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ABSTRACT
This paper presents a logical analysis of a typical argument
favoring the use of formal methods for software
development, and suggests an alternative argument that is
simpler and stronger than the typical one.

INTRODUCTION
For more than twenty-five years, some people have touted
formal methods as the best means available for developing
safe and reliable digital systems. To many within the
research community, the efficacy — or more accurately, the
necessity — of formal methods is now accepted as proved.
One well-known researcher expressed this attitude
succinctly when he wrote concerning software engineering:
“It is clear to all the best minds in the field that a more
mathematical approach is needed for software to progress
much.” [1]

Despite this bold assertion, the attitude of many of the best
minds among practicing engineers has been quite different,
with far more rejecting formal methods than embracing
them.  Although the situation has changed some within the
last several years, especially within the hardware design
community [2], the acceptance and regular use of formal
methods is still far less than proponents want.  Formal
methods researchers and practitioners have tried to analyze
the causes of this lack of acceptance in opinion pieces [3, 4],
case studies [5], and small experiments [6]. Suggested
causes include lack of adequate tools, lack of mathematical
sophistication in developers, incompatibility with current
techniques, high costs, and over- selling by advocates.

Despite reaching different conclusions, all of these attempts
(my own included [7]) have, by and large, addressed the
issue in a similar way. They have each attempted to
determine why engineers are not routinely using existing
formal techniques and tools.  The shared assumption seems
to be that the idea of formal methods has been proved to be
good; the acceptance problem lies in the details, not the

idea. That formal methods advocates share this assumption
is not surprising. Nevertheless, the reluctance of many
engineers to use, or support the development of, any formal
method or tool suggests another possibility: perhaps the
acceptance problem lies not in the details, but in the way the
idea has been communicated to engineers. This paper
presents the preliminary results of my effort to investigate
this possibility.

The structure of the paper is as follows. The next section
states the specific question I considered. This is followed by
an example of a typical rationale for formal methods. A
logical analysis of this rationale is then given, followed by a
revised rationale designed to correct the flaws in the original
one. Brief concluding remarks complete the body of the
paper. An appendix provides an overview of the basic
principles of logical reasoning that are used in this paper.
Readers unfamiliar with the definitions of terms such as
proposition, deductive argument, and inductive argument
should read this appendix before the next section.

THE QUESTION
In as simple and abstract terms as possible, and ignoring
possible subtleties, the problem we are considering can be
stated as follows. Group one makes an assertion and
provides arguments they believe prove this assertion.  Group
two, by their actions if not necessarily their words, denies
the assertion.  Group one’s assertion is either true or false. If
the assertion is false, then group two is justified in denying
it.

If the assertion is true, then group two may or may not be
justified in denying it. They are justified in denying the
assertion if the arguments supplied by group one are
insufficient to prove the truth of the assertion.  They are not
justified in denying the assertion if the arguments supplied
by group one are sufficient. Note that, by definition, if the
assertion is false, group one’s arguments supporting it
cannot be sufficient. Thus, to determine whether group two's
denial of the assertion is justified, we need only consider the
sufficiency of the arguments supplied by group one.



In our particular case, group one consists of formal methods
advocates. Group two consists of industry engineers. The
assertion is that engineers of computer systems should use
appropriate formal methods. To simplify our discussion, we
will restrict ourselves to computer software, recognizing that
the line between software and hardware is becoming
increasingly blurred. Thus, the question is: Do the
arguments supplied by formal methods advocates adequately
support the assertion that software engineers should use
appropriate formal methods?

TYPICAL RATIONALE
To begin to answer this question, let us consider a typical
rationale for formal methods.  The rationale given here is
based on the arguments given previously by NASA Langley
formal methods team members (myself included) [8],
augmented by arguments from other Langley-sponsored
work [9, 10].

Software is notorious for being late in delivery and
unpredictable and unreliable in operation. According to a
1994 article by Wayt Gibbs, “Studies have shown that for
every six new large-scale software systems that are put into
operation, two others are cancelled. The average software
development project overshoots its schedule by half; larger
projects generally do worse. And three quarters of all large
systems are operating failures that either do not function as
intended or are not used at all.” [11]

When compared to other engineering disciplines, software
engineering does not come out looking good. But this should
not be surprising, because in at least two respects, software
is different from the physical objects, materials, and systems
with which traditional engineers work.

First, in physical systems smooth changes in inputs usually
produce smooth changes in outputs. That is, most physical
systems are continuous. This allows the behavior of the
system to be determined by testing only certain inputs, and
using extrapolation and interpolation to determine the
behaviors for untested inputs.

Software systems are, by their very nature, discontinuous.  A
small change in input may change the outcomes at several
decision points within the software, causing very different
execution paths and major changes in output behavior. As a
result, using extrapolation and interpolation to estimate
output behaviors for untested inputs is risky at best, and
exceedingly dangerous at worst.

Software differs from physical systems in another way: its
complexity.  Much of the functionality of modern systems is
provided by software; therefore, much of the complexity of
these systems is expressed in the software, also. The greater
the complexity, the more likely design flaws — flaws in the

intellectual construction of the system that cause it to do the
wrong thing under some conditions — are to occur.  Design
flaws are the only way that software can go wrong; software
does not wear out like physical components. Thus, to ensure
that a software system does what it is intended to do, design
flaws must be handled in some way.

Many different approaches to handling design flaws have
been proposed.  All of these may be grouped in one of the
following three categories: testing, design diversity, or fault
avoidance.

The discontinuity of software poses problems for testing-
based approaches. For systems with low reliability
requirements, testing for long enough to show statistically
that the system meets its requirements may be possible.  But
for high integrity software systems, such testing would
require much more time than is feasible. For example, to
measure a 10-9 probability of failure for a 1 hour mission,
one must test for more than 109 hours (114,000 years) [12].
Thus, for such systems, testing-based approaches are
inadequate.

The basic idea behind approaches of the design diversity
type is to use separate teams to produce multiple versions of
the software. The hope is that the design flaws will manifest
errors independently or nearly so, and that voters can be
used at run-time to mask the effect of those flaws. If the
independence assumption is valid, ultrareliable-level
estimates of system reliability can be obtained even with
failure rates for individual versions of 10-4/hour. However,
the independence assumption does not appear to be valid. In
several experiments for low reliability software, the
assumption was rejected at the 99% confidence level [13,
14]. Furthermore, the independence assumption cannot be
validated for high reliability software because of the
exorbitant test times required [12].  As a result, design
diversity is inadequate, also.

Because design flaws cannot be handled adequately by
approaches based on either testing or design diversity, fault
avoidance techniques offer the best hope.  Of possible fault
avoidance techniques, formal methods are the most rigorous;
therefore, they are the most promising. Hence, to phrase the
conclusion in the language used earlier, software engineers
should use appropriate formal methods.

CRITIQUE
We want to determine if this argument provides sufficient
justification for its conclusion. To do this, we can examine
the structure of the argument by stripping away the verbiage.
This will leave us with only the essential propositions and
the relationships between them. Doing this yields the
following (for reference, each proposition is given a label).



Software is bad (P1).  Software differs from physical
systems in at least two ways (P2): software is discontinuous
(P3), and software is complex (P4).  Software is complex
(P4), and complexity results in design flaws (P5); therefore,
software has design flaws (P6). Design flaws must be
handled (P7). The three ways to handle design flaws are
testing, design diversity, and fault avoidance (P8).  Because
software is discontinuous (P3), testing is inadequate (P9).
Also, because software is discontinuous (P3), design
diversity is inadequate (P10). Because there are only three
ways to handle design flaws (P8), and the other two are
inadequate (P9, P10), fault avoidance must be used to
handle design flaws (P11). Because formal methods are the
most rigorous fault avoidance method (P12), and the
greater the rigor, the more promising the method (P13),
formal methods are the most promising fault avoidance
method (P14). Because software has design flaws (P6), and
design flaws must be handled (P7), and fault avoidance
methods must be used to handle design flaws (P11), and
formal methods are the most promising of these methods
(P14), software engineers should use appropriate formal
methods (P15).

Figure 1 gives a graphical depiction of the structure of the
argument.

After examining this structure, we can make the following
observations:

• The argument is fairly complicated.

• The following two propositions play no part in
establishing the conclusion:

1. Software is bad (P1)

2. Software differs from physical systems in at least
two ways (P2)

• The conclusion depends immediately on the following
propositions:

1. Software has design flaws (P6)

2. Design flaws must be handled (P7),

3. Fault avoidance methods must be used to handle
design flaws (P11)

4. Formal methods are the most promising of these
methods (P14).

We will now consider the implications of each of these
observations.

Complexity
A complex argument is not necessarily a bad argument.
Some conclusions can only be reached by long, complicated
arguments. In such cases, complexity is essential; however,
one should keep in mind that most people react to a
complicated argument in one of two ways.  Some reject it
out of hand.  Being unwilling to invest the effort needed to
analyze the argument carefully, these people are also
unwilling to believe that which they do not understand. 
Others accept a complicated argument without question,
assuming that anything so complicated must be true.

In trying to make the case for formal methods, we certainly
do not want to give the former group cause to reject our
argument out of hand.  Nor do we want the latter group to
accept our argument unthinkingly; those who do so are
likely to give up when practical difficulties arise.  If it is
possible to construct a simpler argument, we should do so. 
To paraphrase C.A.R. Hoare’s comment on software design
[15], there are two ways of constructing most arguments. 
One way is to make it so simple that there are obviously no
deficiencies and the other is to make it so complicated that
there are no obvious deficiencies.  In the revised rationale
that I present later, I opt for the first approach.

Unnecessary Propositions
From a strictly logical point of view, unnecessary
propositions are just that: unnecessary.  Taking this view,
however, ignores the fact that other reasons besides logical
necessity may exist for including certain propositions in an
argument.  For example, beginning the argument for formal
methods with a discussion of the sad state of current
software development practices may well serve to encourage
an audience to listen closely to what follows. On the other
hand, if someone is unconvinced that the state of practice is
as bad as is claimed, that person may be less likely to listen
to what follows.

Logically, propositions P1 and P2 do not need to be in the
argument. Rhetorically, cases can be made both for and
against including one or both of them. In my revised
rationale, I leave them out.

P7
P1

P8
P2

P9 P11
P3 P12 P15

P10 P14
P4 P13

P6
P5

Figure 1: Structure of Typical Argument



Immediate Dependency
It is upon the truth or falsity of the propositions on which the
conclusion immediately depends that the sufficiency of this
argument rests. If it is certain that software has design flaws,
design flaws must be handled, fault avoidance methods must
be used to handle design flaws, and formal methods are the
most promising of these methods, then it is equally certain
that formal methods will benefit software engineers. Let us
look at each proposition and see how certain it is.

Does software have design flaws?  Anyone who has ever
spent more than a few minutes in front of a computer knows
that it does.  We do not even need the two propositions used
in the argument as support.  This proposition is indisputably
true.

Must design flaws be handled?  In computer games,
VCRs, and personal entertainment systems, failing to handle
design flaws might not have serious consequences. In
avionics, reactor control, and anti-lock brakes, failing to
handle design flaws might have life threatening
consequences.  Thus, for the most important types of
computer systems, this proposition is also indisputably true.

Must fault avoidance techniques be used to handle
design flaws?  In the given rationale, this proposition is
claimed to follow from three other propositions: (P8) the
three ways to handle design flaws are testing, design
diversity, and fault avoidance, (P9) testing is inadequate,
and (P10) design diversity is inadequate.

This approach seems to me to be unnecessary for, and
potentially harmful to, the argument. It is unnecessary
because not even the most ardent supporters of testing or
design diversity argue that fault avoidance techniques should
be abandoned.  It is potentially harmful because some
people who are unconvinced by the arguments against
testing or design diversity might not listen to the rest of the
argument.  The need for fault avoidance techniques is as
self-evidently clear as the previous two propositions we have
considered.  This proposition could be established much
more easily than is done here.

So far, the three important propositions we have examined
are true. If the fourth proposition is true, then the rationale
will turn out to be a sound deductive argument for its
conclusion.

Are formal methods the most promising fault avoidance
method? The rationale claims they are because formal
methods are the most rigorous fault avoidance method
(P12), and the greater the rigor, the more promising the
method (P13).

Alas, this is begging the question. All the claimed benefits
from formal methods are derived from the rigor they
enforce.  If rigor is promising, then formal methods are

promising.  But the argument does not prove that rigor is
promising, it simply asserts it: P14 and P13 assert the same
thing, using different words.

Thus, although three of the four essential propositions have
been shown to be true, the fourth has not. Only those who
already believe that rigor is good should find the given
rationale sufficient. Everyone else should remain
unconvinced.

REVISED RATIONALE
The typical rationale failed, but it came close. It could be
completed by simply establishing the truth of P14 without
begging the question; however, doing so would result in a
rationale that still retains the unnecessary complexity noted
in the previous section. So, instead of attempting a repair
job, let us develop a different rationale all together.

Using the same style as used in the previous section, the
revised rationale is as follows. Notice that the original
fifteen propositions have been replaced by only five, and
that the structure is so simple as to not need a graphical
representation.

Software engineers strive to be true engineers (Q1); true
engineers use appropriate mathematics (Q2); therefore,
software engineers should use appropriate mathematics
(Q3). Thus, given that formal methods is the mathematics of
software (Q4), software engineers should use appropriate
formal methods (Q5).

This is a valid deductive argument, in which the truth of the
conclusion rests upon the truth of two premises: Q3 and Q4.
In turn, the truth of Q3 rests upon the truth of two other
premises: Q1 and Q2 (and unstated premises that relate
striving to be an engineer with doing what engineers do). 
To show that the conclusion is true, we need only show that
Q1, Q2, and Q4 are each true. This is a simple task.

Because formal methods are defined as the mathematics of
computer software and hardware systems [16], Q4 is true by
definition.

Hundreds, perhaps thousands, of references could be cited
from the late 1960's (when the term "software engineering"
was coined) to the present to establish the truth of Q1. For
example, Roger Pressman writes [17]: “An early definition
of software engineering was proposed by Fritz Bauer at the
first major conference dedicated to the subject: The
establishment and use of sound engineering principles in
order to obtain economically software that is reliable and
works efficiently on real machines. Although many more
comprehensive definitions have been proposed, all reinforce
the importance of engineering discipline in software
development.”



Similarly, the truth of Q2 can be established by myriad
citations. Again, one will suffice: “Professional engineers
are expected to use discipline, science, and mathematics to
assure that their products are reliable and robust.” [18]

We have proven Q1, Q2, and Q4 to be true.  Q3 follows by
deduction from Q1 and Q2.  Q5 follows by deduction from
Q3 and Q4.  Thus, software engineers should use
appropriate formal methods.  Please note that the word
“appropriate” is important. Using inaccurate or incomplete
mathematics can cause disasters in traditional engineering
[19]. There is no reason to suspect that the same cannot
happen with formal methods.

CONCLUDING REMARKS
In this paper, I presented an analysis of a typical rationale
used to convince engineers of the potential usefulness of
formal methods. This analysis revealed that the typical
rationale is complicated, but fails to establish the truth of an
essential proposition. As a result, I presented a simple
revised rationale, which I believe shows conclusively why
engineers should consider formal methods. The ideas in this
revised rationale are not original. Rushby includes the basic
concepts, although his other detailed discussions tend to
distract from them [9, 10]; and Parnas states them succinctly
[20]. The contribution of this paper is in presenting the ideas
in the context of an analysis of other approaches, and in a
forum likely to be populated by engineers.

I believe that engineers will consider formal methods, and
that, as one industry engineer says, “formality will
eventually become the norm in software development.” [21]
This does not mean that all current formal methods tools and
techniques are ready for immediate use. Unfortunately many
current formal methods tools and techniques more closely
resemble the Wright Flyer than the 777, but with the
diligent, cooperative work of mathematicians, logicians, and
engineers, researchers and practitioners, the situation can
change quickly. I believe it will.

APPENDIX: LOGICAL REASONING
This appendix summarizes the basic ideas of logical
reasoning [22]. The reader familiar with these ideas may
skip it. The reader interested in more information should
consult [23, 24].

Propositions, Premises, and Conclusions
A logical argument consists of a series of statements. These

statements are not just any old statements; each one must be
either true or false. Such statements are called propositions.
Commands, questions, and requests are not propositions,
and thus are not formally part of a logical argument.

To construct an argument, propositions are grouped in such
a way that one of them is asserted to follow from the others.
The proposition that is affirmed on the basis of the others is
called the conclusion; the other propositions in the argument
are called the premises. In the following example, the first
two propositions are the premises, and the third proposition
is the conclusion: All cats are clever. Dixie is a cat.
Therefore, Dixie is clever.

Of course, most arguments in real life are not written so
simply as this example, which means that identifying the
premises and conclusions can be more difficult. Not only do
real life arguments frequently contain extraneous
information, all of the premises and conclusions are often
not stated explicitly.  The technical term for an argument in
which only parts are stated is an enthymeme.

Because of the vast amount of knowledge that is assumed in
almost any statement we make, most real-world arguments
are, in fact, almost always enthymemes of some type. Those
given in the body of the text are, too.  For example, in my
revised rationale, I assert that software engineers should use
appropriate mathematics follows from software engineers
strive to be true engineers and true engineers use
appropriate mathematics.  Strictly speaking, additional
premises are needed to define the meanings of, at least,
strive and should.

Validity and Soundness
In a valid argument, if all of the premises are true, then the
conclusion must necessarily be true. An argument is sound if
it is valid and all of its premises are known to be true. A
sound argument proves its conclusion. That is, if an
argument is sound, then we have no choice — short of
abandoning reason — but to believe its conclusion.

An unsound argument is a valid argument with at least one
false premise. An invalid argument is one in which all of the
premises can be true, but the conclusion still be false.
Neither unsound nor invalid arguments tell us anything
about whether their conclusion is true or false.

The following is an example of an argument form that is
always valid: 

• Premise 1: If P, then Q

• Premise 2: P

• Conclusion: Therefore, Q

The first premise asserts nothing about the truth or falsity of
either P or Q alone, but it does say that if P is true, then Q
will also be true. The second premise asserts that P is in fact



true. From these two premises, concluding that Q is true is
always valid. This particular form of argument is called
modus ponens (from the Latin modus, meaning “method”,
and ponere, meaning “to affirm”). By substituting various
propositions for P and Q, many valid arguments can be
created. Whether such arguments are sound depends on the
truthfulness of the chosen P and Q and on the truthfulness of
“If P, then Q.”

For example, if we let P be “I work for NASA,” and Q be “I
am a civil servant”, we get the following sound argument: If
I work for NASA, then I am a civil servant. I work for
NASA.  Therefore I am a civil servant.

On the other hand, if we let P be “I work for NASA,” and Q
be “I am involved in the space program”, the resulting
argument is valid, but unsound.

Fallacies
An invalid argument will contain either a formal fallacy or
an informal fallacy.  A formal fallacy is one in which there
is something incorrect about the form of the argument.  A
common example, which is a perversion of modus ponens, is
known as affirming the consequent. It looks like this:

• Premise 1: If P, then Q

• Premise 2: Q

• Conclusion: Therefore, P

Here is an example: If Boeing built it, the plane is a jet; the
plane is a jet; therefore, Boeing built it.

An informal fallacy is one in which something other than the
form is wrong. There are many types of informal fallacies.
The only one important to us here is called petitio principii
in Latin, and begging the question in English. In an
argument that commits this fallacy, one of the premises from
which the conclusion is deduced is the conclusion itself,
usually in different words. Such an argument is valid,
because P does imply P, but useless. Here is an example:
Volleyball is more fun to play than baseball, because
baseball is not as fun to play as volleyball. Of course, in real
life, arguments that beg the question tend to do so more
cleverly than that.

Inductive Arguments
The discussion so far has been about deductive arguments.
Inductive arguments are different. Rather than establishing
the truth of a conclusion with certainty, an inductive
argument only establishes the truth of a conclusion with
probability. We do not speak of the validity or soundness of
an inductive argument; we speak of its strength. A strong
inductive argument has high probability that its conclusion is
true; a weak inductive argument has low probability that its
conclusion is true. Strong arguments are often said to be
compelling or convincing.

Here are three examples of strong inductive arguments:

• Greg Maddux is pitching today; therefore, the Braves
will win the game.

• Children who study Latin score higher on English
vocabulary tests than do children who do not study
Latin; therefore, studying Latin improves a child's
vocabulary.

• Many people who spend a lot of time in the sun get skin
cancer; therefore, if you spend a lot of time in the sun,
you will get skin cancer.

Each of these is an inductive argument because its premises
do not guarantee the truth of its conclusion. Greg Maddux
occasionally loses a game. Factors other than studying Latin
might account for the differences in vocabulary. Not
everyone who spends a lot of time in the sun gets skin
cancer.

Each of these is a strong inductive argument, because its
premises make the probability high that its conclusion is
true.  Greg Maddux does not lose often.  Many English
words come from Latin.  A sun worshipper's probability of
getting skin cancer is high.

Strictly speaking, one ought never use the term prove in
connection with inductive arguments; even the strongest
possible inductive argument does not prove anything.
Nevertheless, the term is often used in common speech. For
example, only a particularly petulant person is likely to
object to someone saying, “Studies have proven that
prolonged exposure to the sun increases one’s chances of
getting skin cancer.”
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