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ABSTRACT 

Flat plate skin friction calculations over a range of 
Mach numbers from 0.4 to 3.5 at Reynolds numbers 
from 16 million to 492 million using a Navier Stokes 
method with advanced turbulence modeling are com- 
pared with incompressible skin friction coefficient cor- 
relations. The semi-empirical correlation theories of van 
Driest; Cope; Winkler and Cha; and Sommer and Short 
T' are used to transform the predicted skin friction coef- 
ficients of solutions using two algebraic Reynolds stress 
turbulence models in the Navier-Stokes method 
PAB3D. In general, the predicted skin friction coeffi- 
cients scaled well with each reference temperature the- 
ory though, overall the theory by Sommer and Short 
appeared to best collapse the predicted coefficients. At 
the lower Reynolds number 3 to 30 million, both the 
Girimaji and Shih, Zhu and Lumley turbulence models 
predicted skin-friction coefficients within 2% of the 
semi-empirical correlation skin friction coefficients. At 
the higher Reynolds numbers of 100 to 500 million, the 
turbulence models by Shih, Zhu and Lumley and Giri- 
maji predicted coefficients that were 6% less and 10% 
greater, respectively, than the semi-empirical coeffi- 
cients. 

NOMENCLATURE 

A = surface area, C A i  
A,B = temperature ratio constants for Van 

Driest equation 
Ai = incremental surface area 
a = speed of sound 
CF = average skin friction coefficient 
c; = transformed average skin friction 

coefficient 
CEI = constants for K-e equations 

CE27 Cp 
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local skin friction coefficient, z,/q, 
skin friction drag 
shape function 
near-wall damping function for K ~ E 

total enthalpy 
freestream turbulence intensity 
turbulent kinetic energy 
mixing-length constant 
length of flat plate, 5-m 
mixing length 
Mach number 
number of grid points 
distance normal to wall 
production term for turbulent kinetic 
energy 
static pressure, Pa 
dynamic pressure, Pa 
Reynolds number, (puL)/p 
transformed Reynolds number 
turbulent Reynolds number, K2/(v&) 
strain tensor 
Sutherland's constant, 110.33 K 
temperature 
intermediate reference temperature 
time 
velocity 
magnitude of velocity, 
Cartesian velocity components 
friction velocity, 4 3 ,  
law-of-the-wall coordinate, U/u, 
vorticity tensor 
streamwise distance 
Cartesian displacement components 
law-of-the-wall coordinate, (nu,)/v 
law-of-the-wall height of first cell 
vertical distance 
free parameter for K turbulent tripping 
profile 
boundary 1 ayer thickness 
turbulent dissipation 
ratio of specific heats, 1.4 
boundary layer momentum thickness 
von Karman constant 
laminar viscosity 
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Subscripts 

turbulent viscosity 
viscosity evaluated at T' 
kinematic viscosity, ,u/p 
density 
density evaluated at T' and ps 
shear stress 
viscosity power law power, Eqn. 24 

adiabatic wall 

parisons were Mach numbers from 0.4 to 3.5 at unit 
Reynolds numbers of 1 to 30 million per foot. Skin fric- 
tion predictions are compared with the semi-empirical 
theories. Estimations of solution convergence and errors 
are discussed. Different transformations of Reynolds 
number and skin friction are used for several compari- 
sons with the skin friction theories. 

COMPUTATIONAL PROCEDURE 

Governing Equations 
cor = correlation reference conditions 
i = incompressible 
L = laminar 
T = turbulent 
T' = based on temperature T' 
t = freestream total conditions 
W = conditions at the wall surface 
6 = conditions at the boundary layer edge 
=, 0 = freestream conditions 

The general three-dimensional Navier-Stokes 
method PAB3D version 13 was used. This code has sev- 
era1 computational schemes and different turbulence 
and viscous stress  model^.^-'^ The governing equations 
are the RANS equations obtained by neglecting all 
streamwise derivatives of the viscous terms. The result- 
ing equations are written in generalized coordinates and 
conservative form. Viscous model options include thin- 
layer assumptions in any direction or any two indices 

INTRODUCTION 

The efficiency of airplane design has improved 
considerably as computing power and computer pro- 
grams have advanced and specialized tools, such as 
inverse design methods and advanced graphic inter- 
faces, have been developed. Despite this, some funda- 
mental aerodynamic flow issues continue to elude both 
the experimental- and the computational-based 
researcher. One such issue involves several aspects of 
skin friction, specifically, the measurement of skin fric- 
tion experimentally; the determination of skin friction 
through parametric correlations; and the prediction of 
skin friction using advanced computational methods. A 
survey of some of the semi-empirical theories of skin 
friction can be found in (Refs. 1-5). Most of the semi- 
empirical theories were fit to data over a limited range 
of Mach number and Reynolds number and have had 
varying degrees of success in obtaining accurate corre- 
lations. Typically 5 to 10% error is quoted for the empir- 
ical determination of skin friction due in part to scatter 
and accuracy in the experimental data sets, corrections 
for model effects and test techniques, and to a small 
degree, simplifications made in deriving the theories. 

The theories chosen for these comparisons will be 
those of Van Driest, Cope, Winkler and Cha, and Som- 
mer and Short.' These correlations will be compared 
with results from a three-dimensional Reynolds-aver- 
aged Navier-Stokes (RANS) code PAB3D (Refs. 6-10) 
using explicit algebraic Reynolds stress turbulence 
models for calculations on a 5-meter flat plate with zero 
pressure gradient. The conditions used for these com- 

fully coupled with the third uncoupled. Typically, the 
fully three-dimensional viscous stresses are reduced to a 
thin-layer assumption, but this assumption may not 
always be appropriate. Experiments such as the investi- 
gation of supersonic flow in a square duct were found to 
require fully coupled two-directional viscosity to prop- 
erly resolve the physics of the secondary cross-flows.6 

The Roe upwind scheme with third-order accuracy 
is used in evaluating the explicit part of the governing 
equations, and the van Leer scheme is used to construct 
the implicit operator. The diffusion terms are centrally 
differenced, and the inviscid flux terms are upwind dif- 
ferenced. Two finite volume flux-splitting schemes are 
used to construct the convective flux terms. The code 
can utilize min-mod, van Albeda, Spekreijse-Venkat, or 
modified Spekreijse-Venkat limiters. All solutions were 
developed with the third-order-accurate scheme for the 
convective terms and second-order scheme for the vis- 
cous diffusion terms. The min-mod limiter was utilized 
in the blocks containing wall-bounded flow, otherwise 
the van Albeda limiter was used. 

The code can utilize a 2-, 3-factor, or diagonaliza- 
tion numerical scheme to solve the flow equations. The 
2-factor scheme can be used when the predominant flow 
direction is oriented along the i-index of the grid. An 
example would be a jet-plume or nozzle configuration 
where the j ~ k index grids generally represent cross- 
planes of the exhaust flow. Though this scheme 
typically requires 10-15% less memory than the 
3-factor scheme it is less applicable to many general 
3-D aerodynamics problems due to inconsistency 
between the mesh topologies and the flow solution. 
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These flow simulations were performed using the 3-fac- 
tor scheme. 

Turbulence Simulation 

Version 13 of the PAB3D code used in this study 
has options for several algebraic Reynolds stress (ASM) 
turbulence simulations. The standard model coefficients 
of the K-E equations were used as the basis for all of the 
linear and nonlinear turbulent simulations as shown in 
Table 1. 

Table 1. Linear K - E Standard Coefficients 

Constant Value 

1.44 CEI 

1.92 CE2 

0.09 CU 

The near wall damping function of Launder and 
Sharma," 

f u  = eXp[-3.41/(1 + R ~ / 5 0 ) ~ ]  

determined the behavior of E as a function of 
R, = K2/(v&).  The boundary conditions for E and K 
at the wall are 

and 

K, = 0 

The turbulence model equations are uncoupled from the 
RANS equations and are solved at the same time step as 
that of the mean flow solution. Relatively high Courant- 
Friedrichs-Lewy (CFL) numbers can be used (e.g. 
1 < CFL < 10 ) and though rather problem dependent, 
occasionally flow solution transients can force a tempo- 
rary time step reduction of the solution of the turbulence 
equations. More often it is a grid-resolution or grid- 
quality issue rather than strictly a turbulence modeling 
difficulty that requires lower CFL numbers to be used. 
The turbulence equations are solved at all grid levels, 
not just at the finest grid level. 

The algebraic Reynolds stress turbulence model by 
GirimajiI2 with the Speziale, Sarkar and Gatski (SSG) 
 coefficient^'^ and the model by Shih, Zhu and LumleyI4 
(SZL) were utilized in this study. The coefficients of the 
linear K ~ E model were used unmodified as there has 
not yet been a recalibration performed with any of the 
ASM's in this code. The model developed by Shih, Zhu 

and Lumley is based on the turbulent constitutive rela- 
tions developed by Shih and Lumley." The model by 
Girimaji is also based on a set of algebraic relations 
between the turbulent Reynolds stresses and the mean 
velocity field but uses the pressure/strain relationship by 
Speziale et al.I3 The model is similar to that of Gatski 
and SpezialeI6 except for the determination of the vari- 
able coefficient C, . Further discussion of the turbulence 
model equations and the algebraic Reynolds stress tur- 
bulence model implementation can be found in (Ref. 9). 

Turbulent Trip Tactics 

The tripping of laminar flow to turbulent can be 
fixed through the imposition of E and K profiles at 
user-specified points or grid lines. The line or plane of 
the specified trip area is surveyed for the maximum and 
minimum velocity and vorticity, and a shape function 
from 0 to 1 is created. The shape function, F, is defined 
as 

f ~ fmin 

fmax fmin 
F =  

where 

f = UlWl 

and 

f is the product of the velocity, U , and vorticity magni- 
tude, IWI . The turbulent kinetic energy profile is then 
generated using 

K = a O F  

where a is a free parameter that determines the magni- 
tude of E and K profiles as a percent of the local veloc- 
ity magnitude 0. The value used for this paper is 0.1% 
( a  = 0.001 ). The E profile is developed from the 
assumption that production over dissipation of 
turbulence is 1, that is, P/E = 1 . This results in the 
equation 

= 2C,K2Sij(aui/axj) (1) 

The result of the tripping is typically observed as a 
localized spike in the K field. Depending upon the flow 
conditions, such as local Reynolds number, momentum 
Reynolds number, or freestream Mach number, turbu- 
lence may or may not develop downstream of the trip 
point. Turbulence quantities such as the production P , 
or the turbulent stresses u'u',u'v', ... are left as floating 
point numbers and are not explicitly set to zero or any 

_ -  

3 

American Institute of Aeronautics and Astronautics 



other value “upstream” of trip points. The initial levels 
of these quantities are determined by thresholds of 
&/a and pT/p that are parameters in a user input file. 
Table 2 lists the limits used for these calculations. 

Table 2. Numerical Thresholds for Turbulence 
Parameters 

Constant Value 

0.0001 

0.1 

Under some circumstances, these thresholds can be 
manipulated so as to cause a laminar boundary layer to 
transition without any explicit tripping specified. As an 
example, given the freestream conditions of M = 0.4, 
T, = 551.8R, and a unit Reynolds number of 1 million, 
with &/a = 0.0004, the flat plate flow was fully tur- 
bulent. If &/a = 0.0001 , transition never occurred. As 
a point of interest, the lower limit of K can be related to 
the freestream turbulence intensity, I , as 

So that &/a = 0.0001 would correspond to a fairly 
low freestream turbulence intensity of I = 0.02% . A pro- 
posed lower limit of freestream turbulence intensity to 
significantly influence transition is 0.08%.17 

Unfortunately the use of the particular ratios, 
&/a and pT/p,  for setting the lower threshold values 
for the various turbulent quantities makes a definitive 
correlation with I difficult because of the relationship 
between E at its lower threshold and &/a. That is, 

Cpa2(&/a)2 
‘lthreshold (pT/p)p 

P T ~ P  would have to be varied as the square of &/a to 
maintain a fixed ~l~~~~~~~~~ so potentially a correlation 
between I and transition to turbulence for this configura- 
tion could then be developed. 

Calculations performed for this paper explicitly set 
the trip point at the leading edge of the plate. Depending 
up the freestream Mach number and the unit Reynolds 
number, transition to turbulence occurred at different 
locations downstream of the leading edge. A section in 
Results and Discussion will address this issue further. 

SEMI-EMPIRICAL THEORIES 

The following is a short review of the theories used 
in this paper. Discussions of additional theories can be 
found in (Ref. 1). 

Karman-Schoenherr Eauation 

A number of semi-empirical correlations have been 
derived for skin friction coefficients with Reynolds 
number. The basis for most of the correlations in this 
report is a relationship by Schoenherr derived from the 
work of von Karman.18 A numerical fit by von Karman 
to a set of experimental data resulted in 

- 4.13 loglo[C,R,] E- 
C, and R, are defined here as 

and 

(4) 

(5) 

though not explicitly defined (Ref. l) ,  total drag is 
defined as the summation of the incremental shear stress 
at the wall times the incremental area. 

1 

Equation 4 is a result of a number of simplifications 
and assumptions about the character of an incompress- 
ible boundary layer. Typically, the viscous sublayer 
below y+ = 11.5 , is neglected and the velocity gradient 
at the low end of the log-layer region, 11.5y+ I n I 0.26, 
is set equal to 0.21 8.19 Additionally, the turbulent stress 
in the log-layer region is assumed constant and equal to 
the laminar stress at the wall. This assumption simplifies 
the solution of the velocity distribution (to be discussed 
in the following paragraphs) for a specific wall shear- 
stress which would be associated with a particular skin- 
friction coefficient and set of free-stream conditions and 
is fairly consistent with the nature of the total stress in 
the boundary layer. Figure 1 shows the interplay 
between the laminar stress and turbulent stress in the 
boundary layer for M = 0.4, R = 1 millionift. near the 
trailing edge of the flat plate (R, = 1 5 . 8 ~ 1 0 ~  ). 

The cross-over in the stresses occurs at approxi- 
mately y+ = 10 which is fairly close to the previously 
stated assumption of 11.5. The log-layer extends to 
approximately 0.26 which is in this is case is 
y+ = 1400 , and the turbulent stress in the log-layer is 

observed to be slightly less than that of the laminar 
stress at the wall. The boundary layer velocity profile is 
plotted for visual reference. 
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Figure 1. Laminar and turbulent stresses in boundary 
layer. 

Historically, either Prandtl’s ( I  = Kn) or von 
Karman’s ( I  = K(du/dn)/(d2u/dn2) ), theory have been 
used for the mixing-length 1 and will produce similar 
forms for the skin friction equation (Eqn. 4) but differ- 
ent coefficients on either side of the relation. Subse- 
quent to this, various techniques have been applied to 
deriving the skin-friction relationships. The von Karman 
momentum integral (Eqn. 8)  is the basis for relating the 
skin friction and Reynolds number. Since the integral 
equation is quite intractable analytically, several alter- 
nate representations (typically numerical approxima- 
tions) of the integral have been derived.” 

Van Driest Method 

Van Driest’s analysis used Prandtl’s mixing length 
and an interpolation expression representing von 
Karman’s integral equation considering for the effects 
of compressibility. This resulted in the following equa- 
tion from (Ref.1). 

(9) 
T 1/2 0.242 @ = logl0[(:F,wRL,w(<) ] 

where 

1 
A 

4 = =  

and 

T B  B 1  

- Taw B = - - I  
T W  

cF,w and RL,w are defined as: 

and 

An alternate form of the factors A and B are published in 
(Ref. 19) using Mach number and temperature. Equa- 
tions (11) and (12) are equivalent to the following 
equations, Eqs. (1 5) and (1 6), if the boundary layer edge 
conditions, 6 ,  are taken to be the same at the free- 
stream conditions and Taw = T, . 

and 

1 + 
- 1  (16) 

B =  2 
TWIT_ 

Both Van Driest and the theory by Cope evaluate quanti- 
ties by the conditions at the wall and an outside 
reference. Reference 1 is not explicit in the outside ref- 
erence condition definition. The subscript 6 was defined 
as “conditions outside the boundary layer,” whether that 
implies free-stream conditions or the conditions at the 
point of U/U_ = 0.995 , which by definition place some 
flow quantities 0.5% less than free-stream, is not dis- 
cernible. For the flat plate cases considered in this 
report, the reference shift results in slight shifts in both 
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conditions as follows: Reynolds number and skin friction, such that the result- 
ant numbers remain generally along the same curve. 

Cope Method 

The theory by Cope, rather than working from a 
mixing length law, assumes that the compressible veloc- 
ity profile can be transformed to the incompressible pro- 
file by using the wall density and viscosity. The 
resulting equation is shown. 

(17) 
0.242 ~ hglO['.F,wRL,w~] 

W 

Winkler and Cha Method 

The theory by Winkler and Cha uses a different 
scaling assumption for arriving at the compressible skin 
friction, i.e., 

and results in the following equation 

where now C, and RL are defined as previously dis- 
cussed under the Karman-Schoenherr equation sec- 
tion. For this correlation all quantities are evaluated at 
free-stream conditions, with the exception of the total 
drag integration which the author assumes still utilizes 
the viscosity at the wall for the determination of the wall 
shear stress. 

Sommer and Short T' method 

The T' method utilizes an empirical relationship 
between the Mach number and temperature at the edge 
of the boundary layer, and the wall temperature to arrive 
at a reference temperature at which the properties (den- 
sity and viscosity) of the boundary layer are evaluated. 
Several equations have been proposed, as discussed in 
(Ref. l),  but only the method of Sommer and Short will 
be shown.5 The reference temperature is calculated from 

1 + 0.035 M: + 0.45 - ~ 1 (2 1 
The skin friction formula then has the form 

(21) 
0.242 ~ 

log IO [CF,T'RL,T'] Jcrs ~ 

where CFS, and RLS, are now evaluated at the reference 

and 

Each theory has a different set of normalizations 
and are shown in Table 3. 

Table 3. Summary of Theories 

Theory C; R*L 

Van Driest 'F,w 

Cope 'F,w R L  ,w 

TWIT, 

Winkler ( ~ ~ / ~ , ) 1 / 2  (Tw/Taw)1/4 
C F  (Tw/Taw)1/4 RL (Tt/TF)1/2 and Cha 

Sommer and CF,T, RL,T, 
Short T' 

The skin friction coefficient calculated by the 
Navier-Stokes (NS) method, are non-dimensionalised 
by different coefficients than most of the correlations. 
The definitions for skin friction, C, and Reynolds num- 
ber, RL in the computational method are the same as 
Eqs. ( 5 )  and (6); therefore, the transformations shown in 
Table 4 are required to compare the computational 
results with most of the correlations. 

Table 4. Summary of computational transformations 

Correlation 
Reference ',,cor RL, cor 

T' 

Free Stream 

For simplicity in the analysis, several theories use 
the single power relation of 
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where typically o = 0.76. A slightly more accurate 
relation is Sutherland’s law. 

Figure 2 shows the difference in the viscous ratio 
using the power law compared to Sutherland’s law. The 
temperature T’ is substituted for T, when those 
reference conditions are used. For temperature ratios 
less than 2, the viscosity scaling error would be 5% or 
less using the power law compared to Sutherland’s law. 
Since temperature ratio ranged from 1.02 at M = 0.4 to 
2.41 at M = 3.5, the Sutherland’s law relation was uti- 
lized for post processing the skin friction predictions. 

Sutherland’s Law 
Omega Power Law ~~~~~~ 

4 

3.5 E 
1 i 2.5 2 

1.5 

TWIT, 

Figure 2. Viscosity ratio from temperature ratio. 

Solution Process 

Turbulent flow solutions that use ASM and the two- 
equation linear K - E model require 23 words of mem- 
ory per grid point. The code speed is dependent on the 
turbulence model, viscous model assumptions, and 
numerical schemes. All solutions for this study were 
performed on Silicon Graphics workstations. The code 
was compiled using Fortran 90, double-precision 
(64-bit) with 0 2  level of optimization. The code speed 
at the finest grid level was approximately 110 micro- 
secondsliterationigrid point running a 3-factor solution 
scheme, 1 thin-layer viscous direction and using an 
algebraic Reynolds stress turbulence model. The com- 
puter memory requirement was approximately 
18 megabytes. 

Solution residual and total skin friction were used 
to gauge solution convergence. Total skin friction was 
solution converged and grid converged. 

RESULTS AND DISCUSSION 

Determination of Boundary Layer Edge Criteria 

An accurate and consistent determination of the 
edge of the boundary layer is important for calculation 
of momentum thickness Reynolds number, shape 
factors, and edge conditions. The skin friction correla- 
tion, R, vs cf , was used to evaluate the applicability of 
several velocity and enthalpy edge values. Figures 3 
through 5 are the two criteria for M = 0.4 and figures 6 
through 8 are for M = 1.2 at the Reynolds number of 
1 milliodft. The skin friction and Reynolds numbers 
plotted here are evaluated using free stream values. At 
M = 0.4, the laminar and turbulent coefficients are con- 
sistent up to the velocity edge criteria of 0.995. The 
enthalpy edge criteria is consistent up to 0.99. The 
equivalence of the two criteria for this condition is 
shown in figure 5. 

A U/U,= 0.97 

0 U/U,= 0.995 
a u/u,= 0.99 

0.01 
0.009 
0.008 
0.007 
0.006 
0.005 

0.004 

u% 0.003 

0.002 

Figure 3. Velocity edge criteria M = 0.4, R = 1 million/ 
ft. 

The transonic case, M = 1.2, required much lower 
edge criteria, (Figs. 6 and 7). With the exception of the 
first cell, the velocity criteria of 0.98 and enthalpy crite- 
ria of 0.97 give fairly consistent results for the skin fric- 
tion correlation. These two criteria are plotted in figure 
8 and show similar results. For the higher supersonic 
conditions of Mach = 2.4 and 3.5, a consistent boundary 
layer edge could be determined with the enthalpy crite- 
ria as high as 0.995. The choice of which edge criteria is 
used results in different temperature and viscosity val- 
ues being used in determination of the boundary layer 
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edge conditions. Recall that the semi-empirical theories 
of Cope and Sommer and Short used boundary layer 
edge conditions for the scaling of the skin friction and 
Reynolds number rather than the free-stream. No matter 
which criteria is applied, the edge conditions will be 
slightly different than the free-stream. The variation of 
the edge velocity is plotted in figures 9 and 10 for the 
two edge criteria at M = 0.4 and 1.2. The two edge crite- 
ria produce very similar edge velocities for the subsonic 
case, but the particularly difficult transonic condition of 
M = 1.2, determines significantly different edge veloci- 
ties depending upon the criteria chosen. 

0 H/H,=0.95 
0 H/H,=0.96 
A H/H,=0.97 
D H/H,=0.98 

H/H,=0.995 
a H / H , = o . ~ ~  

0.01 
0.009 
0.008 
0.007 
0.006 
0.005 
0.004 

Ok 0.003 

0.001 ' I I 1 
lo2  io3  10 10 

Re 

Figure 4. Enthalpy edge criteria M = 0.4, R = 1 milliod 
ft. 

WH,=O99  
U N O =  0995 

0.009 
0.008 
0.007 
0.006 

0.004 

O" 0.003 

0.002 I I I 

Figure 5.  Equivalence of velocity and enthalpy edge, 
M = 0.4, R = 1 milliodft. 

0 U/U,=0.96 
A U/U,=0.97 
D U/U,=O.98 

0 U/U,=O.995 
a u / u , = o . 9 9  

0.007 
0.006 
0.005 

0.004 

ok 0.003 

0.002 

Figure 6. Velocity edge criteria at M = 1.2, R = 1 
milliodft. 

0 H/H,= 0.95 
0 H/H,= 0.96 
A H/H,= 0.97 
D H/H,= 0.98 

H/H,= 0.995 
a H/H,= 0.99 

0.009 
0.008 
0.007 
0.006 
0.005 0'01" 
0.004 

Ok 0.003 

0.002 

0.001 
102 103 104 10' 

Re 

Figure 7. Enthalpy edge criteria at M = 1.2, R =  1 
milliodft. 

ESTIMATION OF LAMINAR-TO-TURBULENT 
FLOW RATIO EFFECTS 

Laminar flow present in a computational flow solu- 
tion changes the predicted skin friction from that of an 
assumed fully turbulent flow. For a given physical 
geometry, obviously the Reynolds number of the 
problem is a major factor in determining the degree of 
laminar flow that might exist. Secondarily, the existence 
of laminar flow in the CFD solution is also dependent 
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upon whether there is sufficient grid density to actually 
predict the laminar flow. Assuming an incompressible 
flow with a critical Reynolds number of 500,000, 
Table 5 is an estimation of the expected laminar run for 
the 5-m flat plate at different unit Reynolds numbers. 
The third column is an estimation of the percentage of 
the flow that would be laminar. The fifth and sixth col 
umns are the two terms of an expression for total skin 
friction derived in Schlichting18 accounting for the 
initial laminar region. The first term is the regular 
expression for fully turbulent flat plate skin friction and 
the second term is a correction for the laminar segment. 

c, = 0'074 A ,5x105 < R, < l o7  ", RL 

WHO= 0 97 
U N , = O 9 8  

0.007 
0.006 
0.005 

0.004 

O" 0.003 

0.002 

0 HIHo=0.97 
0 urn, =0.98 

1 

0.995 

0.99 

$ 0.985 

0.98 

0.975 

0.97 105 10 107 10 10 
R, 

Figure 10. Normalized velocity at boundary layer edge, 
M = 1.2, R = 1 milliodft. 

Figure 1 1 A a  shows the variable as function of crit- 
ical Reynolds number. The quoted Reynolds number 
range of applicability is less than l o 7 ,  so it must be 
noted that applying it to the present problem is an 
extrapolation of this equation. At Reynolds numbers 
greater than 4 million per ft., the laminar aspect of the 
flat plate flow becomes less than 1/2 of 1 percent of the 
total length of the plate. Additionally, the estimated 
decrease in total skin friction coefficient is less than 
0.00003. Therefore, a leading edge spacing of 0.01 m 
should be sufficient to predict the laminar flow at the 
lower Reynolds numbers. It is inadequate to resolve any 
laminar flow in the high Reynolds number range, but the 
degree of error in total skin friction coefficient is esti- 
mated to be less than 0.00003. 

Figure 8. Equivalence of velocity and enthalpy edge, 
M = 1.2, R = 1 milliodft. 
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Urno=0.995 
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Figure 9. Normalized velocity at boundary layer edge, 
M = 0.4. R = 1 milliodft. Figure 11. Variation of constant A with critical 

Reynolds number. 
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Table 5. Estimation of laminar flow contribution to total skin friction coefficient 

Reynolds Reynolds 0.074 Est. Laminar x/L (%) 
run, x (m) L=5 m 

- -A/R, 
5 K L  

number number 
(milliodft.) (million) 

1. 16. 0.1524 3 .O 0.00268 -.00010 
2. 32. 0.0762 1.5 0.00233 -.00005 
4. 65. 0.0381 0.8 0.00203 -.00003 

-.00001 8. 131. 0.0191 0.4 0.00176 
-.00001 15. 246. 0.0102 0.2 0.00155 

30. 492. 0.005 1 0.1 0.00135 -.ooooo 

Flat-Plate Grid 

The 5-m flat-plate multiblock grid had an H-type 
mesh topology, with three blocks placed streamwise. 
The computational domain included an inflow block, 
block 1, extending 2.5 m upstream from the leading 
edge of the 5-m flat plate. The plate, block 2, had an 
initial streamwise grid spacing at the leading edge of 
0.01 m and was exponentially stretched from the leading 
edge to the trailing edge at a rate of 6.7% using a total of 
61 grid points. Block 3, downstream of block 2, was 
2.5 m long. This was to displace the outflow boundary 
away from the plate trailing edge. The first cell height of 
the baseline grid was varied according to the unit 
Reynolds number as shown in Table 6. The first cell 
height was fixed at both ends of the plate and exponen- 
tially stretched from the surface to the outer boundary. 
The upper boundary was 20 m away and the lateral 
width of the grid was 0.098 m. 

The grids had the following dimensions. 

Table 6. Reynolds number variation of grid spacing at 
surface 

Initial grid 
stretching y1 

Reynolds 
number Y t  

(milliodft.) (lo-6m) rate 

1. 7.50 0.42 14% 
2. 3.20 0.34 15% 
4. 1.80 0.37 16% 
8. 0.94 0.37 17% 

15. 0.50 0.35 18% 
30. 0.25 0.34 19% 

Table 7. Grid dimensions 

Block i-dim j-dim k-dim 

1 11 2 121 
2 61 2 121 
3 13 2 121 

Grid Convergence 

One subsonic case and one supersonic case are 
shown as representative grid convergence trends. 
Figures 12 and 13 show total skin friction predictions 
with inverse of total grid count for M = 0.4 and 1.2 
respectively, at several different unit Reynolds numbers. 
Each computation was run out to establish solution con- 
vergence at each grid level so that total drag varied less 
than 0.00005 for several hundred iterations. Addition- 
ally, the difference in total skin friction coefficient 
between the medium and fine density meshes was 
within 0.00005 for all unit Reynolds numbers except 1 
milliodft. where the two levels were within 0.00008 at 
M = 0.4. Slightly better grid convergence was obtained 
at M = 1.2. These variations within the same bounds of 
error are documented for the incompressible calcula- 
t i o n ~ . ~  

Transition to Turbulent Flow 

As mentioned earlier, explicit tripping was placed 
at the leading edge of the flat plate. Transition to 
turbulent flow occurred at different locations down- 
stream depending upon the freestream conditions. The 
point at which the flow actually transitioned was deter- 
mined for each solution by first calculating the peak of 
the ratio of turbulent viscosity to the local bulk viscosity 
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at each point along the plate. In regions of laminar flow, 
this ratio was nominally a constant between 1 to 10 
depending upon conditions. Then, at the onset of the 
development of turbulence, the ratio increases rapidly, 
typically changing by several orders of magnitude. 
Figure 14 is a plot of the turbulent viscosity ratio against 
distance downstream of the leading edge. This trend is 
representative of solutions with some region of laminar 
flow upstream of the transition point. In this case, transi- 
tion occurred at approximately x = 0.02 m, which is 
equivalent to a local Reynolds number of 0.58 million. 
The symbols are an indication of the streamwise distri- 
bution of the grid along the plate. 

R=lx106/R., M = 0.4 
R=2x106/R., M = 0.4 
R4x106/R., M = 0.4 
R=8x106/R., M = 0.4 
R=15x106/ft., M = 0.4 
R=30x106/ft., M = 0.4 

~~~~ 

~~~~ 

~~~~ 

0.004 

0.003 

u" 

0.002 

0.001 
10" 

1 /N 
Figure 12. Grid convergence of total skin friction for 
M = 0.4. 

Figure 15 is the compilation of the location of tran- 
sition with Mach number for each unit Reynolds num- 
ber. The open symbols are solutions in which there were 
less than 7 cells of laminar flow and the filled symbols 
are the transition points for solution with greater than 
7 cells. Critical Reynolds number is typically quoted as 
extending from 0.3 to 3 millionlX. The flat plate flow 
transitioned close to, but not always within, these values 
when greater than 6 cells were upstream of the transition 
point for unit Reynolds numbers less than 8 milliodft. 
As discussed in the first section, at unit Reynolds num- 
ber of 8 million/ft. or greater, there is little expectation 

of realizing a laminar flow solution. There is some vari- 
ation of critical Reynolds number with Mach number at 
unit Reynolds number greater than 8 milliodft., but this 
is due to the change in local Reynolds number of the 
first cell and not due to any physical shift in the transi- 
tion point. Even if there were sufficient grid density in 
the leading edge region to capture the laminar flow 
aspect of the higher Reynolds number flows, the error in 
skin friction is estimated to be limited to 0.00001. 

R=lx106/ft.,M = 1.2 
R=2x106/ft.,M = 1.2 
R4x106/ft.,M = 1.2 
R=8x106/ft.,M = 1.2 

4- R=15x106/R.,M = 1.2 
R=30x106/R.,M = 1.2 

~~~~ 

~~~~~~~ 

~-~~ 

0.004 

0.003 

u" 

0.002 

0.001 
1 o-5 1 o - ~  

1 /N 

Figure 13. Grid convergence of total skin friction for 
M = 1.2. 

Total Skin Friction 

The T' theory of Sommer and Short using the 
Karman-Schoenherr skin friction equation is plotted in 
figure 16 for the two Mach numbers of 0.10 and 3.50. 
As per the theory's design, the fully turbulent lines 
collapse to the same skin friction values, as do the par- 
tially laminar estimations. The difference between the 
incompressible and compressible lines are the trans- 
formed Reynolds numbers R* that occur at each Mach 
number that can be seen by the offset in the open and 
closed symbols. The Mach 3.50 results would predict 
skin friction coefficients significantly less than the 
incompressible results if plotted using untransformed 
skin friction and Reynolds number due to changes in 
both dynamic pressure and kinematic viscosity. 

11 

American Institute of Aeronautics and Astronautics 



- - 4  and Dartiallv laminar (assuminp a critical Revnolds .- 
number of 500,000) total skin friction coefficients The 
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Figure 14. Viscosity ratio growth with distance, 
M = 1.2, RL = 1 millionift. 
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Figure 15. Critical Reynolds number with Mach num- 
ber, Girimaji ASM. 

apparent shifting of the same computational result plot- 
to-plot are the result of the specific transformation 
required to make the comparisons for each semi-empiri- 
cal method. 

Fully Turbulent, M =0.10 
0 Rcrlt = 500,000, M = 0.10 - - - -  Fully Turbulent, M = 3.50 
e Rcrlt = 500,000, M = 3.50 

u.uu-r 

0.0035 

Figure 16. Sommer and Short T’ theory at low and high 
Mach numbers. 

Fully Turbulent 

Girimaji, Edge ref, Mach = 0.40 
Girimaji, Edge ref, Mach = 0.80 
Girimaji, Edge ref, Mach = 1.20 
Girimaji, Edge ref, Mach = 2.40 
Girimaji, Edge ref, Mach = 3.50 

- - - - - - - - - Rcrlt = 500,000 
0 
W 
A 
b 

I Y  
ti 
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0.0035 
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0.0025 

0.002 

0.0015 
1 

12 

American Institute of Aeronautics and Astronautics 



100 million regardless of the semi-empirical theory 
used. The high Mach number, low Reynolds number 
cases which had the larger extent of laminar flow 
matched very closely the incompressible skin friction 
curve using either the van Driest or Sommer and Short 
theories to transform the CFD. Interestingly, the use of 
wall quantities with Cope did not bring the skin frictions 
down to the partially laminar theory curve. The transfor- 
mations with Winkler and Cha did not transform the 
Reynolds number with increasing Mach number as 
much as van Driest or Cope, though the fall off in skin 
friction coefficient for M = 3.5, R = 1 milliordft. is at 
least discernible. 

0.004 

0.0035 

0.003 

0.0025 
*u” 

0.002 

0.0015 
1 Ob 10’ 1 ox 1 oy 

R: 

Figure 18. CFD transformed by Cope theory compared 
with incompressible skin friction coefficients. 

Fully Turbulent 
- - - - - - - - - Rcrlt = 500,000 

0 Girimaji,Mach = 0.40 
W Girimaji,Mach = 0.80 
A Girimaji,Mach = 1.20 
b Girimaji,Mach = 2.40 + Girimaji,Mach = 3.50 
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0.0035 

0.003 

*ti” 0.0025 
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Figure 19. CFD transformed by Winkler and Cha theory 
compared with incompressible skin friction coefficients. 

The skin friction coefficients predicted by the 
Girimaji turbulence model consistently transformed 
approximately 0.0002 greater than the incompressible 
skin friction curve for Reynolds numbers greater than 

* Y I  u 

Fully Turbulent 
- - - - - - - - - Rcrlt = 500,000 

0 Girimaji, B.L. edge ref, M = 0.40 
W Girimaji, B.L. edge ref, M = 0.80 
A Girimaji, B.L. edge ref, M = 1.20 
b Girimaji, B.L. edge ref, M = 2.40 
4 Girimaji, B.L. edge ref, M = 3.50 

0.004 

0.0035 

0.003 

0.0025 

0.002 

1 o6 1 o7 1 os 1 o9 
R: 

Figure 20. CFD transformed by Sommer and Short T’ 
with Karman-Schoenherr theory compared with incom- 
pressible skin friction coefficients, edge reference con- 
ditions, Girimaji model. 

The theory by Sommer and Short explicitly calls 
out use of the conditions at the edge of the boundary 
layer in the equation of determination of the reference 
temperature. As a result of the fairly benign nature of 
the flat plate flow, the use of free-stream values for 
Mach number and temperature appear not to signifi- 
cantly alter the comparison of the incompressible curves 
and the transformed CFD, as seen in figure 2 1, as com- 
pared to figure 20. In addition, use of either set of refer- 
ence values did not affect how well the predicted skin 
friction coefficients collapsed to a single curve. 
Figure 22 is a comparison of skin friction with flat plate 
Reynolds number with CFD using the ASM by Shih, 
Zhu and Lumley. These calculations collapse to the 
incompressible data similar to the results using the 
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Girimaji model, except for a slight shift below the corre- 
lations. These results are very similar to the incompress- 
ible calculations of Ref. 9. 

t Y I  u 

Fully Turbulent 
- - - - - - - - - R,,,, = 500,000 

Girimaji, F/S ref, M = 0.40 
W Girimaji, F/S ref, M = 0.80 
A Girimaji, F/S ref, M = 1.20 
b Girimaji, F/S ref, M = 2.40 
4 Girimaji, F/S ref, M = 3.50 

0.004 

0.0035 

0.003 

0.0025 

0.002 

1 o6 1 o7 1 os 1 o9 
R: 

Figure 21. CFD transformed by Sommer and Short T' 
with Karman-Schoenherr theory compared with incom- 
pressible skin friction coefficients, free-stream reference 
conditions, Girimaji model. 

Fully Turbulent 
- - - - - - - - - R,,,, = 500,000 

0 SZL, B.L. edge ref, M = 0.40 
W SZL, B.L. edge ref, M = 0.80 
A SZL, B.L. edge ref, M = 1.20 
b SZL, B.L. edge ref, M = 2.40 
4 SZL, B.L. edge ref, M = 3.50 
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Figure 22. CFD transformed by Sommer and Short T' 
with Karman-Schoenherr theory compared with incom- 
pressible skin friction coefficients, boundary layer edge 
reference conditions, Shih, Zhu and Lumley model. 

R: 

If the total stress in the boundary layer is examined, 
a potential reason for the difference in predicted skin 
friction between the two turbulence models (Girimaji 
and Shih, Zhu and Lumley) can be seen. Figures 23 
through 25 present the total shear stress predicted by the 
two turbulence models. Figures 23 and 24 present calcu- 
lations at M = 0.4 at a local Reynolds number of 
444 million (R = 30 millionift., near the trailing edge of 
the plate) which are compared with data from reference 
20. Figure 25 presents a calculation at M = 1.2 at a local 
Reynolds number of 14.2 million. The log scale for y/6 
in Figures 24 and 25 expands the inner region for clar- 
ity, though the lack of data preclude solid conclusions 
about the comparisons in that region of the boundary 
layer. A boundary layer profile is plotted on the opposite 
axis for reference in figure 23. Additionally, Tables 8 
and 9 are a sample of the wall values predicted by the 
two turbulence models at the station plotted for each 
Mach number. The Girimaji model predicts a higher 
level of total stress, velocity and friction velocity com- 
pared to predictions using Shih, Zhu and Lumley. The 
Girimaji model also predicts a higher overall total stress 
level in the boundary layer above y/6 = 0.2, as seen by 
the dashed line in figure 23. Possibly the prediction of a 
higher total shear stress in the log-layer region by Giri- 
maji results in over-prediction of the wall skin friction 
coefficient. At the lower Reynolds number, R, = 14.2 
million, where the two models are less different, the 
total stress in the boundary layer is also more closely 
matched. 

1 

0.9 

0.8 

0.7 

0.6 

0.5 5 
0.4 

0.3 

0.2 

0.1 ~ ~ 0.1 

0 0 
0 0.2 0.4 0.6 0.8 1 1.2 

N ?  

n ~\ 

0 ($\ : 
" "  " "  " "  " "  " '  - ? l l r s . '  

Y16 

Figure 23. Comparison of total shear stress in the 
boundary layer, M = 0.4, R = 30 millionift. 
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Figure 24. Detail of total shear stress in the boundary 
layer, M = 0.4, R = 30 milliordft. 
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Figure 25. Detail of total shear stress in the boundary 
layer, M = 1.2, R = 1 milliordft. 

Table 8. Wall values at Rx= 444 million, M = 0.4. 

Model u,(m/sec) T,(N/m2) u,(dsec) 

Girimaji 1.426 220.6 4.173 

SZL 1.189 183.8 3.812 

Table 9. Wall values at Rx = 14.2 million, M = 1.2. 

Model u,(dsec) T,(N/m2) u,(m/sec) 

Girimaji 4.303 21.91 14.217 
SZL 3.864 19.65 13.491 

CONCLUSION 

Compressible Navier-Stokes solutions using two 
algebraic Reynolds stress turbulence simulations rang- 
ing from low to very high Reynolds numbers are trans- 
formed using several different semi-empirical methods 
to be compared with incompressible data. Calculations 
were performed on a 5-meter flat plate geometry at 
Mach numbers from 0.4 to 3.5 at unit Reynolds number 
from 1 to 30 milliordft. with zero pressure gradient free- 
stream flow. Solution convergence at each grid level 
was typically better than 0.00005 drag coefficient. 
Errors due to grid density were also typically within 
0.00005 drag coefficient. Transition to turbulence was 
tracked and accounted for as an issue for overall drag. 
Both algebraic Reynolds stress models tested here pro- 
vided consistent and well behaved solutions to very high 
Reynolds number throughout the Mach number range. 
The semi-empirical theories of van Driest and Sommer 
and Short both collapsed the computational compress- 
ible skin friction coefficients closely to a single line. 
While the turbulence model proposed by Girimaji has a 
slightly more physical basis than the theory by Shih, 
Zhu, and Lumley, the high Reynolds number skin fric- 
tion coefficients predicted using Girimaji were typically 
high. At the lower Reynolds numbers 3 to 30 million, 
both turbulence models predicted skin-friction coeffi- 
cients within 2% of the semi-empirical theories. At very 
high Reynolds numbers, 100 to 500 million, the turbu- 
lence model by Shih, Zhu and Lumley predicted skin- 
friction coefficients 6% less than the semi-empirical 
theories and Girimaji predicted coefficients 10% above 
the correlations. 
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