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Abstract

This paper addresses the problem of reorienting a
rigid spacecraft from arbitrary initial conditions to
prescribed �nal conditions with zero angular veloc-
ity. The control law analyzed is based on quaternion
feedback and leaves the user to choose two gains as
functions of position, angular rate, and time. For
arbitrary initial states, conditions on the controller
gains are identi�ed that guarantee global asymptotic
stability. For the special case of rest-to-rest reori-
entations, the control law reduces to earlier results
involving a principal axis rotation. The paper also
addresses slew rate constraints, both, in terms of the
two and in�nity norms.

Introduction and Literature Survey

Spacecraft reorientation problems have been
treated extensively in the technical literature [1]-
[8]. Open-loop approaches enable the calculation
of high-precision solutions that minimize a user-
prescribed cost index such as fuel consumption or
maneuver time. However, these approaches usually
involve iterative procedures and are hence, in most
cases, computationally too expensive and unreliable
for on-board implementation.

Closed-loop or feedback approaches perform only
noniterative procedures and calculate the current
control action based on the current state and time.
Feedback approaches typically perform at best near-
optimally, and for nonlinear controllers and/or non-
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linear dynamical systems it is highly nontrivial
to guarantee that the controller always drives the
states to the desired position. Additionally, it is
usually di�cult to enforce state constraints, such as
slew rate limits.

In practice, slew rate limits often arise from the
requirement not to exceed the capabilities of a space-
craft inertial reference unit (IRU) to sense angu-
lar velocity; slewing too fast can saturate the IRU
thereby limiting the controller's ability to track the
maneuver. Depending on the spacecraft's archi-
tecture and the involved on-board instrumentation
these physical constraints are best captured by two-
norm or in�nity-norm constraints on the angular po-
sition.

The general nonlinear feedback control law ana-
lyzed in this paper has been in service in one form
or other for many years in numerous applications of
near-minimum-time satellite reorientation[9]-[11]. It
is derived through feedback linearization applied to
a representation of the dynamical system in terms
of quaternions in favor of Euler angles. The pa-
per completely analyzes this controller in terms of
its physical properties and identi�es the conditions
on the controller gains required to guarantee global
asymptotic stability and satisfaction of slew rate
constraints. Thus, the paper provides a frame work
of conditions within which the control engineer can
optimize the control gain functions' remaining de-
grees of freedom without having to consider global
stability issues and satisfaction of slew rate limits.

In [12], Wie and Lu have investigated the con-
strained slew controller implemented on the XTE
spacecraft[10]. This controller represents a special
case of the general controller analyzed in the present
paper. However, Wie and Lu only investigated rest-
to-rest maneuvers and assumed perfect execution
of all control commands without regard to exter-
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nal perturbations. For this special case, the reorien-
tation maneuver reduces to a one-degree-of-freedom
principal axis rotation. The intent of this paper is to
provide a more comprehensive look at the stability
of the constrained eigenaxis slew maneuver.

Problem Formulation

Consider the attitude dynamics of a rigid space-
craft. The equations of motion can be represented
in the following form:

J _! = � ! � J! + u (1)

_q = � 1

2
! � q +

1

2
q4 ! (2)

_q4 = � 1

2
!T q: (3)

Here, J denotes a constant 3 � 3-inertia matrix,
!T = [!1; !2; !3] denotes the angular velocity vec-
tor, uT = [u1; u2; u3]; denotes the control torque
input vector, and qT = [q1; q2; q3] together with q4
represent the angular position through its associated
quaternion vector [qT ; q4]:
Euler's rotational theorem states that the rigid-

body attitude can be changed from any given orien-
tation to any other orientation by rotating the body
about an axis, called the Euler axis, that is �xed,
both, with respect to the inertial frame as well as
with respect to the rigid body. For a given reori-
entation, let eT = [e1; e2; e3] denote a unit vector
along the Euler axis, and let � denote the associ-
ated rotation angle about the Euler axis. Then the
quaternion vector [qT ; q4] satis�es

q1 = e1 sin(�=2) (4)

q2 = e2 sin(�=2) (5)

q3 = e3 sin(�=2) (6)

q4 = cos(�=2) (7)

By construction, the quaternion vector [qT ; q4] is al-
ways of norm one, i.e.

q21 + q22 + q23 + q24 = 1: (8)

The vector [qT ; q4] has no physical meaning unless
constraint (8) is satis�ed. It is important to note
that constance of the norm of [qT ; q4] is guaranteed
through the equations of motion (1){(3), irrespec-
tive of the chosen control u: Hence, (8) is guaranteed
to be satis�ed (up to the precision of the numerical
integration) if it is satis�ed at a single point, say, at
the initial time.
We consider the following problem:

De�nition 1 Given the equations of motion (1){
(3) and a positive constant !max; �nd a feedback
control law

u = f(!; q; q4; t) (9)

that drives the states !; q; q4 from arbitrary initial
conditions !(t0) 2 R3; q(t0) 2 R3; q4(t0) 2 R with
q(t0)T q(t0) + q4(t0)2 = 1 to ! = 0; q = 0; q4 = �1;
such that the state constraints

jj!(t)jj2 � !max (10)

and/or
jj!(t)jj1 � !max (11)

remain satis�ed for all times.

The symbols, jj � jj2 and jj � jj1 denote the Euclidean
and 1 norms in the corresponding �nite dimen-
sional vector space, respectively, i.e.

jj!(t)jj2 =
p
!1(t)2 + !2(t)2 + !3(t)2

and

jj!(t)jj1 = maxfj!1(t)j; j!2(t)j; j!3(t)jg

Eigenaxis Rotation Controller

In the present paper, a controller (9) of the form

u(!; q; q4; t) = ! � J!

� k(!; q; q4; t) Jq

� c(!; q; q4; t) J! (12)

is investigated, where k and c denote scalar func-
tions of their arguments !; q; q4; and t; respectively.
This form of the controller is motivated by the de-
sire to eliminate the cross product term in (1) as
well as a state feedback. Explicitly, inserting (12)
back into (1) yields

_! = �kq � c!; (13)

so that (12) can be interpreted also as feedback lin-
earization if k and c do not explicitly depend on
states.
In the following, we will prove a number of useful

properties of the controller (12).

Property 1 Consider the dynamical system (1){
(3) with the feedback controller (12), where k and
c are Lipschitz-bounded with respect to !; q; q4; and
piecewise continuous with respect to t: Then !(t);
q(t); !(0) and q(0) are collinear if and only if !(0)
and q(0) are collinear.
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Proof of Property 1:
=)) Assume !(t); q(t); !(0) and q(0) are collinear

for all times. Then, obviously, !(0) and q(0) are
collinear.
(=) Assume !(0) and q(0) are collinear. We �rst

show that !(t) � q(t) � 0 for all times. We have

d

dt
(! � q) = �c ! � q � 1

2
! � (! � q): (14)

Here we used q � q = 0 and ! � ! = 0: Now con-
sider the system of ordinary di�erential equations
consisting of the equations (2), (3), (13), and (14).
It can be veri�ed that the right-hand side of this sys-
tem is Lipschitz-bounded with respect to the states
q; q4; !; and (! � q); and independent of time t
(thus measurable with respect to time t:) Hence,
whenever a solution to the system (2), (3), (13),
and (14) exists for given initial conditions, this so-
lution is determined uniquely (see the Appendix I
of [13]). As (! � q) � 0 obviously furnishes a solu-
tion to equation (14) subject to the initial condition
(!� q)(0) = 0 it is clear that !� q is guaranteed to
remain identically zero for all solutions to the sys-
tem (2), (3), (13), whenever the initial conditions
are such that !(0) � q(0) = 0: Hence !(t); and q(t)
are guaranteed to remain collinear whenever !(0)
and q(0) are.
To show that !(t) and q(t) are collinear not only

with respect to each other but also with respect to
q(0); let us de�ne the new states


(t) = !(t) � q(0);
Q(t) = q(t) � q(0):

(15)

Then, using the fact that !(t) � q(t) is identically
zero, it can be veri�ed that 
 and Q satisfy the
following di�erential equations:

_
(t) = �k Q(t) � c
(t);
_Q(t) = 1

2 q4(t) 
(t):
(16)

Considering the augmented system of di�erential
equations consisting of equations (2), (3), (13), and
(16), and using arguments similar to the ones used
above to show that !(t) � q(t) is identically zero,
we can show that 
 and Q remain identically zero
whenever they are zero at initial time. This implies
that !(t) and q(t) are collinear to q(0) if !(0) is
collinear to q(0):
By virtue of the fact that !(t) and q(t) are

collinear for all times if !(0) and q(0) are, the pre-
vious result implies that !(t) and q(t) are collinear
also to !(0) if !(0) is collinear to q(0):

q.e.d.

The statement of Property 1 can be strengthened
by replacing \piecewise continuous with respect to
time t" through \measurable with respect to time t".
Loosely speaking, the set of measurable functions in-
cludes all piecewise continuous functions, plus some
functions with an in�nite number of discontinuous
jumps. For a more precise characterization of mea-
surable functions, see the Appendix I of [13], or Sec-
tion 3.7 of [14]. Note that by de�nition, a function
f(x) is Lipschitz-bounded with respect to x if and
only if for every x in its domain there is a constant
L such that jjf(x + �x) � f(x)jj2 � L jj�xjj2 for
all su�ciently small �x. Hence, the condition of
Lipschitz-boundedness in Property 1 is guaranteed
to be satis�ed if the functions c and k are di�eren-
tiable with respect to !; q; q4; and have uniformly
bounded gradients for all �xed t:
Property 1 shows that !(0); q(0); !(t); and q(t)

remain collinear for all times if !(0) and q(0) are
collinear. In this case the body performs a rotation
about an axis that remains �xed in inertial space.
The condition that !(0) and q(0) be collinear is triv-
ially satis�ed for a rest-to-rest reorientation where
!(0) = 0:
Next we want to investigate what happens if the

control law in Property 1 is applied to a system
where !(0) and q(0) are not collinear. Note that
this situation can arise as a result of external per-
turbations; it is important that any \out-of-plane"
component does not grow with time.

Property 2 Consider the system (1)-(3) with the
control law (12). Now assume there is a constant
cmin such that

c(!; q; q4; t) � cmin 8 !; q; q4; t: (17)

Then

jj! � qjj2 � jj!(t0)� q(t0)jj2 � e�cmin (t�t0): (18)

Proof: We have

d

dt

�jj! � qjj22
�

(14)
= 2 (! � q)T

�
�c ! � q � 1

2
! � (! � q)

�
= � 2 c (! � q)

T
(! � q)� (! � q)

T
[! � (! � q)]

The second term on the right-hand side is zero as
(! � q)

T
is normal to ! � (! � q) : Hence

d

dt

�jj! � qjj22
�
= � 2 c � (! � q)

T
(! � q)

= � 2 c jj! � qjj22
3



With the lower bound (17) on c; this yields

jj!� qjj22 � jj!(t0)� q(t0)jj22 � e�2 cmin (t�t0);

which implies (18).

q.e.d.

Property 2 states that the normal component ! �
q decays exponentially in norm if and only if the
constant cmin in (17) satis�es

cmin > 0: (19)

Global Stability Analysis

Property 3 Consider the equations of motion (1)-
(3) with the control law (12). Assume that
A1) the gains k and c satisfy the conditions stated

in Properties 1 and 2, with cmin > 0;
A2) k is a positive constant, and
A3) c is bounded in the sense that for every M 2

R there is a C(M ) 2 R such that jc(!; q; q4; t)j �
C(M ) as long as jj!jj2 �M: Then,
P1) limt!1 jj!(t)jj2 = 0
P2) limt!1 q4(t) = +1 or �1;
P3) limt!1 jjq(t)jj2 = 0:

Proof: De�ne the function

V =
1

4 k

�
!2
1 + !2

2 + !2
3

�� q4 (20)

Di�erentiating V and inserting (1), (2), (3), (12)
yields after some calculation

_V = � c

2 k
!T! � 0: (21)

Assume property P2 is not satis�ed. Since V is
monotonically decreasing and bounded from below
this implies that there is a real number d 6= �1 such
that V converges to d as time goes to in�nity. Let
d0 denote the minimum distance of d to �1; i.e.

d0 = min fjd� 1j; jd+ 1jg > 0: (22)

Then let us pick positive real numbers 
; !0; and �0
such that


 �
p
4 k (V (t0) + 1) (23)

!0 � 1

2
(24)

!0 �
p
k d0 (25)

!0 � 1

2

2
4k

 
2

k d0
2

!2

+ C(
)

 
2

k d0
2

!35�1 (26)
�0 � d0

4
(27)

�0 �
cmin
2 k

�
!0
2

�2
!0

4 (k + C(
)
 )
(28)

As, by assumption, V approaches d arbitrarily
closely as time goes to in�nity, we can pick a time
t0 such that

d � V � d+ �0 8t � t0: (29)

The assumption that property P2 is violated ()
q4(t) does not go to �1 ) jjq(t)jj2 does not go to
zero) implies that we can pick t0 such that, in addi-
tion to (29), q(t0) 6= 0; and we can de�ne

T1 =
!0

2 (k + C(
) 
)
(30)

T2 =
2

k jjq(t0)jj2 (31)

Solving (20) for !T! and taking the square root we
can show immediately that 
 furnishes an upper
bound on jj!jj2 for all t � t0; namely

jj!jj2 =
p
4 k (V (t) + q4(t))

�
p
4 k (V (t0) + 1)

� 
 (32)

The second line in (32) follows from (29), which im-
plies V (t0) � v(t); and from jq4j � 1: The third line
follows from (23). We have to consider two cases,
namely jj!(t0)jj2 � !0 and jj!(t0)jj2 < !0:
Case 1: Assume

jj!(t0)jj2 � !0: (33)

From equation (1), with u replaced by the right-
hand side of (12) we �nd that for all t � t0

jj _!(t)jj2 = jj � k q(t)� c !(t)jj2
� k jjq(t)jj2+ c jj!(t)jj2
� k + C(
) 
 (34)

On the interval from t0 to t0 + T1 we hence have

!(t) = !(t0) + �!(t) (35)

with

jj�!(t)jj2 � (k + C(
) 
) T1

=
!0
2

(36)
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Hence, for all t 2 [t0; t0 + T1]

jj!(t)jj2 = jj!(t0) + �!(t)jj2
� jj!(t0)jj2 � jj�!(t)jj2
� !0 � !0

2

=
!0
2
: (37)

Hence

V (t0 + T1)
(21)
= V (t0)�

Z t0+T1

t0

c

2 k
!T! dt

� V (t0)� cmin

2 k

�!0
2

�2
T1

(28)

� V (t0)� 2 �0: (38)

But, assuming that V (t0) satis�es (29), (38) implies
that V (t0 + T1) violates (29). Hence case 1 is not
possible.
Case 2: Assume

jj!(t0)jj2 < !0: (39)

If jj!(t)jj2 becomes greater or equal !0 at some time
t1 > t0; then case 2 reduces to case 1 with t0 replaced
by t1:Hence, we only have to consider the case where

jj!(t)jj2 < !0 8 t � t0: (40)

Solving equation (20) for q4� 1; we �nd that for all
t � t0

jq4 � 1j =

����!T!4 k
� V � 1

����
=

����!T!4 k
� (V � d)� (d+ 1)

����
� �

����!T!4 k

����� jV � dj+ jd+ 1j
(40);(29);(22)

� � !2
0

4 k
� �0 + d0

(25);(27)

� d0
2

(41)

and similarly

jq4 + 1j =

����!T!4 k
� V + 1

����
=

����!T!4 k
� (V � d)� (d� 1)

����
� �

����!T!4 k

����� jV � dj+ jd� 1j
(40);(29);(22)

� � !2
0

4 k
� �0 + d0

(27);(25)

� d0
2

(42)

Hence, from (41), (42)

jq4 � 1j � jq4 + 1j �
�
d0
2

�2

(43)

for all t � t0: Noting that jq4�1j�jq4+1j = jq24�1j =
qT q; (43) immediately yields

jjq(t)jj2 � d0
2

8 t � t0: (44)

From (2) we �nd now that for all t � t0

jj _qjj2 = jj � 1

2
! � q +

1

2
q4 !jj2

� 1

2
jj!jj2| {z }
�!0

jjqjj2| {z }
�1

+
1

2
jq4j|{z}
�1

jj!jj2| {z }
�!0

� !0; (45)

so that on the interval from t0 to t0 + T2

q(t) = q(t0) + �q(t); (46)

with

jj�q(t)jj2 = jj
Z t0+T2

t0

_q(t) dtjj2

�
Z t0+T2

t0

jj2 _q(t)jj2 dt

� !0 T2: (47)

Using (46), (47) in equation (1) with u replaced by
the right-hand side of (12) yields on the interval
[t0; t0 + T2]

_!(t) = � k q(t)� c !(t)

= � k q(t0) + � _! (48)

where

jj�_!jj2 = jj � k�q(t)� c !(t)jj2
� k jj�q(t)jj2+ c jj!(t)jj2

(40);(47)

� k !0 T2 + C(!0) !0
(32)

� k !0 T2 + C(
) !0 (49)

From (48), (49), we see that on the interval t 2
[t0; t0 + T2]

!(t) = !(t0)� k q(t0) (t � t0) + �!(t) (50)

where

jj�!(t)jj2
� (k !0 T2 +C(
) !0) T2
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= !0
�
k T 2

2 +C(
) T2
�

(31)
= !0

"
k

�
2

k jjq(t0)jj2

�2

+C(
)

�
2

k jjq(t0)jj2

�#

(44)

� !0

2
4k

 
2

k d0
2

!2

+C(
)

 
2

k d0
2

!35
(26)

� 1

2
(51)

From (50) we now �nd

jj!(t0 + T2)jj2
= jj!(t0) � k q(t0) T2 +�!(t0 + T2)jj2
� � jj!(t0)jj2 + k jjq(t0)jj2 T2

� jj�!(t0 + T2)jj2
(39);(31);(51)

� � !0 + k jjq(t0)jj2 2

k jjq(t0)jj2 �
1

2

(24)

� � 1

2
+ 2� 1

2
= 1 (52)

But, in light of (24), (52) implies that jj!(t0 +
T2)jj2 � !0; which contradicts (40). Hence case 2
can be excluded, which completes the proof of prop-
erty P2.
Property P3 follows immediately from Property

P2 and qT q + q24 = 1 (see equation (8)).
Now assume Property P1 is not satis�ed. As q4 !

�1 (property P2) and _V � 0 (see equation (21))
this assumption implies that there is a real number
d > 0 and a time t1 such that jj!(t)jj2 > d for all
times t � t1:With (21) this implies this implies that
V is unbounded from below. But this contradicts
Property P2. Hence jj!(t)jj2 ! 0 as t!1:

q.e.d.

It is interesting to note that basically the same re-
sults as those obtained in Property 3 can be derived
if k is chosen negative instead of positive. Using

V = � 1

4 k

�
!2
1 + !2

2 + !2
3

�
+ q4 (53)

instead of the function V in (20), the proof of this
proposition is analogous to the proof of Property 3.
In summary, Property 3 can hence be replaced by
the following stronger statement:

Property 4 Consider the equations of motion (1)-
(3) with the control law (12). Assume that
A1) the gains k and c satisfy the conditions stated

in Properties 1 and 2, with cmin > 0;
A2) k is a nonzero constant, and

A3) c is bounded in the sense that for every M 2
R there is a C(M ) 2 R such that jc(!; q; q4; t)j �
C(M ) as long as jj!jj2 �M:
Then, as time t goes to in�nity, we have
P1) jj!(t)jj2 approaches 0;
P2) q4(t) approaches either +1 or �1;
P3) jjq(t)jj2 approaches 0:

Proof: Clear from the remarks above.

q.e.d.

Property 4 states that the control law (12) guar-
antees (under rather mild conditions) convergence
of the dynamical system (1)-(3) to ! = 0; q = 0;
q4 = � � 1: Interestingly, this convergence guaran-
tee can be made for any constant gain k; both, for
k > 0 and k < 0: However, Property 4 does not
provide any help in deciding which sign to pick for
k to perform a given reorientation most e�ectively.
As a rule-of-thumb strategy one may want to apply
the logic to pick k such that q4 ! +1 if q4(t0) � 0;
and, vice versa. To enable such a choice, the next
result addresses the question to which value (+1 or
�1) q4 can be expected to converge as a function of
the sign chosen for the gain k:

Property 5 Assume the gains k and c are constant
with c < 0 and k 6= 0: Then the eigenvalues of
the system obtained from linearizing the equations
of motion (1)-(3) with the control law (12) about
! = 0; q = 0; has the following properties:
P1) The eigenvalue associated with the q4-

component is always zero.
P2) If kq4 > 0; then all eigenvalues associated

with the ! and q-components have negative real
parts.
P3) If kq4 < 0; then three eigenvalues associ-

ated with the ! and q-components have negative real
parts, and three have positive real parts.

Proof: Linearizing the equations of motion (1)-(3)
with the control law (12) about ! = 0; q = 0; leads
to the linear dynamical system

_�x = A �x (54)

where xT = [�!T ; �qT ; �q4] and

A =

0
BBBBBBBB@

�c 0 0 �k 0 0 0
0 �c 0 0 �k 0 0
0 0 �c 0 0 �k 0
q4
2 0 0 0 0 0 0
0 q4

2 0 0 0 0 0
0 0 q4

2 0 0 0 0
0 0 0 0 0 0 0

1
CCCCCCCCA

(55)
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Obviously, the eigenvalue �7; associated with �q4 is
always zero. Using a determinant relation for par-
titioned matrices [15], it can be shown that the re-
maining matrix �A; obtained by deleting the last row
and last column of A; has the eigenvalues

�1 = �2 = �3 =
�2 c�

p
4 c2 � 8 k q4
4

(56)

�4 = �5 = �6 =
�2 c+

p
4 c2 � 8 k q4
4

(57)

Noting that 2 c >
p
4 c2 � 8 k q4 if kq4 > 0; and

2 c <
p
4 c2 � 8 k q4 if kq4 < 0; the statement of

Property 5 follows immediately from (56), (57).

q.e.d.

Clearly, from the results of Property 5 it can be ex-
pected that under the in
uence of external pertur-
bations q4 will always converge to +1 if k is picked
positive, and, vice versa, q4 will always converge to
�1 if k is picked negative.
These remarks, however, should be understood

only as educated guesses. Note that k and c are as-
sumed constant in Property 5, while c was assumed
possibly non-constant in Properties 3 and 4.

Slew Rate Constraint

To address the slew rate constraint, we will make
use of the following intuitive logic: The solution x(t)
of an ordinary di�erential equation _x = f(x; t) is
guaranteed to satisfy the constraint g(x; t) � 0 if
the functional dependence of f and g on x and t
is such that the slope of g goes to zero whenever g
approaches zero (from below). The associated lem-
mas summarizing the relevant results are given in
the Appendix. In the following these results will be
applied to the slew rate constraints (10), (11).

Two-Norm Constraint

For the slew rate constraint (10) we have the fol-
lowing result.

Property 6 Consider the system (1)-(3) with the
control law (12) and the slew rate constraint (10)
with !max > 0: Assume that the functional depen-
dence of the gains k and c on their arguments !; q;
q4; and t is such that

c � �k !T q

!T!
(58)

is satis�ed whenever

jj!jj2 � !max: (59)

Then the slew rate constraint (10), i.e.

jj!(t)jj2 � !max;

is guaranteed to remain satis�ed for all times t � t0
if it is satis�ed at the initial time t0:

Proof: Noting that

d

dt

�
!T!

�
= 2 !T _!

= 2 !T (�kq � c!)

= � 2 k !T q � 2 c !T! (60)

the statement of Property 6 follows from Lemma 1
in the Appendix.

q.e.d.

Intuitively, it can be expected that Property 6 re-
mains satis�ed if the inequality sign in (59) is re-
placed by an equality sign. With the help of
Lemma (2) it can be shown that this is in fact cor-
rect if k(!; q; q4; t) and c(!; q; q4; t) also satisfy
the conditions stated in Property 1. We have the
following result.

Property 7 Consider the system (1)-(3) with the
control law (12) and the slew rate constraint (10)
with !max > 0: Assume the gains k(!; q; q4; t) and
c(!; q; q4; t) are Lipschitz-bounded with respect to
!; q; q4; and piecewise continuous with respect to t:
Additionally, assume that k and c are such that

c � �k !T q

!T!
(61)

is satis�ed whenever

jj!jj2 = !max: (62)

Then the slew rate constraint (10), i.e.

jj!(t)jj2 � !max;

is guaranteed to remain satis�ed for all times t � t0
if it is satis�ed at the initial time t0:

Proof: Follows from Lemma 2 in the Appendix.

q.e.d.

Now assume c and k are such that conditions (58),
(59) (or (61), (62)) are satis�ed. Then it is immedi-
ately clear that the same conditions remain satis�ed,
if c is divided in half, or if k is multiplied by two.
In fact, the following general result can be easily
veri�ed.

7



Remark 1 Assume c and k are such that Prop-
erty 6 (or Property 7) is satis�ed. Let �1 > 0;
�2 > 0 be positive constants. Then, Property 6 (or
Property 7) remains satis�ed if we replace

c ! c �1
k ! k �2
!max ! !max

�2
�1

From Remark 1 it follows that, by picking c larger
(or k smaller) than required by the conditions of
Properties 6 or 7, the maximumattainable slew rate
is reduced to values smaller than !max: In practice,
this may represent an undesired performance degra-
dation, and it may hence be a design goal to sat-
isfy conditions (58) / (61) only marginally, i.e. with
equality rather than strict inequality.
However, simply replacing the inequality signs in

conditions (58), (61) by equality signs would lead to
controller gains that maintain jj!(t)jj2 at a constant
value for all times after jj!jj2 = !max is reached.
Obviously, this is not desirable. Formally, such an
approach would also violate condition (17), which is
required in our proof of global stability (see Prop-
erty 4).
A sensible strategy that leads to a controller

which satis�es Properties 1, 2, 4 of this paper and
marginally satis�es the slew rate constraint (10), is
to pick a constant gain k > 0; and to enforce condi-
tions (58), (61) of Property 6 or 7 with strict equal-
ity, but to override this constraint (and instead en-
force (58), (61) with strict inequality) whenever this
is required by at least one of the conditions of Prop-
erties 1, 2, 4. It can be easily veri�ed that all condi-
tions of Properties 1, 2, 4 can be satis�ed this way.
The approach leads to a constant gain k and to a
piecewise de�ned, continuous gain function c:
A convenient simpli�cation of the conditions of

Properties 6 and 7 is as follows.

Remark 2 The conditions (58), (59) of Property 6
(conditions (61), (62)) of Property 7) are guaranteed
to be satis�ed if the functional dependence of k and
c on their arguments !; q; q4; and t is such that

c = jkj jjqjj2
!max

(63)

whenever jj!jj2 � !max (whenever jj!jj2 = !max):
For the special case where �k!T q = jkjjj!jj2jjqjj2;

the right-hand sides of conditions (63), (58) (con-
ditions (63), (61)) are identical. In this case,
condition (58) (condition (61)) is satis�ed only
marginally and the slew rate constraint (10) can be
satis�ed with equality.

To see this, note that for jj!jj2 � !max

c = jkj jjqjj2
!max

� jkj jjqjj2jj!jj2 � jkj
j!T qj
jj!jj22

� �k !T q

!T!

In�nity-Norm Constraint

In many practical applications, the slew rate con-
straint has to be enforced in terms of the in�nity
norm (11) in favor over the two-norm (10). Clearly,
the slew rate constraint (11) can be equivalently ex-
pressed in terms of the three scalar conditions

!i(t) � !max; i = 1; 2; 3: (64)

Applying the �ndings of Lemma 1 in the Appendix
to any one of the components in (64) we obtain the
following result.

Property 8 Consider the system (1)-(3) with the
control law (12) and a slew rate constraint of the
form (64) with �xed i 2 f1; 2; 3g and !max > 0:
Assume that the functional dependence of the gains
k and c on their arguments !; q; q4; and t is such
that

c � �k qi
!i

(65)

is satis�ed whenever

j!ij � !max: (66)

Then the slew rate constraint

j!i(t)j � !max

is guaranteed to remain satis�ed for all times t � t0
if it is satis�ed at the initial time t0:

Proof: Noting that

_!i = �c !i � k qi (67)

(see equation (13)), the statement of Property 8 fol-
lows from applying Lemma 1 in the Appendix two
times, namely to the constraints !i� !max � 0 and
�!i � !max � 0:

q.e.d.

In complete analogy to Property 7 the statement
of Property 8 can be strengthened by replacing the
equality sign in (66) through an equality sign. Ex-
plicitly, we have the following result.
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Property 9 Consider the system (1)-(3) with the
control law (12) and a slew rate constraint of the
form (64) with �xed i 2 f1; 2; 3g and !max > 0:
Assume the gains k(!; q; q4; t) and c(!; q; q4; t)
are Lipschitz-bounded with respect to !; q; q4; and
piecewise continuous with respect to t: Additionally,
assume that k and c are such that

c � �k qi
!i

(68)

is satis�ed whenever

j!ij = !max: (69)

Then the slew rate constraint

j!i(t)j � !max

is guaranteed to remain satis�ed for all times t � t0
if it is satis�ed at the initial time t0:

Proof: Follows from Lemma 2 in the Appendix.

q.e.d.

Properties 8 and 9 apply for each component of the
three constraints i = 1; 2; 3 in (64) individually. Any
combination of these constraints is satis�ed if k and
c are such that conditions (65), (66), in the case of
Property 8, and conditions (68), (69), in the case of
Property 9, are satis�ed for the appropriate combi-
nation of indices i:
In complete analogy to Remark 1 we have:

Remark 3 Assume c and k are such that Prop-
erty 8 (or Property 9) is satis�ed. Let �1 > 0;
�2 > 0 be positive constants. Then, Property 8 (or
Property 9) remains satis�ed if we replace

c ! c �1
k ! k �2
!max ! !max

�2
�1

In complete analogy to the conclusions drawn from
Remark 1 it follows from Remark 3 that, by picking
c smaller (or k larger) than required by the condi-
tions of Properties 8 or 9, the maximum attainable
slew rate is reduced to values smaller than !max:
In practice, this may represent an undesired per-
formance degradation, and it may hence be a design
goal to satisfy conditions (65) / (68) only marginally,
i.e. with equality rather than strict inequality. From
the same arguments as those used in the paragraphs
following Remark 1 it follows, as in the previous sec-
tion, that it is not sensible to blindly enforce condi-
tions (65) / (68) with strict equality throughout.
In analogy to Remark 2, a convenient simpli�ca-

tion of the conditions of Properties 6 and 7 can be
given as follows.

Remark 4 The conditions (65), (66) of Property 8
(conditions (68), (69) of Property 9) are guaranteed
to be satis�ed if the functional dependence of k and
c on their arguments !; q; q4; and t is such that

c = jkj jqij
!max

: (70)

whenever j!ij � !max (whenever j!ij = !max):

Summary and Conclusions

We have analyzed a nonlinear feedback approach
to the problem of reorienting a rigid spacecraft from
arbitrary initial conditions to prescribed �nal con-
ditions with zero angular velocity. The control
law, which is derived from feedback linearization,
is based on quaternion feedback and leaves the user
to choose two gains as functions of position, angu-
lar rate, and time. Under mild conditions on these
gains it is shown that the control law has the follow-
ing properties: 1) rest-to-rest boundary conditions
result in a principal axis rotation, 2) for arbitrary
initial conditions, the rotational motion perpendic-
ular to the principal axis decays exponentially, and
3) the prescribed �nal states are guaranteed to be
reached asymptotically in time. Additionally, the
paper analyzes slew rate constraints, both, in terms
of the two-norm and the in�nity-norm. For both
cases, conditions on the controller gains are derived
that guarantee satisfaction of the slew rate limit at
all times.
In summary, the paper provides the design engi-

neer with a general nonlinear control law with ap-
pealing closed-loop properties. Global asymptotic
stability and satisfaction of slew rate constraints can
be guaranteed by observing the simple rules on the
controller gain design derived in this paper.
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Appendix

Lemma 1 Consider the initial value problem

_x = f(x; t); x(t0) = x0 (71)

and the state constraint

g(x; t) � 0 (72)
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Assume that the functional dependence of the func-
tions f and g on their arguments x and t is such
that

@g(x; t)

@x
f(x; t) +

@g(x; t)

@t
� 0 (73)

is satis�ed for all x and t that are such that

g(x; t) � 0: (74)

Then the constraint (72) is guaranteed to remain
satis�ed for all times t � t0 along the solution
of (71) if (72) is satis�ed at the initial time t0; i.e.,
if g(x0; t0) � 0:

Proof: We have

d

dt
g(x; t) =

@g(x; t)

@x
f(x; t) +

@g(x; t)

@t
(75)

Hence, conditions (73), (74) imply that dg

dt
� 0

whenever g � 0: Hence, with g(x0; t0) � 0; it is
clear that (72) remains satis�ed for all times t � t0:

q.e.d.

Intuitively, it can be expected that Lemma 1 re-
mains satis�ed if the inequality sign in (74) is re-
placed by an equality sign. It can be shown that this
is in fact correct if the functions f(x; t) and g(x; t)
are su�ciently \well-behaved". Explicitly, we have
the following result.

Lemma 2 Consider the initial value problem (71)
and the state constraint (72). Assume that g is dif-

ferentiable and that f(x; t); @g(x;t)
@x

; and @g(x;t)
@t

are
Lipschitz-bounded with respect to x; and piecewise
continuous with respect to t: Additionally, assume
that the functional dependence of the functions f
and g on their arguments x and t is such that

@g(x; t)

@x
f(x; t) +

@g(x; t)

@t
� 0 (76)

is satis�ed for all x and t that are such that

g(x; t) = 0: (77)

Then the constraint (72) is guaranteed to remain
satis�ed for all times t � t0 along the solution
of (71) if (72) is satis�ed at the initial time t0; i.e.,
if g(x0; t0) � 0:

Proof: De�ne

h(x; t) =
@g(x; t)

@x
f(x; t) +

@g(x; t)

@t
(78)

and consider the initial value problem�
_x
_y

�
=

�
f(x; t)
�h(x; t)

�
;

�
x(t0)
y(t0)

�
=

�
x0

g(x0; t0)

�
(79)

where

�h(x; y; t) =

�
h(x; t) if y � 0
0 if y > 0

(80)

Let the solution of (79) be denoted by superscript
hat. Using Lemma 1 it can be shown that the
solution of the initial value problem (79) satis�es
the constraint y � 0; i.e. we have ŷ(t) � 0; if
g(x0; t0) � 0: Hence x̂(t); ŷ(t) also furnish a solu-
tion to the initial value problem�

_x
_y

�
=

�
f(x; t)
h(x; t)

�
;

�
x(t0)
y(t0)

�
=

�
x0

g(x0; t0)

�
(81)

if g(x0; t0) � 0: Clearly, the functions f; @g

@x
; and

@g

@t
in (81) are such that it can be guaranteed that

the solution to (81) is unique (see the Appendix I
of [13]). Together with the results obtained above,
this implies that the unique solution to (81) satis�es
y(t) � 0: Noting that the y-component in (81) can
be integrated analytically to yield y(t) = g(x(t); t)
proves the statement of the lemma.

q.e.d.

Remark 5 The statement of Lemma 2 can be
strengthened by replacing \piecewise continuous with
respect to time t" through \measurable with respect
to time t."

Remark 6 The assumption of Lipschitz bounded-
ness in Lemma 2 is, in fact, necessary and cannot
be weakened.

For example, consider the initial value problem

_x =
3
p
x2; x(t0) = x0; with t0 = x0 = �1 (82)

and the constraint
x � 0 (83)

The solution x(t) of (82) obviously satis�es x(t0) � 0
and the right-hand side of the di�erential equations
in (82) are such that _x � 0 whenever x = 0: How-
ever, it can be easily veri�ed that

x(t) = t3

furnishes a solution to (82), which obviously violates
x � 0 for t > 0: In fact, the right-hand side of the
di�erential equation in (82) is not Lipschitz bounded
at x = 0; and it can be veri�ed that

x(t) =

�
t3 for t � 0
0 for t > 0

represents an alternative solution to (82).
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