A FORMAL METHODSAPPROACH TO THE
ANALYSISOF MODE CONFUSION

Ricky W. Butler, NASA Langley Research Center, Hampton, Virginia
Seven P. Miller, Rockwell Collins, Cedar Rapids, lowa
James N. Potts, Rockwell Collins, Cedar Rapids, lowa
Victor A. Carreno, NASA Langley Research Center, Hampton, Virginia

I ntroduction

The goa of the new NASA Aviation
Safety Program (AvSP) is to reduce the civil
aviation fatal accident rate by 80% in ten years
and 90% in twenty years. This program is being
driven by the accident data with a focus on the
most recent history. Pilot error is the most com-
monly cited cause for fatal accidents (up to
70%) and obviously must be given major consid-
eration in this program. While the greatest

source of pilot error is the loss of “situation
awareness”, mode confusion is increasingly be-
coming a major contributor as well. The January
30, 1995 issue of Aviation Week lists 184 inci-
dents and accidents involving mode awareness
including the Bangalore A320 crash 2/14/90, the
Strasbourg A320 crash 1/20/92, the Mul-
house-Habsheim A320 crash 6/26/88, and the

Toulouse A330 crash 6/30/94 [2].

These incidents and accidents reveal that
pilots sometimes become confused about what
the cockpit automation is doing. Consequently,
human factors research is an obvious investment
area. However, even a cursory look at the acci-
dent data reveals that the mode confusion prob-
lem is much deeper than just training deficiencies
and a lack of human-oriented design. This is
readily acknowledged by human factors experts.
For example, Charles E. Billings, writes in Avia-
tion Automation: The Search for a Hu-

man-Centered Approach (pg 144) [1]:

...today’s flight management systems are

“mode rich” and it is often difficult for pi-
lots to keep track of them. The second

problem, which is related to the first in-
volves lack of understanding by pilots of the
system’s internal architectur@nd logic, and
therefore a lack of understanding of what
the machine is doing, and why, and what it

is going to do next.
Similarly, Sarter and Woods write [7]:

What is needed is a better understanding of
how the machine operates, not just how to

operate the machine.

It seems that further progress in human factors
must come through a deeper scrutiny of the in-
ternals of the automation. It isin this arena that
formal methods can contribute. Formal methods
refers to the use of techniques from logic and
discrete mathematics in the specification, design,
and verification of computer systems, both
hardware and software. The fundamental goal of
formal methods is to capture requirements, de-
signs and implementations in a mathematically
based model that can be analyzed in a rigorous
manner. Research in forma methods is aimed at
automating this analysis as much as possible. By
capturing the internal behavior of a flight deck in
a rigorous and detailed formal model, the dark
corners of a design can be analyzed.

This paper will explore how formal mod-
els and analyses can be used to help eliminate
mode confusion from flight deck designs and at
the same time increase our confidence in the
safety of the implementation. The paper is based
upon interim results from a new project involv-
ing NASA Langley and Rockwell Collins in ap-
plying formal methods to a realistic business jet
Flight Guidance System (FGS).

The Targeted Flight Guidance System

A Flight Guidance System (FGS) is a
component of the overall Flight Control System
(FCS) (see Figure 1). The FGS compares the
measured state of an aircraft (position, speed,
and attitude) to the desired state and generates
pitch and roll guidance commands to minimize
the difference between the measured and desired
state. When engaged, the Autopilot (AP) trans-
lates these commands into movement of the air-
craft’'s control surfaces necessary to achieve the
commanded changes about the lateral and verti-
cal axes. An FGS can be further broken down
into the mode logic and the flight control laws.
The mode logic accepts commands from the
flight crew, the Flight Management System
(FMS), and information about the current state
of the aircraft to determine which system modes
are active. The active modes in turn determine
which flight control laws are used to generate
the pitch and roll guidance commands. The ac-
tive lateral and vertical modes are displayed (an-

Crew Interface

nunciated) to the flight crew on the Flight Di-
rector (FD), a portion of the Electronic Flight
Instrumentation System (EFIS). The magnitude
and direction of the lateral (roll) and vertical
(pitch) commands generated by the FGS are also
displayed on the EFI'S as guidance cues.

The specification of the Flight Guidance
System used in this project was developed at
Collins as part of a project to investigate differ-
ent methods of modeling requirements [5].
While it is a smplified composite of several ac-
tual Flight Guidance Systems, and does not de-
scribe an actual aircraft in service, it is complex
enough to serve as arealistic example [4].

Goals of Formal M odeling

Moving new technology into practice is
always more difficult than the creation of that
technology, especialy in the case of software
development. Over the years a multitude of new
software development methodologies have been
produced, yet few of them have been accepted

A
Crew Crew
Selections Indications
A
FGS Flight
Director
(EFIS)
Mode Logic
Flight
Management > Roll
9 > Pitch
System
Control Laws
» Autopilot Actuator [Control
| Autoprio Commands | Surfaces
A A
ot

Measured State

Sensor Data

Figure 1 - Flight Control System Overview

by industry. A major goal of this project was
not only to show how formal methods could be
used to remove mode confusion from a flight
guidance system and to discover design flaws,
but to do so in away that would be accepted by
industry.

Companies such as Rockwell Collins
typically build variations of the same products
over and over. Increasingly, these companies
are looking for strategies that support the sys-
tematic reuse of common artifacts. One such
approach is Product Family Engineering, also
known as Domain Engineering. Central to the
Product Family approach is the development of a
domain architecture consisting of those require-
ments, design, implementation, and verification
artifacts that are common to all members of the
family and the variations of these artifacts that
are supported by the domain. Prior to this proj-
ect, Collins had conducted a Commonality
Analysis [9] of the FGS mode logic described in
[4] and developed a tentative product family
architecture. Consequently, an important goal of
this project was to build on that work and de-
velop a formal model consistent with that archi-
tecture.

Another central goal of the project was
to make the mode logic accessible to pilots and
experts in human factors. To achieve this, the
mode logic is aso specified as an executable
ObjecTime model [8]. This model is connected
to a mock-up of the Flight Deck so that the
model can be executed by pressing buttons and
turning dials on the mock-up. A visualization of
the mode logic (Figure 3) is also displayed as the
model executes, allowing pilots, experts in hu-
man factors, and the design engineers to relate
the behavior of the automation to the human
computer interface.

Yet another goa was to be able to for-
mally analyze the model for various forms of
consistency, completeness, safety properties,
and properties related to human factors. To
achieve this, the ObjecTime model was manually
trandlated into the PVS specification language

[6]. The desired properties could then be ana-
lyzed with this model using the PVS theorem
prover. This overall strategy is illustrated in Fig-
ure 2.

Figure 2 - Overall Strategy

As aresult, there were several goals that
affected the style of the formal models. In par-
ticular, the formal models had to be:

1. suitable for mathematical analysis of their
potential for mode confusion

2. congistent with the executable ObjecTime
model

3. conceptualy simple enough to display
during pilot training

4. consistent with the product family archi-
tecture

Interestingly, we found that (1) and (4)
worked against each other. The proofs became
more difficult as the model was structured to
achieve (4). This will be discussed in detall in a
future report.

M ode Confusion

Mode confusion can be traced to at least
three fundamental sources: (1) opacity (i.e., poor
display of automation state), (2) complexity (i.e.,
unnecessarily complex automation), and (3) in-
correct mental model (i.e., flight crew misunder-
stands the behavior of the automation). Tradi-
tional human factors research has concentrated

on (1), and significant progress has been made.
However, mitigation of mode confusion will re-
quire addressing problem sources (2) and (3) as
well. Towards this end, our approach uses two
complementary strategies based upon a formal
model:

Visualization Creste a clear, executable formal
model of the automation that is easlly un-
derstood by flight crew and use it to drive a
flight deck mockup from the formal model.

Analysis Conduct mathematical analysis of the
model.

It is hoped that this approach will (1) force

% Mode Display - connected

Flight Director

Cues OFf
On
Cuez0On

i

designers to commit to a clear conceptual model
of the automation, (2) facilitate discussion be-
tween designers, human factors experts, and the
flight crew, (3) enhance the training process by
direct exposure to an accurate mental model of
the automation, and (4) through analysis, un-
cover characteristics of the automation that his-
toricaly have been a source of mode confusion.

Model Visualization

Development of a flight deck around an
executable forma model enables several innova-
tive strategies for pilot training. First, the ex-
ecutable model can be used in place of a rapid
prototype for early life cycle discussions with
pilots. These discussions can be focused on the

|- [Of x]
Autopilot

Engaged

Dizengaged

%

Lateral Modes
—Rall

—_————
Cleared Active
ot

Verdical Modes

~Pitch

—_—
Cleared
B B —

Active

Armed

~Heading VS
Cleared Active Artive
.-—
~Approach ~Approach

Cleared
<+

———

Track

Armed

—M 3

Armed

e E—
Cleared
-+

Track

—
’_i;

rAltHaold

——W
Cleared
_

Active

1L

Figure 3 - Visualization of the FGS M odes

4

identification of model complexities that are
confusing to the pilots. Second, during training
the flight deck can be augmented with an addi-
tional display that directly exposes the interna
structure of the automation and its dynamic
changes. This display will not be present in the
cockpit of an operational aircraft. It will be used
exclusively to help the pilot form an accurate
model of what the automation is doing.

An example of the visual display of the
mode logic is shown in Figure 3. The state of the
Flight Director (FD), Autopilot (AP), and each
of the lateral and vertical modes are modeled as
small, tightly synchronized finite state machines.
In Figure 3, the FD is On with the guidance cues
displayed; the AP is Engaged; lateral Roll,
Heading, and Approach modes are Cleared; lat-
eral NAV mode is Armed; vertical modes Pitch,
Approach, and AltHold are Cleared; and the VS
mode is Active. Active modes are those that
actually control the aircraft when the AP is en-
gaged. These are indicated by the heavy dark
boxes around the Active, Track, and lateral
Armed modes.

A smal number of constraints govern
most of the synchronization between the mode
machines. For example, if the Flight Director is
turned on (so that the lateral and vertical modes
are annunciated on the Flight Director), then
one, and only one, lateral mode can be active. A
similar constraint holds for the vertical modes.
Since the lateral and vertical modes are so tightly
synchronized, a common mistake when modeling
the mode logic is to try to combine the lateral
and vertical mode machines into a single lateral
mode machine and a single vertical mode ma
chine. Besides violating the modularity needed
to support a family of products, combining the
modes in this way breaks down when other
modes that are more loosely synchronized are
added.

This visual model of the automation is connected
to a simulation of the cockpit and can be exe-
cuted by pressing buttons and turning dials on
the mockup. In this way, pilots, experts in hu-

man factors, and the designers can easlly relate
the behavior of the automation with the human
computer interface

Model Analysis

In a new paper entitled “Analyzing Soft-
ware Specifications for Mode Confusion Poten-
tial” [3], Nancy Leveson, et. al., identify six
categories of design that have historically been a
source of mode confusion: (1) inputs interpreted
differently in different modes, (2) indirect mode
changes, (3) behavior that is different in different
modes, (4) operator authority limits, (5) unin-
tended sides effects, (6) lack of appropriate
feedback. The critical question here is whether
these categories can be understood well enough
that they can be mathematically characterized. If
so, the formal models can be analyzed against
these characterizations. Although this work is
incomplete, we can illustrate the concept on
categories (2) and (3) above. The analysis is
made possible by the translation of the Ob-
jectTime visualization model into the PVS
specification language. This was done manually
for this project, but future work will look into
automatic translation.

The formal PVS specification is centered
around a fiext_state” function that defines the
overall system transition in terms of several syn-
chronized state machines. The system state
vector includes four fieldss LATERAL,
VERTICAL, FD, and AP which contain the
state of the latera guidance, vertical guidance,
Flight Director and Autopilot. The lateral and
vertical guidance models are further defined in
terms of several synchronized mode machines
such as PITCH, ROLL, NAV, and HDG. De
tails of this model will be included in a future
technical report.

! Alternatively one could drive the visualization from the PVS
specification. The ultimate goal is to use one model for specifi-
cation, training, analysis, and implementation.

Indirect Mode Changes

The first problem is formally defining
what constitutes an indirect mode change. Let’s
begin by defining it as a mode change that oc-
curs when there has been no crew input:

Indirect_Mode_Change?(s,e): bool =
NOT Crew_input?(e) AND Mode_Change?(s,e)

No_Indirect_Mode_Change: LEMMA
Valid_State?(s) IMPLIES
NOT Indirect_Mode_Change?(s,e)

We then seek to prove the “false” lemma above
using GRIND, a brute force proof strategy that
works well on lemmas that do not involve quan-
tification? The resulting unproved sequents
elaborate the conditions where indirect mode
changes occur. For example,

{-1} Overspeed_Event?(e!l)
{-2} OFF?(mode(FD(s!1)))
{-3} s!1 WITH[FD := FD(s!1) WITH [mode := CUES],
LATERAL := LATERAL(s!1) WITH
[ROLL := (# mode := ACTIVE #)],
VERTICAL := VERTICAL(s!1) WITH
[PITCH := (# mode := ACTIVE #)]]
=NS
{-4} Valid_State(s!1)

mode(PITCH(VERTICAL(s!1))) =
mode(PITCH(VERTICAL(NS)))

The situations where indirect mode
changes occur are clear from the negatively la-
beled formulas in each sequent. We see that an
indirect mode change occurs when the over-
speed event occurs and the Flight Director is off.
This event turns on the Flight Director and
places the system into modes ROLL and
PITCH?

Discovering I nconsistent Behavior

Precisely defining the concept of incon-
sistent behavior is nontrivial and likely to be a
long term endeavor. With no pretense of fully

2 As the model has grown larger, we have had to develop more
effective custom proof strategies to keep the proof times at
manageable durations.

3 PITCH mode is selected because the model is still under con-
struction. In the final model, Flight Level Change (FLC) mode
will be selected as the active vertical mode when overspeed
oceurs.

capturing the notion of inconsistent behavior, we
offer the following as simple examples to illus-
trate the concept:

» Button pushes that are ignored in some
modes but not others
» Button pushes that act like toggles in some
modes but not others
We define an “ignored command” as one in
which there is a crew input and there is no mode
change. We seek to prove that this never hap-
pens:
No_lgnored_Crew_Inputs: LEMMA

Valid_State(s) AND Crew_Input?(e) IMPLIES
NOT Mode_Change?(s,e)

The result of the failed proof attempt is a set of
sequents similar to the following:

{-1} VS_Pitch_Wheel_Changed?(e!1)

{-2} CUES?(mode(FD(s!1)))

{-3} TRACK?(mode(NAV(LATERAL(s!1))))

{-4} ACTIVE?(mode(VS(VERTICAL(s!1))))

{1} ACTIVE?(mode(ROLL(LATERAL(s!1))))
{2} ACTIVE?(mode(HDG(LATERAL(s!1))))

The negatively labeled formulas in the
sequent clearly elaborate the case where an input
is ignored, i.e., when the VS/Pitch Wheel is
changed and the Flight Director is displaying
CUES and the active lateral mode is ROLL and
the active vertical mode is PITCH. In this way,
PVS is used to perform a state exploration to
discover all conditions where the lemma is false,
i.e., all situations in which a crew input is ig-
nored.

We can determine whether the HDG
Switch acts like a toggle by seeking to prove the
following lemma which asserts that the HDG
mode toggles between CLEARED and ACTIVE
whenever the HDG switch is pressed.

HDG_Toggle?: LEMMA

HDG(LATERAL(next_state(s, HDG_Switch_Hit))) /=
HDG(LATERAL(S))

This lemma is easily proved for the current
model. Of course, this may not remain true as

more modes are added and the mode logic be-
comes more complex.

Safety Analysis

Of particular importance to the analysis
of safety-critical systems is the fact that formal
methods provides a way to investigate all of the
behaviors of a model. In other words, they can
explore whether a property is true over its entire
input space. And total exploration of the entire
input space is the only way to gain assurance
that catastrophic failure does not lie hidden
among the vast number of possible behaviors.
Simulation and testing simply cannot accomplish
this in practical amounts of time. Although no
accident in civil aviation has been blamed di-
rectly on a bug in the software, many serious
incidents have occurred and are occurring with
increasing frequency. Billings writes (p#49)
[1]: It must be noted that automation also makes
apparently random, unpredictable *“errors”
(e.g. the flap lockup at Hong Kong, 1994&)e
then offers six examples where this has occurred.

A key advantage of a formal model is
that it can be mathematically analyzed to insure
that key safety properties are not violated. For
example, one would seek to prove

GO_AROUND_SAFETY_PROP: LEMMA
Valid_state(s) IMPLIES

LATERAL(next_state(s,e) = GA
VERTICAL(next_state(s,e) = GA

IFF

In other words, the lateral mode will only
be in Go Around if the vertica mode is in Go
Around and vice versafor al possible inputs and
reachable states. This lemma is proved for all
possible inputs, so conceptually this is equivalent
to exhaustive testing”. Another example is:

At_Least_One_Lateral_Mode_Active(s): bool =

ON?(FD(s)) IFF
At_Least_One_Mode_Active(LATERAL(S))

4 Note. Thisisnot aclaim for perfection because we have no
guarantee that all of the needed properties have been elaborated
and that they have all been stated correctly.

ALOLMA: LEMMA
At_Least_One_Lateral_Mode_Active(s) IMPLIES
At_Least_One_Lateral_Mode_Active(next_state(s,e))

This property must be proved as a conseguence
of modeling the lateral modes as a set of paralel
state machines.

Currently we have identified over 50 key
functional properties. Three are shown here:
AP_TURNS_ON: LEMMA
NOT Engaged?(AP(s)) AND
Engaged?(AP(next_state(s, €)))
IMPLIES
AP_Engage_Switch_Pressed?(e) AND
Disconnect_Bar_Up?(AP(s))

FD_TURNS_OFF: LEMMA
On?(FD(s)) AND
NOT On?(FD(fast_next_state(s, €)))
IMPLIES
FD_Switch_Hit?(e) AND
NOT Engaged?(AP(s)) AND
NOT Overspeed?(FD(s))

HDG_SELECTED: LEMMA
NOT ACTIVE?(mode(HDG(LATERAL(s))))
AND HDG_Switch_Hit?(e)

IMPLIES

ACTIVE?(mode(HDG(LATERAL(next_state(s,e)))))

It is interesting that the need to prove
certain key properties has led us to discover
even more key functional properties than had
been cited in [4] and [5]. This has led us to
speculate about the possibility of a more abstract
specification in which these properties are ex-
plicitly stated, rather than being implicit as in the
current operational model.

Future Work

Finally, because the current flight deck
has grown incrementally over two decades, the
result has not been a coherent, well integrated
means of controlling an aircraft. Tony Lam-
bregts, the FAA National Resource Specialist for
Automated Controls writes “... the great major-
ity of automation deficiencies and unnecessary
complexities are the result of bad formulation of
requirements and adhering too long to outdated

technologies, engineering design concepts and
processes.” In particular he argues that much of
the complexity of the flight deck derives from
the independent design of the autopilot and
autothrottle. Thus, it seems essential that a mul-
tidisciplinary approach using (1) integrated con-
trol laws (i.e. combining autopilot and auto-
throttle), (2) formal models, and (3) human fac-
tors will be recessary to fully solve the mode
confusion problem. It is also clear that the for-
mal models must be extended to include infor-
mation about the control laws in order to enable
a full analysis of systems that would result from
such a multidisciplinary development. The crash
of an Airbus A330-322 in Toulouse, France on
6/30/1994, highlights this need. During a test
flight of simulated engine failure, an unexpected
mode transition to altitude acquisition (ALTY*)
occurred. Pitch protection was not provided in
ALT* mode, although it was present in all of the
other modes. Detection of inconsistent behavior
such as this will ecessitate the elaboration of
the basic properties of the control laws in the
model in addition to the mode structure.

Conclusions

Many of the proposed solutions to other
accident categories in the NASA AvSP program
involve the use of new automation. It seems
likely that as failures in other accident categories
are reduced, the problems associated with auto-
mation will increase in significance. Use of for-
mal methods can
» aid the pilot in training through direct display
of internal states

» reveal “dark corners” and non-intuitive inter-
actions through analysis

» discover properties of the design that have a
potential for mode confusion

» discover design errors early in life cycle

References

[1]

(2]

(3]
[4]

(3]

(6]

(8]
[9]

Charles E. Billings. Aviation Automation: The Search for
aHuman Centered Approach. Lawrence Erlbaum Associ-
ates, Inc., Mahwah, NJ, 1997.

Dan Hughes and Michael Dornheim, Automated Cockpits:
Who'sin Charge?, Aviation Week & Space Technol ogy,
January 30-February 6, 1995

Nancy Leveson, et a, Analyzing Software Specifications
for Mode Confusion Potential, 1997.

Steven P. Miller and Karl F. Hoech, Specifying the mode
logic of aflight guidance system in CoRE, Rockwell
Technical Report WP97-2011, Rockwell Coallins, Novem-
ber 1997.

Steven P. Miller, Specifying the Mode Logic of a Flight
Guidance System in CoRE and SCR, in Proceedings of the
Second Workshop on Formal Methods in Software Prac-
tice (FMSP98), pg. 44-53, Clearwater Beach, Florida,
March 4-5, 1998.

Sam Owre, John Rushby, Natargjan Shankar, and
Friedrich von Henke. Formal Verification for Fault-
tolerant Architectures: Prolegomena to the Design of PVS.
IEEE Transactions on Software Engineering, 21(2):107-
125, Feb. 1995.

N.B. Sarter and D.D. Woods. Decomposing Automation:
Autonomy, Authority, Observability and Perceived Ani-
macy. First Automation Technology and Human Perform-
ance Conference, April 1994,

Bran Sdlic, G. Gullekson, and P. Ward, Real-Time Object-
Oriented Modeling, John Wiley & Sons, 1994.
David M. Weiss, Defining Families: The Commonality

Analysis, Lucent Technologies Bell Laboratories, 1000 E.
Warrenville Rd, Napierville, IL, 60566, 1997.

