (15 t / 20 Passenger Transpo	<u>rt Module):</u>			
• LTV: (94.0 t LL	JNOX / mission*) x 52 weeks / year	= 4888 t / year			
• LLV: (28.8 t LU	x 4 LLVs x 52 weeks / year	<u>= 5990 t / year</u>			
	Annual LUNOX Production Rate	=10878 t / year			
*Assumes LUNOX Usage on "Moon-to-Earth" Transit only *Assumes LLV Transports ~25 t of LUNOX to LLO and Returns to Lunar Surface with Empty 5 t "Mobile" LUNOX Tanker Vehicle					
Exploration Transportation					

Space Transportation Project Office Gene Research Center	Lunar Mining Concept Comparisons				
	Comparison of Different Lunar Mining Concepts —Plant Mass, Power and Regolith Throughput—	"Propelling Us to New Worlds"			
• Hydrogen R eduction of "Iron-rich" Volcanic Glass: (LUNOX Production @ 1000 t/yr)					
 Plant Mass (M Power Require Regolith Throut 	lining, "limited" Beneficiation, Processing and Power) ements (Mining, "limited" Beneficiation and Processing) Jah put ("limited" beneficiation, direct processing of "iron-rich"	= 167 t = 2.4 MWe			
volcanic glass	("orange soil") with 4% O ₂ yield and MM R = 25 to 1)	= 2.5x10 ⁴ t/yr			
• <u>Lun ar Helium-3 Extraction</u> : (5000 kg (5 t) He³/year)					
 Mobile Miners each miner pro 	(150 miners required each we ighing 18 t/ oduces 33 kg H e³ per year)	= 2700 t			
 Power Require Regolith Throut 	ements (200 kW d irect solar power/miner) Jgh out (processing and capture of Solar Wind	= 30.0 MW			
Implanted (SW	 volatiles occurs aboard the miner) 	= 7.1x10 ⁸ t/yr			
'NOTE: The processing of lunar regolith for solar wind implanted He ³ for terrestrial fusion power also produces large quantities of volatile by-product. For each metric ton (1000 kg) of He ³ mined, ~6100 t of H ₂ and ~3300 t of H ₂ O are also produced! This activity would therefore provide very large supplies of LH ₂ and LOX for LANTR, NEP/MPD and chemical engines.					
Exploration Transportation					

Human Exploration Possibilities Using NTR

High thrust and I_{SP} , power generation and ISRU allow significant downstream growth capability--"Revolution through Evolution"

