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Abstract

We present an innovative numerical approach for
setting highly accurate nonlocal boundary condi-
tions at the external computational boundaries when
calculating three-dimensional compressible viscous

ows over �nite bodies. The approach is based
on application of the di�erence potentials method
by V. S. Ryaben'kii and extends our previous tech-
nique developed for the two-dimensional case. The
new boundary conditions methodology has been suc-
cessfully combined with the NASA-developed code
TLNS3D and used for the analysis of wing-shaped con-
�gurations in subsonic and transonic 
ow regimes.
As demonstrated by the computational experiments,
the improved external boundary conditions allow
one to greatly reduce the size of the computational
domain while still maintaining high accuracy of the
numerical solution. Moreover, they may provide for
a noticeable speedup of convergence of the multigrid
iterations.

1 Introduction

Preliminaries. External 
ows over �nite bodies
or con�gurations of bodies represent a wide class of
important practical applications in 
uid dynamics.
To treat this type of problems numerically, one typ-
ically truncates the original in�nite domain. The
resulting truncated problem is obviously subde�nite
unless supplemented by the proper closing procedure
at the external computational boundary. The lat-
ter procedure is called the arti�cial boundary condi-
tions (ABC's). In the ideal case, the ABC's would
be speci�ed so that the solution on the truncated
domain coincides with the corresponding fragment
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of the original in�nite-domain solution. The issue of
ABC's is signi�cant in CFD and in other areas of sci-
enti�c computing; theoretical estimates and compu-
tational experiments by di�erent authors show that
the proper treatment of external boundaries has a
profound impact on the overall performance of nu-
merical algorithms and interpretation of the results.

Di�erent ABC's methodologies have been studied
extensively over the recent two decades. However,
the construction of the ideal (i.e., exact) ABC's that
would provide no error associated with the domain
truncation and at the same time be computationally
inexpensive, easy to implement, and geometrically
universal, still remains a fairly remote possibility.
Among the variety of approaches proposed to date
only a few can be regarded as the commonly used
tools in CFD. As a rule, these approaches are based
on the essential model simpli�cations (e.g., locally
one-dimensional treatment near the external bound-
ary) and, therefore, often lack accuracy in compu-
tations. This, in turn, necessitates choosing exces-
sively large computational domains. On the other
hand, these simple methods usually provide for lo-
cal ABC's, and, therefore, for cheap, geometrically
universal, and algorithmically simple numerical pro-
cedures, which are attractive for practical use.

There are, of course, methods of another kind,
which typically provide for highly accurate and ro-
bust numerical algorithms. These methods, how-
ever, are not used routinely because the correspond-
ing ABC's in most cases appear global. As a conse-
quence, these ABC's may be relatively cumbersome
and expensive; moreover, they can be derived easily
only for the boundaries of regular shape.

The nonlocality is inherent for exact ABC's; on
the level of PDE's such boundary conditions typi-
cally involve pseudodi�erential operators. As con-
cerns the approximate approaches, the basic trend
is the following: higher accuracy for the boundary
procedure requires more of the nonlocal nature of
the ABC's to be somehow taken into account. A
survey of methods for setting the ABC's in di�erent
areas of scienti�c computing can be found in our re-
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cent work 1, as well as in the comprehensive reviews
by Givoli 2; 3.
In this paper, we concentrate on constructing the

ABC's for the three-dimensional problems of compu-
tational aerodynamics. We, however, mention that
this area constitutes a fraction of the possible range
of applications for the di�erent ABC's techniques.
Besides the hydro- and aerodynamic problems (ex-
ternal 
ows, duct 
ows, boundary layers, free sur-
faces, etc.), the entire range includes the 
ows in
porous media, �ltration, MHD 
ows, plasma (e.g.,
solar wind), the problems of solid mechanics (in par-
ticular, elasticity and aeroelasticity), and the prob-
lems of wave propagation (electromagnetic, acoustic,
seismic), just to name a few.

Main Objective and Method of Approach.

For external 
ow computations, our goal is to de-
rive and implement the ABC's that would com-
bine the advantages relevant to both global and
local methodologies. Our approach to construct-
ing the ABC's is based on usage of the �nite-
di�erence analogues to Calderon's generalized po-
tentials and boundary projections (see the original

work by Calderon 4 and also work by Seeley 5).
Ryaben'kii (see Refs. 6, 7, 8) had modi�ed the orig-
inal Calderon's construction and proposed a numer-
ical technique for the e�ective calculation of poten-
tials and projections; this technique is known as the
di�erence potentials method (DPM).
In Ref. 9 we describe the foundations of the

DPM-based approach to setting the ABC's for com-
putation of two-dimensional external viscous 
ows
(Navier-Stokes equations). In Ref. 10 we imple-
ment this approach along with the multigrid Navier-
Stokes algorithm by Swanson and Turkel 11; 12; 13

and present some numerical results for subsonic and
transonic laminar 
ows over single-element airfoils.
In Ref. 14 we show the results of subsequent numer-
ical experiments and propose an approximate treat-
ment of turbulence in the far �eld. Our work Ref. 15
delineates the algorithm for solving one-dimensional
systems of ordinary di�erence equations that arise
when calculating di�erence potentials and the DPM-
based ABC's. In Ref. 16 we extend the area of appli-
cations for the DPM-based ABC's by analyzing two-
dimensional 
ows that oscillate in time; we also pro-
vide some solvability results for the linearized thin-
layer equations used for constructing the ABC's. In
Ref. 17 we present a general survey of the DPM-
based methodology as applied to solving external
problems in CFD, including parallel implementation
of the algorithm, combined implementation of non-
local ABC's with multigrid, and entry-wise interpo-
lation of the matrices of boundary operators with

respect to the Mach number and the angle of at-
tack. Additionally, in Ref. 17 one can �nd some new
theoretical results on the computation of general-
ized potentials, the construction of ABC's based on
the direct implementation of boundary projections
(thin-layer equations), and some numerical results
for various airfoil 
ows: laminar and turbulent, tran-
sonic and subsonic, including very low Mach num-
bers (incompressible limit). Finally, in Refs. 18, 19
we outline basic elements of the DPM-based ABC's
for the case of three-dimensional steady-state exter-
nal viscous 
ows; this case is undoubtedly the one
most demanded by the current computational prac-
tice. Speci�cally, in Refs. 18, 19 we address the

ows around wing-shaped con�gurations and show
some preliminary numerical results for the subsonic
regime.
Below, we report on the subsequent develop-

ment of the DPM-based approach for the three-
dimensional external 
ows. We present the results of
computations for di�erent 
ow regimes and compare
the performance of the DPM-based ABC's with the
performance of the standard boundary conditions.
The assessment is conducted with respect to both
the quality of the resulting solution (accuracy as it
depends on the size of the computational domain)
and the properties of the numerical procedure as
in
uenced by the type of ABC's (e�ciency, robust-
ness, and convergence of the pseudo-time iterations).
The results demonstrate the superiority of the DPM-
based ABC's over the standard existing methods.

2 External Flow Problem

Formulation. We consider a steady-state 
ow of
the viscous compressible perfect gas past a three-
dimensional wing. The 
ow is uniform and sub-
sonic at in�nity; it is symmetric with respect to the
Cartesian plane z = 0, which, in particular, implies
that the free-stream velocity vector is parallel to this
plane.
The 
ow equations are integrated on the grid gen-

erated around the wing. This grid actually de�nes
the �nite computational domain; the ABC's that
would close the truncated problem should be set at
the external coordinate surface of the grid. Let us
designate this surface �; for one-block curvilinear
boundary-�tted grid around the ONERA M6 wing
the schematic geometric setup is shown in Figure 1.
The outermost coordinate surface of the grid is

designated �1 (see Figure 1); it represents the ghost
nodes (or ghost cells for the �nite-volume formula-
tion). Clearly, when the stencil of the scheme used
inside the computational domain is applied to any
node from �, it generally requires some ghost cell
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Figure 1. Schematic geometric setup for the three-dimensional case. The wing on the left is enlarged.

data. Unless the required data are provided, the
�nite-di�erence system solved inside the computa-
tional domain appears subde�nite (i.e., it has less
equations than unknowns). From the viewpoint of
what the solution technique is, one can say that
when some iterative solver is employed to integrate
the 
ow equations inside the computational domain,
the values of the solution at the ghost cells should
be prescribed at each iteration in order to be able to
advance the next \time" step.

Therefore, in the practical framework the closure
of the discretized truncated problemmeans the spec-
i�cation of the solution values at the ghost cells.
This will be done by means of the DPM-based ABC's
so that the boundary data used for the closure ad-
mit an exterior complement that solves the problem
outside the computational domain (see below).

First, we assume that the 
ow perturbations
against the constant free-stream background are
small in the far �eld and consider the accordingly
simpli�ed problem outside the computational do-
main (i.e., outside �). Clearly, for the small to mod-
erate free-stream Mach numbers M0 (purely sub-
sonic 
ows) we can retain only the �rst-order terms
with respect to perturbations in the governing equa-
tions. Therefore, the aforementioned simpli�cation
of the original problem will actually be the far-
�eld linearization. However, in the transonic limit

the possibility of linearization in the far �eld re-
quires, generally speaking, some additional analysis.
For the model full-potential formulation, we present
here a simple argument that the compressible three-
dimensional far �eld remains linear for transonic 
ow
regimes as well.
Consider the K�arm�an{Guderley equation (see 20)

@2�

@x2
+
@2�

@ŷ2
+
@2�

@ẑ2
=

�+ 1

K

@�

@x

@2�

@x2
: (1)

for the perturbation � the full potential � of
the compressible gas 
ow around a thin three-
dimensional wing. Here

�0
x

u0
= 1 + �2=3�0x;

�0
y

u0
= ��0~y;

�0
z

u0
= ��0~z;

~y = �1=3y; ~y = �1=3y; K =
1�M0

2

�2=3
;

ŷ =
p
K~y; ẑ =

p
K~z;

(2)

� is the wing thickness (� �! +0 along withM0 �!
1 in the transonic limit),K is the parameter of tran-
sonic similarity (the true linear theory corresponds
to big values of K), u0 is the 
ow velocity at in�n-
ity, � is the ratio of speci�c heats, and the positive
x direction coincides with the free stream.
The common practice 20 of developing the asymp-

totic expansions for solutions of the equations that

3

American Institute of Aeronautics and Astronautics



involve transonic nonlinearities consists of substi-
tuting the leading linear term(s) into the nonlinear
parts of the equation (right-hand side of (1)) and ob-
taining the corresponding corrections by solving the
resulting non-homogeneous problem. In the speci�c
case under study, the linear far-�eld expansion starts
with the horseshoe vortex

�1 =
ŷ

ŷ2 + ẑ2

�
1 +

x

r̂

�
; r̂ �

p
x2 + ŷ2 + ẑ2: (3a)

Substituting the expression (3a) into the right-hand
side of (1) and solving the resulting Poisson equa-
tion (this involves the Fourier transform in spherical
functions) one obtains the nonlinear correction

�1NL � r̂�3 (3b)

that decays at in�nity two orders of magnitude faster
than the source term (3a). Analogously, for the gen-
eral doublet term �2 � r̂�2 the corresponding non-
linear correction can be shown to be �2NL � r̂�5,
which is the three orders of magnitude di�erence.
We therefore conclude that the transonic nonlin-
ear corrections can be neglected when analyzing the
compressible far �eld in three space dimensions.
Of course, having established the fact of the far-

�eld linearity, we cannot say in advance whether or
not the linearization outside � is possible for every
speci�c con�guration of the domains. Clearly, for
the very large computational domain one can lin-
earize the 
ow outside �, and as we approach the
wing (the source of perturbations), the validity of
linearization can be veri�ed a posteriori (see, e.g.,

our previous work 10; 14; 17).
The linearized dimensionless thin-layer equations

can be written as
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9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(4a)

where �, u, v, w, and p are the perturbations of den-
sity, Cartesian velocity components, and pressure,
respectively, Re is the Reynolds number, and Pr is
the Prandtl number. System (4a) is supplemented
by the homogeneous boundary condition at in�nity:

u � (�; u; v; w; p) �! (0; 0; 0; 0;0)

as (x2 + y2 + z2) �!1;

(4b)

which corresponds to the free stream limit of the
solution. Returning to the question of closing the
discretized truncated system, we clarify that the
boundary data provided by the DPM-based ABC's
will admit an exterior complement that would solve
the discrete counterpart of (4a) and meet boundary
condition (4b) in a certain asymptotic sense.

DPM-based ABC's | Main Idea. We dis-
cretize system (4a) on the auxiliary Cartesian grid
with the second order of accuracy; we use �rst-order
di�erences in x and second-order di�erences in y

and z (see Refs. 16, 17 for the details in two di-
mensions). The DPM will provide us with the com-

plete boundary classi�cation (in terms of the appro-
priate traces) of all those and only those exterior
grid vector-functions that solve the discrete coun-
terpart of (4a) outside the computational domain
and satisfy boundary condition (4b) in some approx-
imate sense. The foregoing boundary classi�cation
will be obtained as an image of a special projection
operator, which can be considered as a discrete ana-
logue of Calderon's pseudodi�erential boundary pro-
jection 4; 5. As we solve the Navier-Stokes equations
inside the computational domain iteratively, every
time we need to update the ghost cells we take a
certain su�cient set of data from inside � (see be-
low), project it onto the right manifold, i.e., onto the
subspace in the entire space of boundary data that
admit the correct exterior complement, and obtain
the ghost cell values by calculating the trace of this
complement on �1.

DPM-based ABC's | Speci�c Implementa-

tion. Let us split the nodes of the auxiliary Carte-
sian grid into two distinct groups: those that are
inside � and those that are outside. Applying the
stencil of the scheme for (4a) to each node of both
groups, we consider the intersection of the grid sets
swept by the stencil. This intersection is called the
grid boundary 
; it is a multi-layered fringe of nodes
of the auxiliary Cartesian grid located near �. Fig-
ure 2 shows an example of the grid boundary 
 (sev-
eral cross-sections in di�erent directions).
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Figure 2. Grid sets for the three-dimensional case.

For any function u on the Cartesian grid we de-
�ne its trace Tr
u on 
 as merely a contraction.
For any grid function u
 speci�ed on 
 we introduce
the generalized potential Pu
 with the density u
 ;
the generalized potential is de�ned on the auxiliary
Cartesian grid on 
 and outside it. The generalized
potential is obtained as a solution of the special aux-
iliary problem (AP); solution of the AP replaces and
extends the operation of convolution with the funda-
mental solution in the classical potential theory. The
AP is driven by the right-hand side that depends on
u
 , the formal construction of this right-hand side
is the same in two- and three-dimensional cases and
we refer the reader to our previous work 9; 16; 17 for
details. Boundary conditions for the AP should ap-
proximate boundary condition (4b) and at the same
time ensure the �nite-domain formulation for the
AP. Therefore, we formulate the AP on a su�ciently
large parallelepiped aligned with the Cartesian di-
rections; the parallelepiped fully contains �1. We
specify the periodicity boundary conditions in the y
and z directions and also assume symmetry at z = 0.
After the Fourier transform with respect to y and z

the discrete counterpart to (4a) can be written as a
family of one-dimensional di�erence equations:

Akûm;k +Bkûm�1;k = f̂m�1=2;k;

m = 1; . . . ;M; k � (ky; kz);

ky = 0; . . . ; Jy; kz = 0; . . . ; Jz;

(5)

where Ak and Bk are the 5�5 matrices and M +1,
2Jy + 1, and Jz + 1 are the numbers of grid nodes
in the x, y, and z directions, respectively (symme-
try is taken into account, as well as the fact that u
and f are real-valued). Boundary conditions in the
x (streamwise) direction are speci�ed separately for
each pair of wavenumbers k:

S�(k)û0;k = 0; (6a)

S+(k)ûM;k = 0; (6b)

where

S�(k) =
Q

j�s(k)j>1

(Qk � �s(k)I) ; (7a)

S+(k) =
Q

j�s(k)j�1

(Qk � �s(k)I) ; (7b)

Qk = A�1
k
Bk, and �s(k) are the eigenvalues of

Qk. The semi-analytic boundary conditions (6a)
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and (6b) (the eigenvalues for (7) are calculated nu-
merically) explicitly prohibit growing modes of the
solution in the left and right directions, respectively.
The periods in y and z should be chosen su�ciently
large to ensure that the periodic solution considered
near � and �1 is su�ciently close to the theoretical
non-periodic solution; the latter can be thought of
as a limit when the periods approach in�nity. The
approximation of a non-periodic solution by the pe-
riodic one on a �nite �xed interval as the period(s)

increase(s) is discussed in our work 9; 16; 17. In
Ref. 17, we also discuss the possibility to replace the
Fourier transforms by the non-unitary transforms.
The latter appear when the grid in y or z is stretched
(which provides for a drastic cost reduction) and
the corresponding eigenfunctions consequently form
a skew basis.
The foregoing AP allows us to calculate the gener-

alized di�erence potential Pu
 for any grid density
u
 speci�ed on 
. The composition of the operators
Tr
 and P, P
 � Tr
P, is a projection, P2


 = P
 ,
and it is a discrete counterpart of Calderon's bound-
ary projection for system (4a). The image of this
projection, ImP
 , contains all those and only those
u
 's that are the traces of some exterior di�erence
solution to (4a) that satis�es the boundary condi-
tions of the AP (periodicity in y and z and boundary
conditions (6) in x). The latter boundary conditions,
in turn, approximate (4b).
Having constructed the procedure for calculating

the potentials and projections for the discrete ver-
sion of (4a), we can now close the system inside the
computational domain, i.e., obtain the ABC's. First,
we take u and @u=@n on �, n is the normal, (these
data are available from inside the computational do-
main) and, using interpolation R� along � and the
�rst two terms of the Taylor expansion (denoted �
),
obtain u
 :

u
 = �
R�

�
u;

@u

@n

�����
�

: (8)

Then, we need to calculate the potentialPv
 for the
density v
 = P
u
 and interpolate it to the nodes
�1:

u

���
�1

= R�1Pv
 � R�1Pu
 : (9)

Finally, the ABC's are obtained in the operator form

u

���
�1

= T

�
u;

@u

@n

�����
�

; (10)

where T is composed of the operations (8) and (9).
Boundary condition (10) is applied every time we

need to update the ghost cell values in the course of
the iteration process. The implementation of ABC's
(10) can either be direct or involve preliminary cal-
culation of the matrix T. In the latter case, the run-
time implementation of the ABC's (10) is reduced
to a matrix-vector multiplication.

3 Numerical Experiments

Two-Dimensional Case. For the reason of com-
pleteness, we �rst brie
y comment here on the two-
dimensional results from our previous work (see
Refs. 10, 14, 17). In that work, we calculated sub-
sonic and transonic viscous 
ows past single-element
airfoils (NACA0012 and RAE2822).
The computational domain is formed by the C-

type curvilinear grid generated around the airfoil.
On this grid, the Navier-Stokes equations are in-
tegrated using the code FLOMG by Swanson and
Turkel 11; 12; 13. The standard treatment of the ex-
ternal boundary in the code FLOMG is based on the lo-
cally one-dimensional characteristics analysis, which
may or may not be supplemented by the point-
vortex (p.-v.) correction 21.
Basic conclusions that could be drawn from our

two-dimensional numerical experience are the fol-
lowing. The DPM-based ABC's are geometrically
universal, algorithmically simple and easy to imple-
ment along with the existing solver. For the large
computational domains (30{50 chords of the air-
foil), the performance of the standard methods and
the DPM-based ABC's is roughly the same. As,
however, the arti�cial boundary approaches the air-
foil the discrepancy between the corresponding so-
lutions increases. The lift and drag coe�cients ob-
tained on the basis of boundary conditions (10) de-
viate from their asymptotic (50 chords) values much
slighter (within fractions of one percent) than the
coe�cients obtained using local ABC's do. In other
words, the nonlocal DPM-based ABC's allow one to
use much smaller computational domains (as small
as 2{3 chords) than the standard boundary condi-
tions do and to still maintain high accuracy of com-
putations. Moreover, if we compare three models:
DPM-based, point-vortex, and standard local, then
it turns out that the DPM-based ABC's display the
best performance for small computational domains,
the performance of the local characteristic boundary
conditions for the small domains is very poor, and
the point-vortex boundary conditions perform much
better for the lift than they do for the drag coef-
�cient. This behavior seems reasonable since the
point-vortex model is a lift-based treatment.
We also note that for the certain variants of

computation the DPM-based ABC's may noticeably
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Table 1. ONERA M6: M0 = 0:5; Re0 = 11:7 � 106; � = 3:06�.

Domain \radius" 1.25 root chords 2 root chords 10 root chords
Grid 197� 49� 33
Type of ABC's standard DPM standard DPM standard DPM

Full lift, CL 0.2218 0.2065 0.2185 0.2065 0.2081 0.2072
Relative error 6.58% 0.34% 5.0% 0.34% 0% 0%

Full drag, CD � 100 0.817 0.791 0.793 0.791 0.787 0.788
Relative error 3.8% 0.38% 0.76% 0.38% 0% 0%

Table 2. ONERA M6: M0 = 0:84; Re0 = 11:7 � 106; � = 3:06�.

Domain \radius" 3 root chords 10 root chords
Grid 197� 49� 33 209� 57� 33
Type of ABC's standard DPM standard DPM

Full lift, CL 0.298�0.004 0.2798 0.2805 0.2786
Relative error 6.24%�1.43% 0.43% 0% 0%

Full drag, CD � 10 0.168�0.008 0.1537 0.1542 0.1531
Relative error 8.95%�5.19% 0.39% 0% 0%

speed up (by up to a factor of three) the conver-
gence of the multigrid iterations, see Refs. 9, 10, 14.
The discussion on combined implementation of the
DPM-based ABC's with multigrid is contained in
Ref. 17.

Three-Dimensional Case. Here, we demon-
strate some new results on computation of the ex-
ternal 
ows around the ONERA M6 wing.

We use the code TLNS3D by Vatsa, et al. 22 to inte-
grate the thin-layer equations on the curvilinear grid
(see Figures 1 and 2) generated around the wing.
This code is based on the central-di�erence �nite-
volume discretization in space with the �rst- and
third-order arti�cial dissipation. Pseudo-time iter-
ations are used for obtaining the steady-state solu-
tion; the integration in time is done by the �ve-stage
Runge-Kutta algorithm (with the Courant num-
ber calculated locally) supplemented by the resid-
ual smoothing. For the purpose of accelerating the
convergence, the multigrid methodology is imple-
mented; in our computations we used three subse-
quent grid levels with V cycles; the full multigrid
methodology (FMG) could be employed as well. In
addition, we use the preconditioning technique of
Ref. 23 to improve the convergence to steady state.
We implement the DPM-based ABC's on the �nest
level of multigrid on the �nal FMG stage; the bound-
ary data for coarser levels are provided by the coars-
ening procedure. Moreover, even on the �nest level

we implement the DPM-based ABC's only on the
�rst and the last Runge-Kutta stages, which seems
to make very little di�erence compared to the im-
plementation on all �ve stages; the boundary data
for the three intermediate stages are provided from
the DPM-based ABC's on the �rst stage. Unlike
the two-dimensional case, the standard treatment of
the external boundary in three dimensions is based
on merely the locally one-dimensional characteristics
analysis and extrapolation (the point-vortex model
is not applicable).

In Table 1, we present the numerical results ob-
tained with the two types of ABC's for the subcrit-
ical 
ow around the ONERA M6 wing. As one can
clearly see, the DPM-based ABC's in three space di-
mensions outperform the standard approach as they
do in two dimensions: the new boundary conditions
are capable of producing accurate results on very
small computational domains, whereas the perfor-
mance of the standard technique deteriorates as the
domain shrinks. Analogously to the two-dimensional
case, the three-dimensional DPM-based ABC's can
be calculated for any shape of � by means of the
same procedure (universality) and can be easily com-
bined with the existing solver (TLNS3D). Let us ad-
ditionally note that for this series of computations,
the dimensions of all three grids are the same, grids
of smaller extent are obtained by scaling down the
original 10 chords grid. The concentration of nodes
near the wing that results from the down-scaling ob-
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viously contributes to the general improvement in
the accuracy of the solution.

We have also conducted some three-dimensional
computations for the standard transonic case for
ONERA M6 wing: M0 = 0:84; Re0 = 11:7 � 106;
� = 3:06�. Here we could not bring the arti�cial
boundary as close to the solid surface as in the fore-
going subsonic case (see Table 1) because our far-
�eld treatment is purely subsonic and the boundary
cannot intersect the supercritical zone. We there-
fore calculated the solution for two computational
domains of the average radii of approximately 10
and 3 root chords of the wing, respectively. The
results summarized in Table 2 clearly demonstrate
that for the small computational domains the DPM-
based ABC's generate much more accurate solutions
that the standard boundary conditions do. Note, in
this case the grids for the di�erent domains have
di�erent dimensions, and the smaller 197� 49� 33
grid (3 chords) is now an exact subset of the big-
ger 203� 57� 33 grid (10 chords). This is done in
order to eliminate any in
uence that the change of
the grid in the near �eld could possibly exert on the
solution.

Besides the improvement of accuracy, the appli-
cation of the DPM-based ABC's to transonic 
ow
computations on the small (3 chords) computa-
tional domain yielded much higher convergence rate
of the residual (continuity equation), as well as
much faster convergence of other quantities, includ-
ing those deemed as sensitive, e.g., the number of su-
personic points in the domain. In Figures 3a and 3b,
we show the convergence history for this supercrit-
ical 
ow variant. One can see that the convergence
for the standard boundary conditions is poor; there-
fore the corresponding force coe�cients in Table 2
are given with the error bands indicated.

For the 10 chords domain, the DPM-based ABC's
also provide for some convergence speedup, although
the di�erence between the two ABC's techniques is
less dramatic here. This is reasonable because one
could generally expect that the bigger the computa-
tional domain, the smaller is the in
uence that the
external boundary conditions exert on the numeri-
cal procedure. The convergence history for the 10
chords computations is shown in Figures 4a and 4b.

Note, fromFigure 3b one can conclude that on the
small domain the two algorithms converge to quite
di�erent solutions, whereas Figure 4b allows one to
assume that on the big domain the �nal solutions are
close to one another. The data from Table 2 corrob-
orate these conclusions. This behavior again �ts into
the aforementioned concept that the impact of the
ABC's decreases as the domain size increases. In the

future, we plan on running some transonic compu-
tations for the domain bigger than 10 root chords of
the wing. This may provide for an experimental jus-
ti�cation of the statement that the solutions for the
two di�erent types of ABC's approach one another
as the domain enlarges.
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Figure 3a. ONERAM6: M0 = 0:84,Re0 = 11:7�106,
� = 3:06�. Convergence history for the residual of
the continuity equation. Average domain \radius"
is 3 root chords of the wing; grid 197� 49� 33.
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Figure 3b. ONERA M6: M0 = 0:84, Re0 = 11:7 �
106, � = 3:06�. Convergence history for the number
of supersonic nodes in the domain. Average domain
\radius" is 3 root chords of the wing; grid 197�49�
33.

Miscellaneous Issues. Here, we will primarily
discuss the computational cost of the DPM-based
ABC's and possible ways for its reduction.
The cost of the DPM-based ABC's in two space

dimensions is modest; the ABC's may add about
10% to the cost of the original integration proce-
dure. In three space dimensions, the relative cost of
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Figure 4a. ONERAM6: M0 = 0:84,Re0 = 11:7�106,
� = 3:06�. Convergence history for the residual of
the continuity equation. Average domain \radius"
is 10 root chords of the wing; grid 209� 57� 33.
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Figure 4b. ONERA M6: M0 = 0:84, Re0 = 11:7 �
106, � = 3:06�. Convergence history for the number
of supersonic nodes in the domain. Average domain
\radius" is 10 root chords of the wing; grid 209 �
57� 33.

the DPM-based ABC's is so far higher; they typi-
cally add from 25% to 30% of extra CPU time. In
many cases, however, this increase can be compen-
sated for by the convergence acceleration, see Fig-
ures 3 and 4. Moreover, we expect that some changes
to the ABC's algorithm can still be done so that the
vectorization is exploited more e�ectively and there-
fore the boundary operators are computed faster.
Apart from the algorithm changes there are some
\indirect" ways for reducing the computational cost
of the DPM-based ABC's.

Parallel implementation of the ABC's on the
multi-processor machines is a relatively easy task

because the solution algorithm for the linear AP is
readily parallelizable. For two space dimensions, an
up to �ve times speedup compared to the single-
processor version has been achieved on an eight-
processor CRAY Y-MP.

In three space dimensions, carrying out multiple
computations on the same grid is very often the case
(many di�erent 
ow regimes in one geometric set-
ting). In so doing, the external geometry that in-

uences the ABC's is �xed and the boundary con-
ditions depend only on the aerodynamic parame-
ters, e.g., Mach number M0 and the angle of at-
tack �. Therefore, the entry-wise interpolation of
the matrices of boundary operators T with respect
to these parameters has a substantial promise from
the standpoint of cost reduction. Indeed, after a
noticeable startup expense for calculating the \ref-
erence" T's for some selected values of the parame-
ters, any other matrix needed for any speci�c regime
within the prescribed range of the parameters can
be obtained for virtually no extra cost by means of
the interpolation. This methodology has been tested
for the two-dimensional supercritical 
ow around the
RAE2822 airfoil 17. The results seem very promis-
ing: for the small computational domain the accu-
racy provided by the operators T interpolated with
respect to M0 and � is only slightly worse than the
accuracy obtained using genuine DPM-based ABC's
(i.e., the operator calculated for the given speci�c
values of the parameters) and is still much better
than the accuracy obtained on the basis of the point-
vortex model.

Finally, we mention that the nonlocality of the
DPM-based ABC's is expressed by the fact that the
matrix T (see (10)) is dense. However, this ma-
trix is typically structured. From the standpoint
of physics, the structure of T re
ects the simple
consideration that each speci�c node in
uences its
close neighbors stronger than it in
uences the re-
mote points. For system (4a), the operator T from
(10) is composed of 5 � 5 blocks as shown in Fig-
ure 5 (provided that the vectors of variables along
the boundaries � and �1 are arranged properly: �rst
�'s for all the nodes, then u's, etc., and, �nally, p's).
The qualitative meaning of each block in Figure 5 is
how one variable of the corresponding pair in
uences
another one along the entire boundary. Stronger in-
terdependence between closer nodes results in the
fact that the near-diagonal entries for each block
are considerably larger than the o�-diagonal ones (if,
additionally, the order of nodes for � and �1 is the
same). The latter observation has, in fact, been cor-
roborated computationally (for the two-dimensional
case).

9

American Institute of Aeronautics and Astronautics



ρ ρ

u

v

ρ

p

ρ

w

ρ ∼ ρ u ~ v ~ w ~ p ~ 

p ~ uw ~ uv ~ uu ~ uρ ∼

ρ ∼

ρ ∼

ρ ∼

u ~ v

u ~ w

u ~ p

v ~ v

v ~ w

v ~ p

w ~ v

w ~ w

w ~ p

p ~ v

w ~ p

p ~ p

Figure 5. Qualitative block structure of the bound-
ary operator T for three-dimensional 
ow computa-
tions.

To e�ectively calculate matrix-vector products for
the structured matrices of the foregoing type, one
can use multiresolution-based data compression al-
gorithms, e.g., the one proposed by Harten and
Yad-Shalom 24. In Ref. 19, we applied this algo-
rithm to the model example of the matrix T for
two-dimensional scalar Yukawa equation. As could
be seen from the nested multiresolution representa-
tion 24 for the model operator T (see Ref. 19), all
the nonzero entries are concentrated near the main
diagonal of each nested block; as we recede the diag-
onal the corresponding values rapidly fall below the
double-precision machine accuracy (10�13) thresh-

old. Therefore 24, this nested structure can be used
for the e�cient calculation of matrix-vector products
with consecutively improving resolution. The con-
centration of nonzero entries near the main diagonal
also implies e�ective localization of the boundary
conditions. This feature may have certain promise
for the future use in the view of the multi-block grids.
The next major challenge from the standpoint

of treating numerically the in�nite-domain formula-
tions is presented by the time-dependent problems.
As mentioned in the beginning, the issue of ABC's
for the time-dependent problems is signi�cant not
only in CFD but also in other areas of scienti�c com-
puting, e.g., those originating from acoustics and
electrodynamics.
The primary di�culty that distinguishes the time-

dependent problems from the steady-state ones is
that here the exact ABC's are nonlocal not only in
space but also in time (except in the simplest one-
dimensional problems). As concerns the approxi-
mate approaches, the same basic trend that is rele-
vant to the steady-state problems also holds for the

time-dependent ones: more accurate boundary pro-
cedure requires more of the nonlocal nature of the
ABC's to be taken into account.

Of course, the nonlocality of the ABC's in time
presents a very serious computational obstacle, be-
cause as the solution evolves such boundary condi-
tions would become more and more expensive from
the standpoints of both memory and computer time
requirements. Therefore, the most crucial numeri-
cal issue in constructing the time-dependent ABC's
is how to e�ectively restrict the nonlocality of the
boundary conditions in time. This is an interesting
subject for the future research.

4 Conclusions.

The new global ABC's for calculating steady-state
external viscous 
ows in three space dimensions have
been constructed on the basis of the di�erence poten-
tials method. The approach generalizes and extends
our previous two-dimensional results.

The new ABC's are capable of greatly reducing
the size of the computational domain (compared to
the standard methods) while still maintaining high
accuracy of the numerical solution. This size re-
duction amounts to either the possibility of re�ning
the grid in the near �eld, which potentially leads
to the improvement in accuracy or usage of the
smaller-dimension grids without compromising the
accuracy. Moreover, the DPM-based ABC's may no-
ticeably improve the convergence rate of the multi-
grid iteration procedure. Finally, the new boundary
conditions appear geometrically universal and easy
to incorporate in the structure of the existing 
ow
solvers. The properties of the new ABC's have been
corroborated experimentally by computing the sub-
sonic and transonic 
ows past the ONERA M6 wing
using the NASA-developed code TLNS3D.

A more detailed description of the theoretical
foundations of the DPM-based algorithm, as well as
a wider selection of the computational results, will
be presented in the forthcoming paper Ref. 25.
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