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Abstract

The purpose of this paper is to present an algorithm for us-
ing NonUniform Rational B-Spline (NURBS) representation in an
aeroelastic loop. The algorithm is based on creating a least-squares
NURBS surface representing the aeroelastic de
ection. The resulting
NURBS surfaces are used to update either the original Computer-
Aided Design (CAD) model, Computational Structural Mechanics
(CSM) grid or the Computational Fluid Dynamics (CFD) grid. Re-
sults are presented for a generic High-Speed Civil Transport (HSCT).

1 Introduction

A critical element in the application of Multidisciplinary Design Optimiza-
tion (MDO) of an engineering system is the introduction of a consistent
parametric geometric representation. Such a representation guarantees that
the same geometry model is used to derive the computational models re-
quired for di�erent disciplinary analyses, and the �eld data can be trans-
ferred among disciplines without loss of accuracy. With the introduction
of CAD into an optimization process, it is possible to study complex con-
�gurations using higher �delity CFD and CSM with consistent geometry
representation.

Another critical issue for MDO applications is the strong interactions
between CSM and CFD. Such interactions can prompt physically impor-
tant phenomena such as those occurring in aircraft due to aeroelasticity.

1This paper is declared a work of the U. S. Government and is not subjected to

copyright protection in the United States.
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Correct modeling of these complex aeroelastic phenomena requires a di-
rect coupling of CSM and CFD for 
exible structure (e.g., wing). The
interaction requires the manipulation of the original CAD geometry that
is stored commonly as a set of NURBS. This author [1] has proposed ear-
lier an approach to incorporate a CAD model in an MDO environment
where multiple disciplines have access to a consistent parametric geometric
representation.

Smith et al. [2] evaluated six methods for transferring information be-
tween CFD and CSM. They were In�nite-Plate Spline (IPS), Multiquadric-
Biharmonic (MQ), NURBS, Thin-Plate Spline (TPS), Finite-Plate Spline
(FPS), and Inverse Isoparametric Mapping (IIM) methods. Out of these
six methods, they recommended to study IIM and NURBS further. They
indicated that IIM showed great promise for two-dimensional applications,
and it needs to be extended to three-dimensions. One key ingredient for
this extension is the ability to map information known on the CFD model
to the CSM model and vice-versa. A typical CSM model consists of triangle
and quadrilateral elements. This author [3] has shown a process by which
a set of three-dimensions points (e.g. CFD model) can be mapped to either
a triangle, quadrilateral, or a NURBS surface. This procedure can be used
to extend the IIM to three-dimensions.

Also Smith et al. [2] indicated that NURBS has excellent promise, but
there were some problems that needed to be resolved before implementa-
tion. One problem was that the input data must be a structured (regu-
lar) grid. This requirement forces the data, at best, to be approximated.
In most realistic cases, this step is either impossible or time consuming.
In a similar study, this author [1] proposed and studied a method to use
NURBS representation for data transfer among various disciplines. Since
this method is based on a general three-dimensional least-squares repre-
sentation, it does not require the input to be a structured grid. Another
advantage of this approach is the control over the trade o� between smooth-
ness and accuracy. This paper extends and demonstrates this method to a
generic HSCT.

2 NURBS

This section contains a brief overview of NURBS curves and surfaces, and
readers should consult [4] for a detailed discussion. A NURBS curve, ~R(U),
can be represented as

~R(U) =

PI
i=1Bi;p(U)Wi

~PiPI

i=1 Bi;p(U)Wi

; (1)
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where ~Pi are the control points (forming a control polygon), I is the number
of control points, parameterU is bounded by Umin � U � Umax, andWi are
the weights. The Bi;p are the p-th degree B-spline basis functions de�ned
on the non-periodic and nonuniform knot vector (U). This completes the
mapping between the one-dimensional parameter space, U , and the three-
dimensional Euclidean space, ~R. A NURBS surface is a parametric surface
and is de�ned as a function of two parameters.

~R(~U ) =

PI

i=1

PJ

j=1 Bi;p(U)Bj;q(V )Wi;j
~Pi;jPI

i=1

PJ

j=1 Bi;p(U)Bj;q(V )Wi;j

; (2)

where the components of vector, ~U = (U; V )T , are the surface parameters
and have no geometrical signi�cance. However, as U increases for a constant
V , the point ~R(~U) moves always from one side of the surface to the other

side. The ~Pi;j are control points (forming a control surface), Wi;j are the
weights, and Bi;p and Bj;q are the p-th and q-th degree B-spline basis
functions de�ned on the non-periodic and nonuniform knot vector.

3 Formulation

The aeroelastic de
ection, ~dm, is de�ned at each CSM grid points, ~rCSM =
fxm; ym; zmg

T . The goal is to modify the NURBS geometry de�nition,
~R(~U), such that it re
ects the de
ection produced by CSM. The algorithm
for de
ection transfer has four steps:

1. Project the CSM grid points, ~rm, onto the original NURBS surface.

2. Create a NURBS surface based on the de
ection, ~D(U; V ), which has
the same degree as the original NURBS surface.

3. Add/remove knots from the new surface to make it compatible with
the original NURBS surface.

4. Add the control points to the original NURBS surface to form the
new de
ected NURBS surface.

The �rst step can be solved by mapping the CSM grid to the original
NURBS surfaces, hence, reducing the dimension from four, (~d(xm; ym; zm)),

to three, (~d(um; vm)). The um and vm are in terms of the parametric coor-
dinates of the original NURBS surface. This information may be available
from the CSM grid generation process. If not, the CSM grid points can be
projected onto the original NURBS surface [3]. The process of projecting

a point, ~rm = fxm; ym; zmg
T , on a surface, ~R(~U), can be performed by
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�nding a ~wm = fum; vmg
T such that the distance, lm, between the ~rm and

~R(~wm) is minimal and ~wm is constrained to 2 [(a; b); (c; d)]. The distance,
lm, can be written in terms of parameters ~wm as

l2(~wm) = f(~wm) = j~R(~wm)� ~rmj � j~R(~wm)� ~rmj: (3)

An e�cient algorithm has been presented by this author [3] to minimize
lm.

The second step is to �t a three-dimensional surface, ~D = ~D(U; V ),
to the de
ection. A NURBS surface can be �tted based on a least-squares
approximation [4, 6, 7, 8] that minimizes the approximation error. A three-
dimensional curve is used to illustrate the least-squares algorithm.

A set of three-dimensional de
ections, ~dm, can be �tted by a B-Spline
curve, ~D(U). The B-Spline equation can be expressed at each parameter
value, um, as

~dm = B1;p(um) ~D1 +B2;p(um) ~D2 + :::+BI;p(um) ~DI ; (4)

where I is the number of control points, and p is the degree, ~dm is the
CSM de
ection, M (m = 1;M) is number of CSM points, and ~Di is the
i-th B-Spline control point. The above equation can be expressed in matrix
form as [~d] = [B][ ~D], where

[B] =

2
66664

B1;p(u1) ::: BI;p(u1)
... ::: ...
B1;p(um) ::: BI;p(um)
... ::: ...
B1;p(uM ) ::: BI;p(uM )

3
77775 : (5)

If M = I , the matrix [B] is a square matrix and the control points can be
calculated directly by matrix inversion,

[ ~D] = [B]�1[~d]: (6)

In this case, the resulting B-Spline curve passes through each data point.
However, if the number of data points, M , is greater than the number of
control points, I , the problem is over-speci�ed. A least-square method can
solve the problem as,

[ ~D] = [[B]T [B]]�1[B]T [~d]: (7)

The smoothness of the least-square representation can be controlled by
selecting degree (p) and the knot vectors. The least-squares approximation
for surfaces is very similar to the least-squares approximation for the curves.
The minimization error can be written as

4



~Error =
MX
m=1

"
~d(um; vm)�

PI

i=1

PJ

j=1 Bi;p(um)Bj;q(vm)Wi;j
~Di;jPI

i=1

PJ

j=1 Bi;p(um)Bj;q(vm)Wi;j

#2
(8)

where ~Di;j are control points for the NURBS surface representing the CSM
de
ection, Wi;j are the weights, Bi;p and Bj;q are the p-th and q-th degree
B-spline basis functions de�ned on the non-periodic and nonuniform knot
vector, and M is the number of CSM grid points . This forms a system of
linear equations that can be solved for control points of a NURBS surface
representing the CSM de
ection. Generally this NURBS surface has a
di�erent set of knot vectors than the original NURBS surface.

The third step is to add/remove knots from the new surface to make it
compatible with the original NURBS surface. The details of this step can
be found in [4]. The last step is to add the resulting control points from
the previous step to the original NURBS surface to form a new de
ected
NURBS surface. This algorithm has following properties:

1. As ~dm approaches zero, the method will reproduce the original NURBS
surface, ~R(~U) as shown in Eqs. 6 and 7.

2. Smoothness can be controlled on the resulting NURBS surface by
selecting the degree of NURBS, the number and positions of the knot
vectors.

3. The resulting surface is a NURBS surface with the same degree as
the original NURBS surface.

4. It is possible to maintain the same knot vector as the original NURBS
surface.

4 Results and Discussions

The algorithm has been tested for a generic HSCT geometry with two dif-
ferent sets of de
ections. This geometry is made of three surfaces: fuselage,
inboard, and outboard wings. Figure 1 shows the original NURBS surfaces,
the de
ected CSM grid, and the de
ected NURBS surfaces. The goal of
the �rst test case is to examine the capability of the de
ection-transfer
algorithm. For this case the CSM grid has a large and unrealistic de
ec-
tion. Figure 2 shows an oblique view of the same test case. The resulting
NURBS surfaces have an RMS error of less than one percent of mid-span
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maximum thickness. For this test case, even though the inboard and out-
board wings are �tted separately, it is interesting to note that no gaps or
overlaps are observed. But this could be a potential problem.

This method has been simpli�ed by applying the NURBS �tted de
ec-
tion to the CFD grid directly. This direct coupling between CSM and CFD
in based on a cubic NURBS surface using the least-squares method. For
the last test case, a marching Euler CFD solver [9] is used to obtain the
aerodynamics load. Then GENESIS [10] structural optimization code is
used to calculate the structural de
ection. The CSM model has a weak
upper surface which has resulted in a noisy de
ection. The CFD solvers
are very sensitive to this arti�cial noise on the surface, and they must be
smoothed. The IIM and NURBS methods are used to interpolate the de-

ection onto the CFD model. The results for IIM and NURBS methods
are visually similar. Figure 3 shows the CSM and CFD model before and
after de
ection. The de
ected CFD model shown in �gure 3 is based on
the IIM method. The average di�erence between IIM and NURBS results
is relatively small (0.1% of mid-span maximum thickness).

Figure 4 shows a close-up view of the original de
ection contours and
the NURBS �tted de
ection contours. The average di�erence in de
ection
for the CSM model is under 0.5% of mid-span maximum thickness. As seen
in this �gure the noise in the de
ection has been smoothed out by using
NURBS representation. Also this �gure reveals that the aeroelastic de
ec-
tion modi�es the wing camber as well. Figure 5 shows the interpolated
de
ection based on IIM on the left hand-side. Using algorithm described
in this paper, a NURBS surface is �tted through the CSM de
ection and
then evaluated on the CFD grid. The resulting CFD de
ection is shown on
the right hand-side of �gure 5. As shown in �gures 4 and 5, the original
CSM and IIM interpolated de
ection contours are not very smooth. Also
the IIM interpolation sags within each CSM element. This is due to in-
compatible CFD and CSM models. The unsmoothed CSM de
ection and
the sagging from IIM method exacerbate the problem of data transfer. As
demonstrated the NURBS representation can smooth out the noise in the
CSM de
ection so that an accurate CFD solution can be obtained.

5 Summary

An algorithm is presented for using NonUniform Rational B-Spline (NURBS)
representation in an aeroelastic loop. The results indicate that it is possible
to update either the CAD model, CSM grid or the CFD grid. This permits
the use of CAD geometry within an aeroelastic loop with strong interdis-
ciplinary interactions. It is also possible to transfer smooth and accurate
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de
ections to a CFD model.
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Original NURBS Surface

Deflected CSM Grid Deflected NURBS Surface

Original NURBS Surface

Figure 1: Front View of HSCT with Large De
ection

Original NURBS Surface

Deflected CSM Grid Deflected NURBS Surface

Original NURBS Surface

Figure 2: Oblique View of HSCT with Large De
ection
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CSM Model

CFD Model

Top View

CSM Model

Deflected CSM Model

CFD Model

Deflected
CFD Model

Oblique View

Figure 3: Detailed CSM and CFD Models of HSCT
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Figure 4: Original and NURBS Fitted De
ection for CSM Model
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Figure 5: Interpolated (IIM) and NURBS Fitted De
ection for CFD Model
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