To appear in the Proceedings of thé& Dhgital Avionics Systems Conference, October 1997

WHY ENGINEERS SHOULD CONSIDER FORMAL METHODS

C. Michael Holloway

NASA Langley Research Center
Mail Stop 130/ 1 South Wright Street
Hampton, Virginia 23681-0001
E-mail: c.m.holloway@larc.nasa.gov

ABSTRACT idea. That formal methods advocates share this assumption
is not surprising. Nevertheless, the reluctance of many
This paper presents a logical analysis of a typical argumeghgineers to use, or support the development of, any formal
favoring the use of formal methods for softwaremethod or tool suggests another possibility: perhaps the
development, and suggests an alternative argument thatggceptance problem lies not in the details, but in the way the
simpler and stronger than the typical one. idea has been communicated to engineers. This paper
presents the preliminary results of my effort to investigate
this possibility.

The structure of the paper is as follows. The next section

INTRODUCTION states the specific question | considered. This is followed by

i an example of a typical rationale for formal methods. A

For more than twenty-five years, some people have toutgfgical analysis of this rationale is then given, followed by a
formal methods as the best means available for developingyised rationale designed to correct the flaws in the original
safe and reliable digital systems. To many within theyne Brief concluding remarks complete the body of the
researc_h community, the efflcacy— or more accurately, thBaper. An appendix provides an overview of the basic
necessity — of formal methods is now accepted as provedyinciples of logical reasoning that are used in this paper.
One well-known researcher expressed this attitud@eaders unfamiliar with the definitions of terms such as
succinctly when he wrote concerning software engineering; onosition, deductive argument, and inductive argument

“It is clea_r to all the be_st minds in the field that a moregngyid read this appendix before the next section.
mathematical approach is needed for software to progress

much.” [1]

Despite this bold assertion, the attitude of many of the best THE QUEST|ON

minds among practicing engineers has been quite different,

with far more rejecting formal methods than embracingn as simple and abstract terms as possible, and ignoring
them. Although the situation has changed some within thpossible subtleties, the problem we are considering can be
last several years, especially within the hardware desigstated as follows. Group one makes an assertion and
community [2], the acceptance and regular use of formgbrovides arguments they believe prove this assertion. Group
methods is still far less than proponents want. Formdivo, by their actions if not necessarily their words, denies

methods researchers and practitioners have tried to analyttee assertion. Group one’s assertion is either true or false. If
the causes of this lack of acceptance in opinion pieces [3, 4he assertion is false, then group two is justified in denying

case studies [5], and small experiments [6]. Suggestat
causes include lack of adequate tools, lack of mathematicE\l

sophistication in developers, incompatibility with current. th_g asgemon 'S tru_e, then group tW.O. may or may not be
technigues, high costs, and over- selling by advocates. justified in denying it. They are justified in denying the

assertion if the arguments supplied by group one are
Despite reaching different conclusions, all of these attempigsufficient to prove the truth of the assertion. They are not
(my own included [7]) have, by and large, addressed thpistified in denying the assertion if the arguments supplied
issue in a similar way. They have each attempted tby group one are sufficient. Note that, by definition, if the

determine why engineers are not routinely using existingssertion is false, group one’s arguments supporting it
formal techniques and tools. The shared assumption seeeannot be sufficient. Thus, to determine whether group two's
to be that the idea of formal methods has been proved to lokenial of the assertion is justified, we need only consider the
good; the acceptance problem lies in the details, not theufficiency of the arguments supplied by group one.

In our particular case, group one consists of formal methodatellectual construction of the system that cause it to do the
advocates. Group two consists of industry engineers. Therong thing under some conditions — are to occur. Design

assertion is that engineers of computer systems should ulaws are the only way that software can go wrong; software

appropriate formal methods. To simplify our discussion, wealoes not wear out like physical components. Thus, to ensure
will restrict ourselves to computer software, recognizing thathat a software system does what it is intended to do, design
the line between software and hardware is becominfaws must be handled in some way.

increasingly blu.rred. Thus, the question is: Do thel\(lany different approaches to handling design flaws have
arguments supplied by formal methods advocates adequatebgen oroposed. All of these may be grouped in one of the

support_the assertion that software engineers should u?oqlowing three categories: testing, design diversity, or fault
appropriate formal methods?

avoidance.

The discontinuity of software poses problems for testing-
TYPICAL RATIONALE based approaches. For systems with low reliability
_)) _ . requirements, testing for long enough to show statistically
To begin to answer this question, let us consider a typicg,at the system meets its requirements may be possible. But
rationale for formal methods. The rationale given here ig,, high integrity software systems, such testing would
based on the arguments given previously by NASA Langleyeqiire much more time than is feasible. For example, to
formal methods team members (myself included) [8]ymeasure a 19 probability of failure for a 1 hour mission,
augmented by arguments from other Langley-sponsoreghe myst test for more than 109 hours (114,000 years) [12].
work [9, 10]. Thus, for such systems, testing-based approaches are

Software is notorious for being late in delivery andinadequate.

unpredictable and unreliable in operation. According t0 &rhe pasic idea behind approaches of the design diversity
1994 article by Wayt Gibbs, “Studies have shown that fokye js 1o use separate teams to produce multiple versions of
every six new large-scale software systems that are put infRe software. The hope is that the design flaws will manifest
operation, two others are cancelled. The average softWaggrors independently or nearly so, and that voters can be
development project overshoots its schedule by half; larggfsed at run-time to mask the effect of those flaws. If the

projects generally do worse. And three quarters of all largg,gependence assumption is valid, ~ultrareliable-level
systems are operating failures that either do not function agiimates of system reliability can be obtained even with
intended or are not used at all.” [11] failure rates for individual versions of #our. However,

When compared to other engineering disciplines, softwar1e independence assumption does not appear to be valid. In
engineering does not come out looking good. But this shoulgeveral _experiments for low reliability _software, the
not be surprising, because in at least two respects, softwagsumption was rejected at the 99% confidence level [13,

is different from the physical objects, materials, and systems#]. Furthermore, the independence assumption cannot be
with which traditional engineers work. validated for high reliability software because of the

i _ _ o exorbitant test times required [12]. As a result, design
First, in physical systems smooth changes in inputs Usualﬁ‘wersity is inadequate, also.

produce smooth changes in outputs. That is, most physical .
systems are continuous. This allows the behavior of thBecause design flaws cannot be handled adequately by
system to be determined by testing only certain inputs, an@PProaches based on either testing or design diversity, fault

using extrapolation and interpolation to determine theédvoidance techniques offer the best hope. Of possible fault
behaviors for untested inputs. avoidance techniques, formal methods are the most rigorous;

therefore, they are the most promising. Hence, to phrase the

Software systems are, by their very nature, discontinuous. fsncjusion in the language used earlier, software engineers
small change in input may change the outcomes at sevetdlyid use appropriate formal methods.
decision points within the software, causing very different

execution paths and major changes in output behavior. As a
result, using extrapolation and interpolation to estimate
output behaviors for untested inputs is risky at best, and CRITIQUE

exceedingly dangerous at worst. We want to determine if this argument provides sufficient

Software differs from physical systems in another way: itgustification for its conclusion. To do this, we can examine

complexity. Much of the functionality of modern systems isthe structure of the argument by stripping away the verbiage.
provided by software; therefore, much of the complexity ofThis will leave us with only the essential propositions and

these systems is expressed in the software, also. The greater relationships between them. Doing this yields the
the complexity, the more likely design flaws — flaws in thefollowing (for reference, each proposition is given a label).

Software is bad (P1l). Software differs from physicab The conclusion depends immediately on the following
systems in at least two ways (P2): software is discontinuous propositions:

(P3), and software is complex (P4). Software is complex .

(P4), and complexity results in design flaws (P5); therefore, 1. Software has design flaws (P6)
software has design flaws (P6). Design flaws must be 2. Design flaws must be handled (P7),
handled (P7). The three ways to handle design flaws are . .. 00 0o o be used to handle
testing, design diversity, and fault avoidance (P8). Because design flaws (P11)

software is discontinuous (P3), testing is inadequate (P9).

Also, because software is discontinuous (P3), design 4. Formal methods are the most promising of these
diversity is inadequate (P10). Because there are only three methods (P14).

ways to handle design flaws (P8), and the other two ar , . S
inadequate (P9, P10), fault avoidance must be used t e will now consider the implications of each of these
handle design flaws (P11). Because formal methods are trf servations.
most rigorous fault avoidance method (P12), and thECompIexity

greater the rigor, the more promising the method (P13)A complex argument is not necessarily a bad argument.

formal methods are the most promising fault avmdancesd)me conclusions can only be reached by long, complicated
method (P14). Because software has design flaws (P6), an L o
arguments. In such cases, complexity is essential; however,

design flaws must be handled (P7), and fault avoidance . .
methods must be used to handle design flaws (P11), and should ‘keep in mind that most people react to a

s omplicated argument in one of two ways. Some reject it
formal methods are the most promising of these methOéﬁ;Sut of hand. Being unwilling to invest the effort needed to

(P14), software engineers should use appropriate forma | h full h | |

methods (P15) analyze the argument carefully, these people are also
' unwilling to believe that which they do not understand.

Figure 1 gives a graphical depiction of the structure of th®thers accept a complicated argument without question,

argument. assuming that anything so complicated must be true.

In trying to make the case for formal methods, we certainly
do not want to give the former group cause to reject our
argument out of hand. Nor do we want the latter group to

P1 accept our argument unthinkingly; those who do so are
likely to give up when practical difficulties arise. |If it is
P2 possible to construct a simpler argument, we should do so.
To paraphrase C.A.R. Hoare’'s comment on software design
P3 P15 [15], there are two ways of constructing most arguments.
One way is to make it so simple that there are obviously no
P4\A deficiencies and the other is to make it so complicated that
/VPG there are no obvious deficiencies. In the revised rationale
P5 that | present later, | opt for the first approach.

Unnecessary Propositions

Figure 1: Structure of Typical Argument From a strictly logical point of view, unnecessary
propositions are just thatinnecessary. Taking this view,

however, ignores the fact that other reasons besides logical
necessity may exist for including certain propositions in an
After examining this structure, we can make the folIowingargument‘ For exa?“p'e' peginning the argument for formal
observations: methods with a discussion of the sad state of current

software development practices may well serve to encourage
o The argument is fairly complicated. an audience to listen closely to what follows. On the other
hand, if someone is unconvinced that the state of practice is
as bad as is claimed, that person may be less likely to listen
to what follows.

« The following two propositions play no part in
establishing the conclusion:
1. Software is bad (P1) Logically, propositions P1 and P2 do not need to be in the
2. Software differs from physical systems in at leastargument. Rhetorically, cases can be made both for and
two ways (P2) against including one or both of them. In my revised
rationale, | leave them out.

Immediate Dependency promising. But the argument does not prove that rigor is
eDromising, it simply asserts it: P14 and P13 assert the same

It is upon the truth or falsity of the propositions on which th éhing, using different words.

conclusion immediately depends that the sufficiency of thi
argument rests. If it is certain that software has design flawShus, although three of the four essentiapusitions have
design flaws must be handled, fault avoidance methods muséen shown to be true, the fourth has not. Only those who
be used to handle design flaws, and formal methods are th¢ready believe that rigor is good should find the given
most promising of these methods, then it is equally certairationale sufficient. Everyone else should remain
that formal methods will benefit software engineers. Let usinconvinced.

look at each proposition and see how certain it is.

Does software have design flaws?Anyone who has ever
spent more than a few minutes in front of a computer knows REVISED RATIONALE
that it does. We do not even need the two propositions used

in the argument as support. This proposition is indisputably & typical rationale failed, but it came close. It could be
true. completed by simply establishing the truth of P14 without

begging the question; however, doing so would result in a
Must design flaws be handled? In computer games, rationale that still retains the unnecessary complexity noted
VCRs, and personal entertainment systems, failing to handla the previous section. So, instead of attempting a repair
design flaws might not have serious consequences. |ab, let us develop a different rationale all together.

avionics, reactor control, and anti-lock brakes, failing to . _ .)
handle design flaws might have life threateningUS'ng the same style as used in the previous section, the

consequences. Thus, for the most important types 6FV|sed ratlon_a_le is as follows. Notice that the _ongmal
computer systems, this proposition is also indisputably true fift€en propositions have been replaced by only five, and

that the structure is so simple as to not need a graphical
Must fault avoidance techniques be used to handle representation.

design flaws? In the given rationale, this proposition is ,) ,
claimed to follow from three other propositions: (P8) theSOftware engineers strive to be true engineers (Q1); true

three ways to handle design flaws are testing, desigﬂngineers use appropriate mathematics (Q2); therefore,

diversity, and fault avoidance, (P9) testing is inadequateftware engineers should use appropriate mathematics
and (P10) design diversity is inadequate. (Q3). Thus, given that formal methods is the mathematics of

software (Q4), software engineers should use appropriate
This approach seems to me to be unnecessary for, afpstmal methods (Q5).

potentially harmful to, the argument. It is unnecessar
because not even the most ardent supporters of testing
design diversity argue that fault avoidance techniques shou

yBI?is is a valid deductive argument, in which the truth of the
gpnclusion rests upon the truth of two premises: Q3 and Q4.

be abandoned. It is potentially harmful because somi turn, the truth of Q3 rests upon the truth of two other
people who are unconvinced by the arguments again@€Mises: Q1 and Q2 (and unstated premises that relate
testing or design diversity might not listen to the rest of th&t1ving to be an engineer with doing what engineers do).
argument. The need for fault avoidance techniques is g Show that the conclusion is true, we need only show that
self-evidently clear as the previous two propositions we hav@l' Q2, and Q4 are each true. This is a simple task.
considered. This proposition could be established mucBecause formal methods are defined as the mathematics of
more easily than is done here. computer software and hardware systems [16], Q4 is true by

So far, the three important propositions we have examinegIEf'n't'on'

are true. If the fourth proposition is true, then the rational@jundreds, perhaps thousands, of references could be cited
will turn out to be a sound deductive argument for itsfrom the late 1960's (when the term "software engineering"

conclusion. was coined) to the present to establish the truth of Q1. For
example, Roger Pressman writes [17]: “An early definition

Are formal methods the most promising fault avoidance £ softw . ; d by Fritz B h
method? The rationale claims they are because formaf! SOftware engineering was proposed by Fritz Bauer at the
st major conference dedicated to the subjethe

methods are the most rigorous fault avoidance metho

(P12), and the greater the rigor, the more promising thgstablishment and use of sound engineering principles in
method (P13). order to obtain economically software that is reliable and

works efficiently on real machineglthough many more
Alas, this is begging the question. All the claimed benefitgéomprehensive definitions have been proposed, all reinforce
from formal methods are derived from the rigor theythe importance of engineering discipline in software
enforce. If rigor is promising, then formal methods aredevelopment.”

Similarly, the truth of Q2 can be established by myriadstatements are not just any old statements; each one must be
citations. Again, one will suffice: “Professional engineerseither true or false. Such statements are caltegositions

are expected to use discipline, science, and mathematics @mmands, questions, and requests are not propositions,
assure that their products are reliable and robust.” [18] and thus are not formally part of a logical argument.

We have proven Q1, Q2, and Q4 to be true. Q3 follows byo construct an argument, propositions are grouped in such
deduction from Q1 and Q2. Q5 follows by deduction froma way that one of them is asserted to follow from the others.
Q3 and Q4. Thus, software engineers should us&he proposition that is affirmed on the basis of the others is
appropriate formal methods. Please note that the worchlled theconclusionthe other propositions in the argument
“appropriate” is important. Using inaccurate or incompleteare called theremisesIn the following example, the first
mathematics can cause disasters in traditional engineeritggo propositions are the premises, and the third proposition
[19]. There is no reason to suspect that the same canriet the conclusion: All cats are clever. Dixie is a cat.
happen with formal methods. Therefore, Dixie is clever.

Of course, most arguments in real life are not written so
simply as this example, which means that identifying the

CONCLUDING REMARKS premises and conclusions can be more difficult. Not only do

In this paper, | presented an analysis of a typical rational¢@ life arguments frequently contain ~ extraneous
used to convince engineers of the potential usefulness iformation, all of the premises and conclusions are often
formal methods. This analysis revealed that the typica'FOt_ stated explicitly. The tgchmcal term for an argument in
rationale is complicated, but fails to establish the truth of ai/Nich only parts are stated is enthymeme

essential proposition. As a result, | presented a simplgecause of the vast amount of knowledge that is assumed in
revised rationale, which | believe shows COﬂC'USiVGly Whya|m05t any statement we make, most real-world arguments
engineers should consider formal methods. The ideas in thige, in fact, almost always enthymemes of some type. Those
revised rationale are not original. Rushby includes the basigiven in the body of the text are, too. For example, in my
concepts, although his other detailed discussions tend fevised rationale, | assert thaiftware engineers should use
distract from them [9, 10]; and Parnas states them succinctyppropriate mathematicfollows from software engineers
[20]. The contribution of this paper is in presenting the ideastrive to be true engineersand true engineers use

in the context of an analysis of other approaches, and ingpropriate mathematics Strictly speaking, additional
forum likely to be populated by engineers. premises are needed to define the meanings of, at least,

| believe that engineers will consider formal methods, andtriveandshould

that, as one industry engineer says, “formality Wi”Validity and Soundness
eventually become the norm in software development.” [21
This does not mean that all current formal methods tools a
techniques are ready for immediate use. Unfortunately man
current formal methods tools and techniques more close
resemble the Wright Flyer than the 777, but with the
diligent, cooperative work of mathematicians, logicians, and
engineers, researchers and practitioners, the situation cd
change quickly. | believe it will. An unsoundargument is a valid argument with at least one
false premise. Ainvalid argument is one in which all of the
premises can be true, but the conclusion still be false.
Neither unsound nor invalid arguments tell us anything
about whether their conclusion is true or false.

i avalid argument, if all of the premises are true, then the
nclusion must necessarily be true. An argumesusdif
is valid and all of its premises are known to be true. A
ound argument proves its conclusion. That is, if an
rgument is sound, then we have no choice — short of
Randoning reason — but to believe its conclusion.

The following is an example of an argument form that is

APPENDIX: LOGICAL REASONING always valid:

. . . L . o Premise 1: If P, then
This appendix summarizes the basic ideas of logical Q
reasoning [22]. The reader familiar with these ideas may + Premise 2:P
skip it. The reader interested in more information should :

I : Theref
consult [23, 24]. Conclusion: Therefore, Q

. . . The first premise asserts nothing about the truth or falsity of
Propositions, Premises, and Conclusions either P or Q alone, but it does say that if P is true, then Q

A logical argument consists of a series of statements. Thesell also be true. The second premise asserts that P is in fact

true. From these two premises, concluding that Q is true idere are three examples of strong inductive arguments:
always valid. This particular form of argument is called
modus ponengfrom the Latinmodus meaning “method”,
and ponere meaning “to affirm”). By substituting various
propositions for P and Q, many valid arguments can be Children who study Latin score higher on English
created. Whether such arguments are sound depends on the vocabulary tests than do children who do not study
truthfulness of the chosen P and Q and on the truthfulness of Latin; therefore, studying Latin improves a child's
“If P, then Q.” vocabulary.

« Greg Maddux is pitching today; therefore, the Braves
will win the game.

For example, if we let P be “l work for NASA,” and Q be “I « Many people who spend a lot of time in the sun get skin
am a civil servant”, we get the following sound argument: If ~ cancer; therefore, if you spend a lot of time in the sun,
| work for NASA, then | am a civil servant. | work for you will get skin cancer.

NASA. Therefore | am a civil servant. . _ . . .
Each of these is an inductive argument because its premises

On the other hand, if we let P be “I work for NASA,” and Qdo not guarantee the truth of its conclusion. Greg Maddux
be “I am involved in the space program”, the resultingoccasionally loses a game. Factors other than studying Latin

argument is valid, but unsound. might account for the differences in vocabulary. Not
. everyone who spends a lot of time in the sun gets skin
Fallacies cancer

An invalid argument will contain either a formal fallacy or

an informal fallacy. Aformal fallacyis one in which there E@ch of these is a strong inductive argument, because its

is something incorrect about the form of the argument. Arémises make the probability high that its conclusion is

common example, which is a perversion of modus ponens, {i€- Greg Maddux does not lose often. Many English
known asaffirming the consequerit looks like this: words come from Latin. A sun worshipper's probability of

getting skin cancer is high.
« Premise 1: If P, then Q

Strictly speaking, one ought never use the t@nove in

« Premise 2: Q connection with inductive arguments; even the strongest
possible inductive argument does not prove anything.
Nevertheless, the term is often used in common speech. For
Here is an example: If Boeing built it, the plane is a jet; theexample, only a particularly petulant person is likely to
plane is a jet; therefore, Boeing built it. object to someone saying, “Studies have proven that
eprolonged exposure to the sun increases one’s chances of
S_getting skin cancer.”

o Conclusion: Therefore, P

An informal fallacyis one in which something other than th
form is wrong. There are many types of informal fallacie
The only one important to us here is calpetitio principii

in Latin, and begging the question in English. In an

argument that commits this fallacy, one of the premises from

which the conclusion is deduced is the conclusion itself, REFERENCES

usually in different words. Such an argument is valid,

because P does imply P, but useless. Here is an examplél Betrand Meyer. From Process to Product: Where is
Volleyball is more fun to play than baseball, becauseSoftware HeadedPEEE Computer28(8):23, Augus1995.
baseball is not as fun to play as volleyball. Of course, in re
life, arguments that beg the question tend to do so mo
cleverly than that.

] David Dill and John Rushby. Acceptance of Formal
ethods: Lessons from Hardware DesiffEE Computer
29(4):23-24, April 1996.

Inductive Arguments [3] Hossein Saiedian. An Invitation to Formal Methods.
The discussion so far has been about deductive argumentSEE Computerpages 16-30, April 1996.

Inductive argumentsire (j_lfferent. Rather. than estz_abl|sh|.ng [4] Betrand Meyer. The Next Software BreakthrouGtEE
the truth of a conclusion with certainty, an mductlveCOm uter 30(7):113-114. July 1997

argument only establishes the truth of a conclusion with puter 30(7): Uy '

probability. We do not speak of the validity or soundness of5] Susan Gerhart Dan Craigen and Ted Ralston. Formal

an inductive argument; we speak of stsength A strong Methods Technology Transfer: Impediments and

inductive argument has high probability that its conclusion ignnovation. In Michael G. Hinchey and Jonathan P. Bowen,
true; a weak inductive argument has low probability that iteditors,Applications of Formal Method®rentice Hall
conclusion is true. Strong arguments are often said to Heternational Series in Computer Science, chapter 17, pages
compelling or convincing. 399-419. Prentice Hall, Great Britain, 1995.

[6] John C. Knight, Colleen L. DeJong, Matthew S. Gibble, [19] For an example, see pages 285-308 of Henry Petroski.
and Luis G. Nakano. Why Are Formal Methods Not Used Engineers of Dreams: Great Bridge Builders and the

More Widely? InLfm97: The Fourth NASA Langley Formal Spanning of Americalfred A. Knopf, New York, 1995.
Methods Workshqpages 1-12, September 1997. NASA

Conference Publication 3356 [20] David Lorge Parnas. Mathematical Methods: What

We Need and Don't NeedEEE Computer29(4):28-29,
[7] C. Michael Holloway and Ricky W. Butler. Impediments April 1996.

tzogl(zt;;sétrg L'Jo\sper"oflggémal Method&EE Computer [21] James M. Sutton. Plotting the Escape from the Tower:
' ' ' A Formalist's Practicality Primer. Ifm97: The Fourth

[8] Ricky W. Butler, James L. Caldwell, Victor A. Carreno, NASA Langley Formal Methods Workshppges 13-20,

C. Michael Holloway, Paul S. Miner, and Ben L. Di Vito. = September 1997. NASA Conference Publication 3356.

NASA Langley's Research and Technology Transfer

Program in Formal Methods. Trenth Annual Conference

on Computer Assurance (COMPASS @&ithersburg,

MD, June 1995.

[9] John Rushby. Formal Methods and Their Role in Digital
Systems Validation for Airborne Systems. NASA Contractor
Report 4673, Agust1995.

[10] John Rushby. Formal Methods and Digital Systems
Validation for Airborne Systems. NASA Contractor Report

[22] C. Michael Holloway. Necessary Consequence
Calvary Herald 1993-1997. Calvary Reformed Presbyterian
Church, Hampton, Virginia. The discussion in the appendix
is adopted from various installments of this column.

[23] Gordon H. ClarkLogic. Trinity Foundation, Jefferson,
MD, 1998.

[24] Irving M. Copi and Carl Cohemtroduction to Logic
Macmillan Publishing Company, New York, 9th edition,

4551, December 1993. 1994.

[11] W. Wayt Gibbs. Software's Chronic CrisBientific

American pages 86-95, September 1994.

[12] Ricky W. Butler and George B. Finelli. The

Infeasibility of Quantifying the Reliability of Life-Critical BIOGRAPHICAL SKETCH

Real-Time SoftwardEEE Transactions on Software C. Michael Holloway is a research engineer at the NASA
Engineering 19(1):3-12, January 1993. Langley Research Center in Hampton, Virginia. He has been
[13] John C. Knight and Nancy G. Leveson. An a member of the NASA Langley formal methods team since
Experimental Evaluation of the Assumptions of 1992, and is the creator and maintainer of the team's World-
Independence in Multiversion ProgrammitgEE Wide ng pages. His professiopal .intert_ests include
Transactions on Software Engineerir&E-12(1):96-109, programming language theory and high integrity software.
January 1986. His personal interests include theology, history, education,

_ and volleyball. Mr. Holloway was graduated from the
[14] John C. Knight and Nancy. G. Leveson. A Reply To theschool of Engineering and Applied Science at the

Criticisms Of The Knight & Leveson ExperimeACM University of Virginia with a B.S. in Computer Science in
SIGSOFT Software Engineering Nqtéanuary 1990. 1983.

[15] Alan M. Davis.201 Principles of Software
DevelopmentMcGraw-Hill, New York, 1995. Quoted on
page 80.

[16] C. Neville Dean and Michael G. Hinchey (editors).
Teaching and Learning Formal Methodscademic Press
International Series in Formal Methods. Academic Press,
London, 1996.

[17] Roger S. Pressma8oftware Engineering: A
Practitioner's ApproachMcGraw-Hill Book Company,
New York, 2nd edition, 1987.

[18] David Lorge Parnas. Teaching Programming as
Engineering. Iffeaching and Learning Formal Methqds
Academic Press International Series in Formal Methods,
pages 43-55. Academic Press, London, 1996.

