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Abstract
The benchmark active controls technology and

wind tunnel test program at NASA Langley Research
Center was started with the objective to investigate the
nonlinear, unsteady aerodynamics and active flutter
suppression of wings in transonic flow. The paper will
present the flutter suppression control law design process,
numerical nonlinear simulation and wind tunnel test
results for the NACA 0012 benchmark active control
wing model. The flutter suppression control law design
processes using classical, and minimax techniques are
described. A unified general formulation and solution for
the minimax approach, based on the steady state
differential game theory is presented. Design
considerations for improving the control law robustness
and digital implementation are outlined. It was shown that
simple control laws when properly designed based on
physical principles, can suppress flutter with limited
control power even in the presence of transonic shocks
and flow separation. In wind tunnel tests in air and heavy
gas medium, the closed-loop flutter dynamic pressure was
increased to the tunnel upper limit of 200 psf. The control
law robustness and performance predictions were verified
in highly nonlinear flow conditions, gain and phase
perturbations, and spoiler deployment. A non-design
plunge instability condition was also successfully
suppressed.

Introduction
The benchmark active controls technology

(BACT) and wind tunnel test program at NASA Langley
Research Center was started with the objective to
investigate the nonlinear, unsteady aerodynamics and
active flutter suppression of wings in transonic flow.
Under the initial wind tunnel test program, a NACA 0012
airfoil rectangular wing, equipped with pressure
transducers, active trailing edge control surface, and two
spoilers were constructed for active flutter suppression
tests. The model was mounted on a pitch and plunge
apparatus in the NASA Transonic Dynamics Tunnel in
order to test flutter suppression control laws and measure
unsteady pressure distributions in nonlinear flows with
oscillating shocks and boundary layer separation. It was
necessary to develop a flutter suppression system that
would be stable under these flow uncertainties.

This paper describes flutter suppression control
law design processes using classical and unified linear-
quadratic Gaussian minimax techniques. A unified
general formulation for the linear quadratic Gaussian and
minimax methods based on the steady state differential
game theory is presented. Lessons learned in evaluating
and improving the singular value based multi-input multi-
output system robustness are described. Design
considerations for digital implementation are outlined.
Numerical simulation of the control law performance, and
wind-tunnel test results for flutter suppression, are also
presented.
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Fig. 1  BACT model test setup in wind tunnel

Wind Tunnel Model Description
A perspective view of the BACT model test set

up on the Pitch and Plunge Apparatus (PAPA) in the wind
tunnel is shown in Fig. 1. Fig. 2 shows the control surface
and sensor locations. The rigid wing section has pitch and
plunge degrees of freedom. The accelerometer sensors are
located near the section leading edge (zle) and trailing
edge (zte) at the section inboard. An identical pair of
sensors is located at the section outboard as a spare. The
partial span spoilers are located on the upper and lower
surfaces, just ahead of the trailing edge control surface.
Each of the control surfaces stretched over 30% of the
span and 25% of the chord. The bending and torsion
frequencies of the PAPA mounted NACA 0012 wing
model were 3.3 Hz and 5.2 Hz respectively.
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Fig. 2 NACA 0012 BACT wing on PAPA.

Preliminary Analysis
The preliminary analysis, control surface sizing,

and flutter suppression control law design were based on
the analytical state-space equations of motion of the
BACT wing model.1-4 These equations were developed
analytically, using structural dynamic analysis and
unsteady doublet lattice aerodynamics with rational
polynomial approximations5. These linear state space
equations consisted of 14 States (plunge, pitch, plunge
rate, pitch rate, 3 aerodynamic states for plunge, 3
aerodynamic states for pitch, 2 trailing edge flap actuator
states, 2 Dryden gust states), 2 inputs (actuator command
and gust input noise) and 7 outputs (z t e and zle
acceleration, flap command, flap deflection, rate,
acceleration, and gust velocity). This 14th order state
space equation was used for classical control law design
and for performance simulation and verification purposes.
For the optimal control law design purposes and for
presentation of the design data in a concise form, the 14th

order state-space equations were reduced to 4th state-space
equations, using residualization and Schur's balanced
reduction method6,7. First, it was reduced to an 8th order
system using residualization technique, in which only the
static part of all modes above 15 Hz were retained. The
resulting 8th order system was then balanced and the  four
states of the system with largest balanced singular values
were retained. A sample of the 4th order model design data
is presented in the Appendix.

Open-loop Responses
The analytical open-loop flutter dynamic

pressure in air was 128 pounds per square feet (psf) at a
flutter frequency of 4.5 Hz. Fig. 3 shows the response of
the wing trailing edge and leading edge accelerometers
due to a 1 degree step input of the trailing edge control
surface in air at 225 psf dynamic pressure. The primary
plunge motion mixed with small pitch diverges rapidly.
The unsteady lift forces oscillate about 8 lbs mean lift and

diverges at the rate of 6 lbs/sec. The moment diverges at a
rate of 1 lb/sec.
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Fig. 3 Open loop transient responses in air at 225 psf.

Frequency Responses
The open loop frequency responses were studied

using this 14th order plant model, to select a possible
candidate for feedback signal in the flutter suppression
control law design. The Bode diagram of the trailing edge
and leading edge accelerometers (zte) and (zle) and their
difference (zte- zle) due to the trailing edge control
surface excitation (dte) in air at 225 psf at Mach 0.5, are
shown in Fig. 4. The magnitude plots indicate
predominant plunge response at 3.3 Hz excitation
frequency. At 4.2 Hz excitation, the motion is a
combination of pitch and plunge with pitch motion
leading the plunge. The (zte - zle) represents a signal
proportional to the pitch acceleration and can be
integrated to provide a pitch-rate signal. Feedback of this
signal with proper gain can provide maximum pitch
damping at the flutter frequency.
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Fig. 4 The Bode diagrams of zte and zle and (zte - zle)
due to dte excitation in air at 225 psf, Mach 0.5.
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Classical Control Law Design
Based on this Bode plot, a classical flutter

suppression scheme using pitch-rate proportional
feedback from the zte and zle accelerometers was first
devised by studying the Nyquist diagrams. The Nyquist
diagram of the difference between trailing edge and
leading edge accelerometers (zte - zle) due to the trailing
edge control surface excitation (dte) in air at 200 psf, is
shown in Fig. 5(a). The arrow indicates increasing
frequency of excitation from 2 Hz to 6 Hz, with each *
representing frequency increment of 1 radian/second.
Since the open-loop plant had a pair of complex unstable
poles, and the Nyquist contour did not encircle the -1
point, the unit feedback closed-loop system would be
unstable. However, if the (zte - zle) signal was integrated
to provide a 90 degree phase lag and then used for
feedback with sufficient gain, the Nyquist contour would
rotate 90 degrees clockwise and then expand to encircle
the -1 point to achieve stability. A washout filter of type
s/(s + a) was also required, to remove any static bias that
would otherwise be amplified by the integration. The
series connection of integrator 1/s and washout filter was
equivalent to a first order lag filter a/(s + a), where  s  is
the Laplace operator.
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Fig. 5(a) Nyquist diagram of (zte- zle) due to dte
excitation in air at 200 psf, Mach 0.5

Gain Selection
Two types of lag filters, namely 5/(s + 5) and

10/(s + 10) were examined. The latter was selected to
achieve a higher phase margin at the plant input above the
flutter frequency. Higher phase margin was desirable for
two reasons7. First, the 25 Hz antialiasing filter and the
1/200 seconds computational delay contribute about 20
degrees of phase lag at the flutter frequency. Secondly,
with increasing dynamic pressure, the actuators may have
additional unknown phase lag, as the control surface

moves against higher aerodynamic loads. The Nyquist
diagram of the difference between trailing edge and
leading edge accelerometers (zte - zle) with 10/(s + 10)
lag filter and a gain KR = 500 due to the trailing edge
control surface excitation (dte) in air at 200 psf, Mach 0.5,
is shown in Fig. 5(b). The unit circle is also shown.
Because the Nyquist contour encircled the -1 point, the
unit feedback closed loop system would be stable. As
desired, the phase margin at the plant input above the
flutter frequency was about 60 degrees, but the phase
margin below the flutter frequency was only 20 degrees.
Preliminary analysis indicated that this basic simple
control law 1

dte
s

zte zle=
+

-500
10
10
( )

can suppress the flutter instability in the dynamic pressure
range from 0 to over 225 psf, both in air and in heavy gas
medium. However, the closed loop transient responses
and stability margins required substantial improvement.

+
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Fig. 5(b) Nyquist diagram of (zte - zle) with 10/(s+10)
lag filter and a gain KR = 500, due to dte excitation, in air
at 200 psf, at Mach 0.5 .

Root Locus
 Analysis of the root locus with pitch

acceleration (zte - zle) feedback through a 10/(s + 10) lag
filter with increasing gain KR = 0, 500, ..., 2500 is shown
in Fig. 6(a). The stabilization was achieved by increasing
the pitch model damping and lowering the plunge mode
frequency. An additional feedback of the pitch rate
proportional signal through a 5/(s + 5) lag filter with KR
= 500 and increasing gain KP =0,500, É, 2500 was used
to increase the damping and frequency separation further,
as indicated by the root-locus diagram shown in Fig. 6(b).
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This design strategy was equivalent to pitch-angle and
pitch-rate proportional feedback that increased the pitch

mode frequency and plunge mode damping.
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Fig. 6(a) Root-locus with (zte - zle) feedback through a
10/(s + 10) lag filter, with increasing gain KR (at left).
6(b) Root-locus with additional pitch-rate feedback
through a 5/(s + 5) lag filter with KR = 500 a n d
increasing gain KP. The arrows indicate increasing gain.

Pitch and Pitch-Rate Feedback Control Law
From the root-locus study, the feedback gains

were selected as KR = 500 and KP = 1. Thus, the second
order state space equations of the initial pitch and pitch-
rate feedback control law 2 is given by
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The control law inputs are zte and zle in g unit
and the output dte is in degrees. The high feedback gain
was required because the maximum (zte - zle) signal was
only of the order 0.1 g/deg. The response exhibited 2%
settling time in 1.5 seconds. However, the high gain
resulted in a severe sensitivity with respect to plant
perturbation and individual sensor uncertainty, as
indicated by the corresponding singular value plots in Fig.
7. Here G, K and D denote plant, controller and
uncertainty block, respectively8,9. This figure indicates
that the minimum singular value s(I+KG) is 0.3 at plant
input and s(I+GK) is only 0.01 at plant output. This
means that at 225 psf dynamic pressure, the closed-loop
system has very little robustness to multiplicative
perturbation8,9 at the plant output.

These singular value s plots can be related to
multivariable gain and phase margins using the universal
gain and phase margin diagram8 shown in Fig. 8. For
example, minimum singular value s(I+KG) of 0.3 is

equivalent to +20 degrees phase and +3 dB gain margins
at the plant inputs. The singular value 1/s[K(I+GK)-1] is
close to 0.005 g/degrees near 2 Hz. This means that the
plant has very little tolerance to an additive perturbation D
to the plant. The complex determinant locus of (I+KG)
and its distance from the origin is a measure of its
closeness to singularity.
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Fig. 7 Singular value plots for analysis of multivariable
stability margins with a perturbation D, at the plant input
or output, with classical control law 2, at 225 psf, in air.
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Final Pitch and Pitch-Rate Feedback Control Law
This lack of robustness associated with this pitch

and pitch rate feedback control law was alleviated by
choosing a feedback of a proper linear combination of the
two sensors with lower gains for KR, instead of using the
difference (zte - zle). The linear combination of zte and
zle, which is equivalent to feeding back both pitch
acceleration (zte - zle) and plunge acceleration (zte + zle)
in the ratio 0.7(zte- zle) + 0.3(zte + zle), appeared to
provide a superior control law. The final classical
feedback control law, using this combination that is
equivalent to (zte - 0.4 zle) feedback, along with reduced
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gains of KR = 50 and KP = 1, was analyzed and
implemented. The basic control is shown here in state-

space form and is denoted by classical control law 3.
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Response and Robustness Analysis
The closed-loop transient responses due to 1

degree step deflection of dte, in air at 225 psf, at Mach
0.5, is shown in Fig. 9. The trailing edge control surface
shows only 0.25 degrees overshoot with a maximum rate
of 12 degrees /sec. The lift and moment forces indicate
about 20% load alleviation compared to the open-loop
initial transient values shown in Fig. 3.  Figure 10 shows
the singular-value plots for analyzing the system stability
margins8,9 with law 3 at 225 psf dynamic pressure. Here
G, K and D denote plant, controller and uncertainty block
transfer function, respectively. This figure indicates that
the minimum singular value s(I+KG) is increased to 0.8
at plant input and at plant output s(I+GK) is increased to
0.3 from the corresponding values with law 2 presented in
Fig. 7. The minimum singular value s(I+KG) of 0.8 is
equivalent to +45 degrees phase and -5 dB to 12 dB gain
margins at the plant inputs. These gain and phase margins
are determined from Fig. 8 as previously described. The
minimum singular value 1/s[K(I+GK)-1] is also increased
from 0.005 g/degree to 0.04 g/degree near flutter
frequency, thus increasing the plant's tolerance to additive
plant perturbation. The complex determinant loci of
(I+KG) ideally should be outside the unit circle to achieve
+6dB gain margins and +60 degrees phase margins. The
computational delay and antialiasing filters added 20
degrees phase lag. Hence, the system nearly attained these
margins. The singular value plots indicate that the system
is stable with adequate singular value based multivariable
stability margins even at this high design dynamic
pressure of 225 psf. This pressure is 97 psf above the
open-loop flutter dynamic pressure qflutter 128 psf,
representing a 75% increase.

Unified Optimal Design
Flutter suppression control law design using an

unified (1) linear quadratic Gaussian (LQG) and (2)
Minimax method10,11 is presented next. The Minimax
approach is analogous to the time domain H-infinity
design12 and is based on the steady state differential game
formulation. The unified formulation of these optimal
design techniques provide a basic understanding of the
relation between them. The derivation from basic
principles using variational principles are provided. The

solution only requires an eigen-solver. The corresponding
Matlab script is presented in the Appendix.
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Fig. 9 Closed-loop responses: control surface deflection
and rate, lift and pitching moment, due to step input dte
with control law 3, at 225 psf, in air, at Mach 0.5 (open
loop q

flutter
 =128 psf).
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Unified Minimax Formulation
Consider the state space Eqs.(1-3) representing

the nth order plant, control input u(t), disturbance w(t),
design output yd and sensor output ys, where all necessary
rank, controllability and observability conditions are
assumed to be satisfied.

Plant state-space equations
dx(t)/dt = F x(t) + G u(t) + Gw w(t)
 and  x(0) = x0 (1)
Design output
 yd(t) = Hd 

 
x(t) +  Edu u(t) (2)

Sensor output
 ys(t) = Hs x(t)  + Esw w(t) (3)
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State-Feedback Minimax Regulator Problem
The Minimax problem is to determine the plant

input u(t)  which would minimize the quadratic
performance index  J  , and find the worst plant
disturbance w(t) and initial condition x0, which would
maximize  J  defined in Eq. (4),

J x Q x x Q u u Q u dtT
x

T
xu

T
u= + +

¥

ò12 0
( ) (4)

subject to the constraint Eq.(1) with x0Tx0 = 1 and
specified W   defined by,

W w R w dtT
w=

¥

ò12 0
( ) (5)

Usually, the constant weighting matrices Qx, Qu  are
unity, and Qxu = [0]  in a H-infinity exposition. These are
included herein to derive a unified general time-domain
formulation. The cross weighting matrix Qxu originates if
one uses yd from Eq. (2) in the performance index  J to
replace x. Then, Qx = Hd

TQydHd , Qxu = Hd
TQydEdu, and

Qu is replaced by [ Qu + Edu
TQydEdu ]. The significance

of the cross weighting matrix Qxu and how it can be
selected for pole-placement of the state regulator will be
shown later in the state-feedback regulator subsection.

The minimax solution is given by the stationary
condition of the augmented performance index J
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where, g is a scalar parameter. Using the calculus of
variation with respect to x(t), u(t), w(t) and the vector
Lagrange multiplier l(t), the conditions for ¶J=0  are
given by Eq.(1) and Eqs. (7) to (9).

dl/dt =  - Qx x - FTl - Qxuu (7)

Quu =  - GTl - QxuTx (8)

g2Rww  =    GwTl (9)

Solving for u(t) and w(t) from Eqs. (8-9) and substituting
them in Eqs. (1) and (7), the necessary stationary
conditions  for J are obtained as,

u =-Qu-1(GTl + QxuTx) (10)

w = g-2 Rw-1GwTl (11)

dx
dt
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dt
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T

u xu
T Tl

g
l

ì

í
ï

î
ï

ü

ý
ï

þ
ï

=
- - +

- + - -

é

ë
ê

ù

û
ú
ì
í
î

ü
ý
þ

- - - -

- -

( ) ( )

( ) ( )

( )

( )

1 1 2 1

1 1

  with x(0) =  x0  and  l( ¥) = 0 (12)

State-Feedback Regulator
Substituting l(t) = S(t)x(t), in Eqs.(10-12), leads

to Eqs.(13-15). The general Riccati Equation (15) is then
solved for the unknown n x n  matrix S.

u(t)  =  -Qu-1(GTS + QxuT) x(t) (13)

w(t) =   g-2 Rw-1GwTS x(t) (14)

dS/dt + SF + FTS + Qx - (SG + Qxu)Qu-1(SG + Qxu)T

+  S(g-2 GwRw-1GwT)S  = 0  (15)

The positive definite symmetric solution for S is obtained
from the (2n x n) eigenvectors of the n stable eigenvalues
of the Hamiltonian matrix inside the square bracket [ ] in
Eq.(12).  For the steady state problem (i.e. dS/dt  = 0 ),
only the steady part of the Riccati Equation (15) is solved
in order to obtain the symmetric positive-definite matrix
S. If the eigenvectors are partitioned into two n x n
matrices X  and L which represent the stable subspace
eigenvectors of x and l, then S = X-1L. The constant
optimal feedback gains, Co and Cw, and the closed-loop
system matrix are given by,

Co  = -Qu-1(GTS + QxuT) (16)

Cw = g-2 Rw-1GwTS (17)

dx/dt = [F + GwCw + GCo]x. (18)

Using Eqs.(1),(15) and (18), it can be shown11 that
optimal J and W defined in Eqs.(4) and (5) are given by,

J   = 0.5 Trace [S] (19)

W = 0.5 Trace [CwTRwCwX]. (20)

where  X  is the solution of the Lyapunov Equation (21)

[F+GwCw + GCo] X + X[F + GwCw + GCo]T +

x(0)x(0)T  = [0] (21)

The worst x(0)  that maximizes J  is given by the
eigenvector of the maximum eigenvalue of S. The
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standard linear quadratic regulator (LQR) solution is
obtained when g =  ¥, (i.e. Cw = 0). As g2 is decreased,

the worst response due to the disturbance w(t),  measured
by the maximum singular value of [xTQx

1/2   uTQu
1/2], is

reduced. The minimum value of g2 for which a stable
solution of Eq. (15) exists provides the minimax state-
feedback regulator that minimizes the maximum singular
value of [xTQx

1/2  uTQu
1/2].

The State-Estimator Equation
The derivation of coupled state-estimator

equations using linear quadratic minimax approach is still
a subject of research. Here the equivalent state-space
solutions12 of the H-infinity problem are presented. The
state estimator gain BoDo is obtained by finding the
symmetric positive definite solution for P from the state
estimator Riccati Eq. (24) which is dual to the state
regulator Riccati Eq. (15).

Bo  = -(PHsT+ Rwv)Rv-1 (22)

Do  =  (I - g-2PS)-1,    r(PS) < g2 (23)

dP/dt  =  PFT + FP + GwRwGwT -  (PHsT + Rwv) Rv-1

(PHsT + Rwv)T + P(g-2 Qx)P (24)

where Rv = EswRwEsw
T and must be positive definite and

Rwv = GwRwEsw
T . In Eq. (23) the spectrum r[PS] must

me less than g2 for D o to exist. The positive definite
symmetric steady-state solution for P  in Eq. (24) is
obtained from the (2n x n) eigenvectors of the n stable
eigenvalues of the estimator Hamiltonian matrix,

( ) ( )

( )

F R R H H R H H Q H

G R G R R R F R R H
wv v

T T
v

T
y

w w w
T

wv v wv
T

wv v

- - +

- - - -

é

ë
ê

ù

û
ú

- - - -

- -

1
2 2

1
2

2
1 1

1
1

1 1
2

g

(25)
which is dual to the state regulator Hamiltonian matrix
inside [ ] in Eq.(12). If the eigenvectors are partitioned
into two (n x n) matrices X  and L, then P = X-1L. The
state estimate vector z is given by the Eq. (26).

dz/dt  = F z + Gww +Gu + DoBo(H2z - y2) (26)

The complete duality relations between the state regulator
problem and the state estimator problem are presented in
Table 1.

 state regulator        state estimator
F FT

G HsT

Gw HdT

Qx GwRwGwT

 Qu Rv
S P

 Qxu Rwv
(tf - t) (t - t0)

Table 1. Duality relations between linear quadratic state-
regulator and state-estimator equations.

The Controller Equation
Substituting Eqs. (13), (14), (22) and (23) in Eq.

(26), the state-estimation feedback controller equations

dz/dt = [F + GwKw + GCo + DoBoHs] z -DoBoys (27)

u = Coz (28)

are obtained. The standard LQG solution is obtained
when g  =  ¥. The minimum value of g2 for which a stable
solution exists for P  in Eqs. (22-24), provides the
minimax control law that minimizes the maximum
singular value of the matrix [ys

TQys
1/2  uTQu

1/2], for the
closed loop system.

Unified Design Procedure
In this design, the output yd was chosen to be the

linear combination of the trailing edge and leading edge
accelerometer output (zte- 0.4 zle), same as that used in
the final classical design. One advantage of this choice
was that the plant had no transmission zeros in the open
right half plane. Usually in a frequency domain H-infinity
design, the plant equations are augmented with weighting
transfer functions. In this time domain formulation, the
weights were chosen as constants. These weighting
constants are chosen as inverse of the desired magnitude
of the weighted quantities. The initial controller was
designed with a large value of g2, using the plant Eqs. (1-
3), at 225 psf, in air, at Mach 0.5, assuming Gw = G. The
block diagram for this unified design procedure is shown
in Figure 11. The detailed design steps are described next.

State-feedback Regulator Design
Initially, the maximum output of the

accelerometer sensors were of the order 0.1g, (see figure
3), and control surface maximum root-mean-square
deflection was desired to be of the order 1 degrees. Thus,
the initial values of the weighting matrices were chosen as
follows: Qx = [ HsTQysHs] , Qys = [100], and Qu = [1] .
It was interesting to note that, instead of setting the cross
weighting matrix Qxu = [0] as usual practice, the cross
weighting matrix Qxu can be selected to place all state
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regulator poles beyond a certain distance a to the left of
imaginary axis. This selection is accomplished by using

Qxu  = - aGu(GuTGu)-1Qu             (29)

so that in Eq. (12), the eigenvalues of the diagonal matrix
block F are off-set by

GQu-1Qxu T=- aI. (30)

The control-weighting matrix  Qu was
subsequently reduced to 0.01 after a few design cycles to
improve the regulator performance. This process of
reducing Qu is equivalent to the state estimator loop-
transfer recovery technique at the plant output.

Fig.11. Unified minimax control law design and
evaluation procedure block diagram.

State-estimator Design
The state estimator was designed as a dual to the

state-regulator with  Rw = 1, each diagonal elements of
Rv = 0.01, and Rwv = [0]. After a few design cycles the
performance of the combined full-order controller was
examined, and then Rw was increased to 36.  Since we
also choose Gw = G, this was equivalent to asymptotic
state-regulator loop-transfer recovery at the plant input.

4th Order Optimal Control law
Subsequent solutions to the state-regulator and

state-estimator were obtained with the same choice of

weighting matrices but for decreasing value of g2, for
which positive definite solutions for S and P could be
obtained. Note that feasible solutions can be obtained for

lower values of g2 up to g2> r(PS), below which the
disturbance authority exceeded the control authority. The
4th-order optimal control law was designed with g2=50 in
order to obtain a low bandwidth controller. Fig. 12 shows
the key singular value plots for analysis of multivariable
stability margins to multiplicative and additive
perturbation D at the plant input and output, with this
minimax optimal control law, denoted as control law 4.
The minimum singular value s(I+KG) is increased to 0.9
at plant input and at plant output s(I+GK) is increased to
0.5 from the corresponding values of 0.8 and 0.3 for
control law 3, shown in Fig. 10.
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Fig. 12 Singular value plots for analysis of multivariable
stability margins with minimax optimal control law 4, at
225 psf, in air.
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Fig. 13 Open-loop and closed-loop responses due to step
input d te, with classical control laws 2, and 3, and
minimax optimal control law 4, at 225 psf, in air.

Fig.13 shows the open-loop and closed-loop
responses due to unit step input dte of trailing edge
control surface, at 225 psf, in air, at Mach 0.5, with initial
control law 2, classical control law 3, and minimax
optimal control law 4. The transient responses indicate
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that the classical control law 3 provided better damping
with lower control surface activity although the

minimax control law 4 provided better robustness
properties. This is the traditional trade-off between
performance and robustness. The classical control law 3
was implemented and tested in wind tunnel. These test
results along with those using two optimal control laws
designed by Waszak13 are presented next.

Flutter Suppression Test Results
The performance and robustness of the final

design was tested using the original full plant state-space
equations and filters required for digital implementation.
The 25 Hz antialiasing filters 157/(s+157) were added to
the plant output. The washout filter 5s/(s+5) and
computational delay were added to the controller output
equations. The 1/200 second computational delay was
modeled by a (400-s)/(400+s) filter. Before the wind-
tunnel test entry, the digital implementation was also
numerically simulated. The numerical simulation block
diagram of the control system using the final classical
control law 3 is shown in Figure 14. This nonlinear
simulation also included the effects of a dead-band
present in the electro-hydraulic actuator. Application of
the upper and lower spoiler for transonic flutter
suppression with the same digital control law was also
investigated using this simulation.

 The active flutter suppression control-law using classical
design was successfully tested in air and in heavy gas
medium at transonic speeds up to Mach 0.95. The tests in
air indicated an increase in the flutter instability boundary
from the open-loop dynamic pressure of 158 psf (Mach
0.38) to the tunnel limit of 200 psf. A summary of flutter
suppression test results in heavy gas is shown in Fig. 15.
The solid line indicates the experimental flutter boundary,
with the transonic dip at Mach 0.8. The tests at Mach 0.8
indicated an increase in the flutter stability boundary from
the open-loop dynamic pressure of 142 psf to the tunnel
upper limit of 200 psf. A non-design plunge instability
condition was also successfully suppressed. Classical
control law 3 exhibited superior performance and was
demonstrated to be stable with gain variation from 0.25 to
7, and phase variation from -90 to 60 degrees. A non-
design plunge instability condition was also successfully
suppressed. Comparison of open-loop and closed-loop
root mean square (RMS) responses of trailing edge
accelerometer and control surfaces using the present
classical control law 3 and two other control laws
designed by Waszak13 are shown in Figs. 16 and 17,
respectively. These two control laws used upper and
lower spoilers as control surface, for flutter suppression.
Fig. 16 indicates that when the system is open loop stable,
closing the loop actually reduces the response by 30%.
Fig. 17 indicates that that the classical control law 3
generally requires less control activity. All three control

laws are comparable in performance, with control law 3
exhibiting higher stability margins.
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Fig.14 Numerical simulation block diagram of the control
system digital implementation using the final classical
control law 3 for flutter suppression.
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Fig. 15 Open-loop flutter boundary and closed-loop flutter
suppression results from wind-tunnel tests in heavy gas.
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Conclusions
Simple classical control laws, when properly

designed based on physical principle, can successfully
suppress transonic flutter and provide significant stability
robustness in presence of shock and flow separation.
Comparable robust optimal control laws can also be
designed using a new generalized unified minimax
formulation. Verification and improvement of the
multivariable system stability robustness to unstructured
perturbations at the plant, input and output were important
steps in such a design process. Wind-tunnel tests in air
and heavy gas indicated an increase in the transonic
flutter dynamic pressure to the tunnel limit upper limit of
200 psf. The control law robustness and performance
predictions were verified in highly nonlinear flow
conditions, gain and phase perturbations, and spoiler
deployment.
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Fig. 17 RMS responses of the control surfaces with the
classical control law 3 and two control laws employing
spoilers, from wind-tunnel tests in heavy gas medium.
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Appendix
Reduced 4th order state space equations in air at 225 psf.
and Matlab script for unified minimax formulation and
solution

F = [  -1.6073   21.0010  0.     0.
       -21.0010   -1.6073  0.            0.
          0.           0.     0.7515   25.1670
          0.           0.         -25.1670     0.7515 ]

[G Gw] =  [   -3.8259     0.0597
                 12.7130     0.2720
                  -2.2202   -0.1107
                   4.1351   -0.1745  ]
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Hd = [ -0.0517    -0.0132    -0.0668      0.0063
         -0.0542    -0.0090    -0.0482     -0.0016

          0.            0.           0.             0.
          0.            0.           0.             0.
          0.            0.           0.             0.
        10.3780     0.6369    7.9924       0.0671
         0.3897     -0.9373   -2.7625       0.9909 ]

[Edu Edw] = [0.0440        0.0002
    0.0421        0.0004

                1.0000        0.
               50.0000        0.
                 0.              0.0968
                 0.5758      -0.0004
                 0.0358      -0.0003 ]

% Matlab script for unified formulation and solution
% xdot = F x +  Gw w  + G u
%   yd = Hd x + Edw w + Edu u   Design output
%   ys =  H  x  + Esw w + Esu u    Sensor output
% 7 design output [zte zle dte ddte gust lift moment]
% ------------------------------------------------
Q11 = h'*qh*h+hd'*qhd*hd;
Q22 = [q2]+[Edu'*qhd*Edu];
% pole placement using cross weight Q12
    alpha = 3.0;
Q12=-alpha*g*((g'*g)\Q22)+[hd'*qhd*Edu];
WW   = [Q11     Q12 ;  Q12'   Q22 ];
% Generalized LQR Weights
Ru = [gw*rw*gw'+nu*g*g'];
Rv = [rv]+[Esw*rw*Esw'];
Rwv = [gw*rw*Esw'];
% generalized EST Weights
VW = [Ru   Rwv ;  Rwv'  Rv ];
% Generalized DESIGN with Edw=0
 [af,bf,cf,df]=lqg(f,g,h,Edu,WW,VW);
%---------------------------------------------
%  STATE REGULATOR
% Check if Q11 is positive semi-definite and symmetric
if any(eig(Q11) < -10*eps) | (norm(Q11'-Q11,1)/norm
(Q11,1)  >  eps)
error('Q11 must be symmetric  positive semi-def), end
% Check if Q22 is positive definite and symmetric
if any(eig(Q22) <= 0) | (norm(Q22'-Q22,1)/norm(Q22,1)
> eps)
error('Q22 must be sym. positive definite'), end
%---------------------------------------------------
% Construct Hamiltonian
Hm=[(f-g*[Q22\Q12']) -g*[Q22\g']+gw*[rw\gw']/mu
-Q11-Q12*[Q22\Q12']    -(f-g*[Q22\Q12'])'];
[v,d]=eig(Hm);
%---------------------------------------------------
% Sort eigen vector of neg eigenvalues
d = diag(d);
[d,index] = sort(real(d));
if (~( (d(n)<0) & (d(n+1)>0) ))

error('Can''t order eigenvalues'), end
% select vectors with negative eigenvalues
chi = v(1:n,index(1:n));
lambda = v((n+1):(2*n),index(1:n));
S = real(lambda/chi);
%---------------------------------------------------
% Positive feedback gain ku
ku=-Q22\(g'*S+Q12');
kw=[rw\gw']*S/mu;
%---------------------------------------------------
% closed loop plant f = fcl
fcl=f+g*ku+gw*kw;
X=lyap(fcl,eye(n)) % assume xo*xo'=I
Xg=lyap(fcl,gw*gw'*36)
W=0.5*trace(kw'*rw*kw*Xg)
Jo=0.5*trace(S)
Uu=trace(ku'*ku*Xg)
Ycov=Hd*Xg*Xg'*Hd'
%---------------------------------------------------
%  H-inf ESTIMATOR DESIGN
% define Hamiltonian Jam
 Ru = [gw*rw*gw'+nu*g*g'];
J = [ (f-[Rwv/Rv]*h)'     [-h'/Rv]*h+[hd'/qhd]*hd/mu
      -Ru-[Rwv/Rv]*Rwv'      -(f-[Rwv/Rv]*h) ];
 [v,d]=eig(J);
%--------------------------------------------------
% sort eigenvector of stable eigenvalues
d = diag(d); [d,index] = sort(real(d));
% sort on real part of eigenvalues
 if (~( (d(n)<0) & (d(n+1)>0) ))
error('Can''t order eigenvalues'), end
%---------------------------------------------------
% select vectors with negative eigenvalues
chi = v(1:n,index(1:n));
lambda  =  v((n+1):(2*n),index(1:n));
P  =  real(lambda/chi);
ky = -(P*h'+Rwv)/Rv;
% check positive definiteness of kd
% Is this matrix (I - P*S/mu) nonsingular ?
mumin=max(abs(eig(P*S)))
if (mu > mumin),
kd = inv(eye(n)-(P*S)/mu); , else
error('spectrum(P*S) > mu , increase mu'), end
%--------------------------------------------------
eve=eig(f+kd*ky*h);
% controller structure
    Ao=f+g*ku+gw*kw+kd*ky*h;
    evc=eig(Ao);
%  H-infinity controller
%  Kop = [Ao -kd*ky -ku  zeros(nc,ns)];
[fc, gc ,hc, ec] = feedback(f, g, h, e, Ao, -kd*ky ,-ku,
zeros(nc, ns));
%-------------------------------------------


