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Polyimide composites are being evaluated for use in lightweight support structures 
designed to preserve the ideal flow geometry within thin shell combustion chambers of 
future space launch propulsion systems. Principles of lightweight design and innovative 
manufacturing techniques have yielded a sandwich structure with an outer face sheet of 
carbon fiber polyimide matrix composite. While the continuous carbon fiber enables 
laminated skin of high specific stiffness; the polyimide matrix materials ensure that the 
rigidity and durability is maintained at operation temperatures of 3 16 "C. Significant 
weight savings over all metal support structures are expected. 

The protypical structure is the result of ongoing collaboration, between Boeing and 
NASA-GRC seeking to introduce polyimide composites to the harsh environmental and 
loads familiar to space launch propulsion systems. Design trade analyses were carried 
out using relevant closed form solutions, approximations for sandwich beamdpanels and 
fmite element analysis. Analyses confKm the significant thermal stresses exist when 
combining materials whose coefficients of thermal expansion (CTEs) differ by a factor of 
about 10 for materials such as a polymer composite and metallic structures. The 
ramifications on design and manufacturing alternatives are reviewed and discussed. 

Due to stringent durability and safety requirements, serious consideration is being given 
to the synergistic effects of temperature and mechanical loads. The candidate structure 
operates at 316 "C, about 80% of the glass transition temperature T,. Earlier 
thermomechanical fatigue (TMF) investigations of chopped fiber polyimide composites 
made this near to T,, showed that cyclic temperature and stress promoted excessive creep 
damage and strain accumulation. Here it is important to verify that such response is 
limited in continuous fiber laminates. 

A comparison of the isothermal and thermomechanical fatigue of stitched and unstitched 
cross-ply laminates of M40J carbon fiber reinforced polyimide is being made. Test 
waveforms for thermal and mechanical load cycles were chosen to be representative of 
the combustion chamber operation cycle. Deformation and stiffness degradation due to 
fatigue loading is monitored during each fatigue test. Residual strength testing and 
microscopic observations are being made to quantify the extent of the damage. 
Preliminary results are reported including the accelerating influence of TMF and the 
relative durability of stitched laminates. Guidelines for design of durable support 
structures are discussed. 
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Analytical Methods and Results 

Principles of Optimal Lightweight Construction 
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Sandwich Construction: 
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Optimal Sandwiches: 
Simple Design 
Equations 
Faces carry bending 
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transverse force as 
shear stress 

Flexwal Stiffness 

E f t f d 2  
D =  

2 

f t 
d k 

Shear Stiffness 

G,d2 s= 
t, 

Glenn Research Center at Lewis Field - 
Upper Bound Solution for Stress: 
Simply Supported Beam 

and Stress 

m 



Beam Sizing Results: tld =0.07 
Face Sheet Stresses = 24 % UTS 
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3D FE Result : Single F 

Face sheet Max Principle Stress: 20% UTS 
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Synthesis of thermo-mechanical 
fatigue cycle 
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TMF Compressed Air Cooling 
Cage and Specimen 
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Strain Response: 
Isothermal Fatigue and TMF 

isothermal Fatigue: 
Strain Response 40 ksi 

M40JMFPE LI-52: Boeing Stitched Cross-Ply 
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Fatigue Strength: 
Isothermal and TMF 

M40JmPE H-52: Boeing Stitched Cross-Ply 
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