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ON THE POSSIBILITY OF ILL-CONDITIONED

COVARIANCE MATRICES IN THE FIRST-ORDER

TWO-STEP ESTIMATOR
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Penina Axelrad 2

N. Jeremy Kasdin 3

The �rst-order two-step nonlinear estimator, when applied to a problem of orbital
navigation, is found to occasionally produce �rst step covariance matrices with very
low eigenvalues at certain trajectory points. This anomaly is the result of the linear
approximation to the �rst step covariance propagation. The study of this anomaly
begins with expressing the propagation of the �rst and second step covariance matrices
in terms of a single matrix. This matrix is shown to have a rank equal to the
di�erence between the number of �rst step states and the number of second step
states. Furthermore, under some simplifying assumptions, it is found that the basis
of the column space of this matrix remains �xed once the �lter has removed the
large initial state error. A test matrix containing the basis of this column space
and the partial derivative matrix relating �rst and second step states is derived.
This square test matrix, which has dimensions equal to the number of �rst step
states, numerically drops rank at the same locations that the �rst step covariance
does. It is formulated in terms of a set of constant vectors (the basis) and a matrix
which can be computed from a reference trajectory (the partial derivative matrix).
A simple example problem involving dynamics which are described by two states and
a range measurement illustrate the cause of this anomaly and the application of the
aforementioned numerical test in more detail.

INTRODUCTION

The two-step optimal estimator derived in Haupt, et al. [1] and Kasdin, et al. [2] provides an
improved recursive solution to the state estimation problem involving nonlinear measurements. This
method breaks the problem into two parts by de�ning a set of �rst step states which permit an exact
linear measurement model and a nonlinear relationship between the desired states and the �rst step
states. In attempting to apply this �rst order version of this method to the problem of navigating
two satellites relative to each other in an elliptical orbit it is found that occasionally a covariance
matrix for the �rst step states with one very small eigenvalue results. This makes the second step
state update ill-conditioned and potentially causes subsequent �lter divergence or meaningless state

1Aerospace Technologist, MS 328 Spacecraft and Sensors Branch, NASA Langley Research Center, Hampton, VA

23681, email: j.l.garrison@larc.nasa.gov
2Assistant Professor, Department of Aerospace Engineering Sciences, University of Colorado, Boulder CO 80309-0429
3Chief Systems Engineer, Gravity Probe B Relativity Mission, W. W. Hansen Experimental Physics Laboratory,

Stanford University, Stanford, CA, 94305-4085

This paper is being submitted to the Journal of Guidance, Control and Dynamics.

1



estimates. This paper presents an analysis of the cause of this problem and derives a numerical test
for the location of the ill-conditioned �rst step state covariances.

A covariance matrix with very low or zero eigenvalues indicates that a strong correlation has
developed between the states and that some linear combination of the states can be known almost
exactly. The problems for which the two step �lter was developed, however, are non-linear. For a
nonlinear function relating the �rst and second step states there would not exist, in general, a linear
combination of �rst step states which could be known exactly. The analysis presented in this paper is
interpreted as identifying a problem with the linear approximations used for the �rst step covariance
propagation in the �lter, not to imply that it is possible to �nd some linear combination of �rst step
states which truly have zero error.

TWO-STEP ESTIMATOR OVERVIEW

Given a non-linear system described by a state vector, ~x, of dimension m and the di�erential equation
_~x = g(~x; t), the general estimation problem is to process discrete vector measurements, ~zi, of dimension
l related to the state through the nonlinear function ~zi = h(~xi; ti) and generate the best estimate of

the state at those points, ~̂xi. Haupt, et al. [1] de�ne a \�rst step" state vector, ~y, of dimension n (for
the cases considered here n > m) related to ~x, the \second step" state, through a nonlinear function
~yi = f(~xi; ti). ~yi is chosen such that the measurement vector can be expressed as a linear combination
of the �rst step states ~zi = H~yi. (In all cases considered in this study H is constant.) Thus each new
measurement is incorporated through a linear system where traditional methods of linear estimation
are applicable.

Mechanization of the two step �lter is given in the references [1] and [2] as follows: 1) Perform
a standard linear measurement update of the �rst step state estimate and covariance based on the
observations. 2) Compute the second step state estimates by a nonlinear estimation process such as the
Gauss-Newton or Lavenberg-Marquardt [4] methods and update the second step covariance matrix by
a �rst order approximation. 3) Propagate the second step states and covariance matrix forward to the
time of the next measurement using the state transition matrix or numerical integration as required.
4) Propagate the �rst step states and covariance matrix to the time of the next measurement using
the a posteriori �rst and second step covariance matrices from the last measurement update and the
propagated (a priori) second step covariance matrix for the upcoming measurement epoch.

This last step is the focus of the research presented here. Equation (33) from reference [1]
approximates the �rst step covariance propagation from the iTH time step to the i+1ST step to �rst
order.

Pyi+1(�) = Pyi(+) +
@f

@x

����
x̂i+1(�)

Pxi+1(�)
@f

@x

����
T

x̂i+1(�)

� @f

@x

����
x̂i(+)

Pxi(+)
@f

@x

����
T

x̂i(+)

(1)

In which a hat (̂) over the state vector indicates an estimate of that vector and the notation of (+)
signi�es the a posteriori conditions and (-) signi�es the a priori conditions.

This generates the a priori covariance matrix at the i + 1ST time step by adjusting the a

posteriori covariance from the iTH step by the di�erence between two positive semide�nite matrices.
It is not clear that Eq. (1) is guaranteed to produce a non-singular and positive-de�nite covariance
matrix, owing to the negative sign on the third term. In fact, when applying the two-step �lter to an
orbital mechanics problem, this equation occasionally resulted in covariance matrices with very low
or negative eigenvalues. The following analysis seeks to understand the conditions under which the
two step �lter would produce such an ill-conditioned �rst step covariance matrix and also to derive a
test to predict when this condition will occur. As the smallest eigenvalues would have to go through
zero before becoming negative, this is also a test for non-positive-de�nite matrices in addition to rank
de�cient matrices.

The combination of Eqs. (25) and (19) from reference [1] gives.
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(2)
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This expression represents the update of the second step covariance from the (post-measurement
updated) �rst step covariance following the iterative update of the of the second step state (step
number 2 above).

It should be noted that in actual practice, both for the orbital mechanics problem which was
the motivation for this work and in the simple numerical example presented later in this paper, a
UDUT factored form of the two step �lter is used [2]. The original two-step �lter from [1] will be used
in the analysis in this paper because it is mathematically identical but simpler to understand than
the factored form. The speci�c UDUT factored algorithm used in all of the numerical simulations in
given in reference [2] and the Appendix.

ANALYSIS OF THE PROBLEM

An analysis into the cause of ill-conditioned �rst step covariances can be broken into three steps.
First, the �lter equations are expressed in terms of a new matrix, C, which is a function of the two
state covariance matrices, Px and Py. Second, two properties are found for the column space of C
which allow this space to be represented by a reduced number of constant basis vectors. Finally, a
numerical test is derived using the set of basis vectors and the reference or predicted state trajectory
which identi�es points in which Py may become ill-conditioned.

Formulation in Terms of the Matrix C

The covariance propagation equations for Px and Py in the two step estimator described in the previous
section are expressed in terms of another matrix, C, de�ned at each time step for the a priori and a

posteriori conditions.

Ci(�) � Pyi(�)�
@f

@x

����
~̂xi(�)

Pxi(�)
@f

@x

����
T

~̂xi(�)

(3)

Equation (1) reduces to
Ci+1(�) = Ci(+) (4)

Next, two assumptions are made about the evolution of the �rst and second step covariance
matrices once any large initial state error has been removed.

Assumption 1: P�1
xi

(�) is approximated as:

P�1
xi

(�) � @f

@x

����
T

x̂i(�)

P�1
yi

(�) @f
@x

����
x̂i(�)

(5)

This equation is found by taking Eq. (2), de�ned for the a posteriori conditions, and applying
it the the aposteriori conditions.

Assumption 2: The partial derivative matrix is approximately constant across
measurement updates.

@f

@x

����
x̂i(+)

� @f

@x

����
x̂i(�)

� @f

@x

����
i

(6)

Computing this partial matrix from the true, reference, or predicted state are all assumed to be
equivalent. The state estimate is of interest in this analysis only as it enters the two-step estimator
covariance prediction through the partial derivative matrix, @f=@x. Henceforth, no reference will be
made to which side of the measurement update the partial matrix is computed on.

These two assumptions, taken together, amount to approximating the second step covariance
matrix propagation along a nominal trajectory as equal to that of a linearized Kalman �lter which
processes measurements and directly updates the second step states. This is shown as follows; The
�rst step covariance update in the two step �lter is given by

P�1
yi

(+) = P�1
yi

(�) +HTR�1
i H (7)
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Premultiply this n by n matrix equation by (@f=@x)jTi and postmultiplied it by (@f=@x)ji. Then
use (5) and (6) to reduce the resulting m by m matrix expression to the form of a second step state
covariance update

P�1
xi

(+) = P�1
xi

(�) +HT
xi
R�1
i Hxi (8)

The measurement matrix is Hxi = H(@f=@x)ji. Equation (8) is recognized as the covariance update
in an linearized Kalman �lter processing measurements ~zi and updating the second step state directly
from them. The propagation of the second step states between measurements would be the same for
the two step �lter as well as the linearized �lter. Therefore, these two assumptions can be interpreted
as the assumption that the evolution of the covariance matrices in two step �lter is the same as that
for a linearized Kalman �lter applied to the same problem. This was found to be true once the large
initial state errors were reduced.

Properties of the C Matrix

Here, two important properties of the C matrix which greatly simplify its propagation and ultimate
use in the test for ill-conditioned Py, are derived. Although conditions under which Py becomes ill-
conditioned are of interest here, it is necessary to assume that the matrix P�1

y exists. These two
points are reconciled by interpreting this analysis as an inquiry into where Py becomes numerically
lower rank, assuming that it will always have an inverse analytically.

First Property: The Rank of C is n�m. This property is obtained by considering Eq. (3)
not as a de�nition for Ci(+) but as an expression for Pyi(+) given a known Ci(+) and Pxi(+)

Pyi(+) = Ci(+) +
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Pxi(+)
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����
T

i

(9)

and noting that the term
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i

(10)

is of rank m (assuming Pxi(+) is full rank). In order for Pyi(+) to be full rank, Ci(+) must contain
at least n �m column vectors which are linearly independent of the column vectors of (10). Hence,
the requirement

rank(Ci(+)) � n�m (11)

Post-multiplying Eq. (3) by the matrix P�1
yi
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(12)

and using Eq. (2) results in

Ci(+)P
�1
yi

(+)
@f

@x

����
i

= 0 (13)

Equation (13) indicates that the m columns of P�1
yi

(+)@f=@xji are in the nullspace of Ci(+).
If the �rst step states are independent of each other at each time step, then the matrix (@f=@xji) is
of rank m. This would always be true in the suggested practice [1] of de�ning the �rst step states as
the set of second step states augmented by the nonlinear measurement equations. In this case m rows
of the partial derivative matrix form an m by m identity.

The rank of the matrix product P�1
yi

(+)@f=@xji is therefore less than or equal to m (P�1
yi

(+)
must be full rank ). If the rank of this product was less than m, however, then there would exist some
vector ~a 6= 0 such that P�1

yi
(+)@f=@xji~a = 0. Post-multiplying the partial derivative matrix, which

must have m linearly independent columns, by a nonzero vector, ~a, will give another non-zero vector,
~b; (@f=@x)ji~a = ~b 6= 0. This results in the contradiction; P�1

yi
(+)~b = 0. Therefore, the matrix product
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P�1
yi

(+)@f=@xji must have a rank equal to m. It is therefore concluded that Ci(+) also has at least
m linearly independent null vectors and hence the dimension of its nullspace is at least m.

null(Ci(+)) � m (14)

Combining Eqs. (11) and (14) and using the fundamental relationship for any n by n matrix

rank(Ci(+)) + null(Ci(+)) = n (15)

results in the conclusion
rank(Ci(+)) = n�m (16)

and, consequently
null(Ci(+)) = m (17)

From Eq. (4), the nullspace and column space of Ci+1(�) are identical to those same spaces
de�ned for Ci(+). This rank property would consequently apply to the a priori condition as well.

rank(Ci+1(�)) = n�m (18)

Second Property: The Column Space of C is Fixed in Rn for a steady state �lter with l � m.
Consider that the nullspace and row space of a matrix are orthogonal complements, ie., every vector in
one must be orthogonal to every vector in the other. Therefore, if it can be shown that the nullspace
of C remains �xed, then the row space of C must also be �xed. The row space and column space of
C are equivalent because it is a symmetric matrix (de�ned as the sum of two symmetric matrices).
This analysis will therefore focus on showing that the nullspace of C remains constant.

To simplify the notation, the matrices Ni(+) and Ni(�) will be de�ned for the products

Ni(�) � P�1
yi

(�) @f
@x

����
i

(19)

The statement that the nullspace of C remains the same between measurement updates (Eq.
(4)) is equivalent to the statement that the columns of Ni+1(�) span the same space as the columns
of Ni(+). This can be written as

Ni+1(�) = Ni(+)Ai+1 (20)

in which Ai+1 is a set of coe�cients expressing each column vector of Ni+1(�) as a linear combination
of the column vectors of Ni(+).

The update of the �rst step covariance at the i+ 1ST time step using the standard Kalman
�lter is

P�1
yi+1

(+) = P�1
yi+1

(�) +HTR�1
i+1H (21)

Post-multiplying by (@f=@x)ji+1, expressing this in terms of the Ni+1(�) matrix de�ned in (19) and
substituting in (20) results in

Ni+1(+) = Ni(+)Ai+1 +HTR�1
i+1H

@f

@x

����
i+1

(22)

First, consider the special case in which the columns of HT lie in the column space of Ni(+).
The columns of HT can then be used as l of the basis vectors for the column space of Ni(+). The
other basis vectors are de�ned as the columns of an n by m � l matrix �N . The matrix Ni(+) can
therefore be expressed as the linear combination

Ni(+) = �NBi +HTDi (23)

Substituting this into (22) gives

Ni+1(+) = �NBiAi+1 +HT

"
DiAi+1 +R�1

i+1H
@f

@x

����
i+1

#
(24)
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Therefore the same basis f �N;HT g spans the column space of both Ni+1(+) and Ni(+) and conse-
quently spans the nullspace of both Ci+1(+) and Ci(+). This shows that if l � m and HT is in the
nullspace of C then the column space of C remains �xed in Rn.

The arguments given above can be extended heuristically to the situations in which HT does
not initially lie in the column space of Ni(+). As each new measurement that is processed, a new
term of the form HTR�1H(@f=@x) is added to Ni(+). The column vectors of this term, which are
in the column space of HT , are the only modi�cation that the �lter can make to the nullspace of C.
The only direction in which the columns of N can be changed is within the span of HT . One would
expect that as i increases, some l dimensional subspace of the column space of Ni(�) would approach
the column space of HT . This, of course, does not rigorously prove this property. The numerical
simulations, however, run on models with l � m all have produced a C with a column space that
stays �xed after the initial state transients are reduced.

In the special case in which l = m and the �lter is started with little a priori state knowledge
(P�1

yo
very small), the matrix No(+) could be approximated as

No(+) � HTR�1
o H

@f

@x

����
o

(25)

for the initial time steps because the magnitudes of the column vectors of HTR�1
o H are much larger

than those of the columns of P�1
yo

(+). For this special case, the columns of HT would span the
nullspace of C.

In the case of l > n, the same arguments used above can be used to show that the columns of
HT are the only modi�cations which are possible to the column space of C, but there are too many
column vectors in HT to form a basis. For this reason, it will not generally be true that the column
space of C stays �xed for l > m. The span of the columns of the matrix product

HTR�1
i H

@f

@x

����
i

(26)

does not stay constant because of the partial derivative factor. The basis of the nullspace of C would
be determined by the accumulation of terms like (26) from all previous time steps. This case would
be rare in actual practice. Most estimation problems do not involve an observation vector which has
a larger dimension than the state vector.

It is only the space spanned by the columns of C which is of interest, not the actual elements
of the C matrix. This space has been demonstrated to remain �xed in Rn when l � m. For the
remainder of this paper we will use the notation f~c1;~c2; :::~cn�mg to indicate the basis for the column
space of C without any reference to a speci�c time step or a priori or a posteriori state.

It should be emphasized that these results are independent of how the second step state co-
variance is propagated between measurements. Including process noise would not e�ect the possibility
of generating the ill-conditioned covariance matrices. It may, however, change the speci�c location of
these anomalies by generating a di�erent C matrix.

Test for Ill-conditioned First Step Covariance

The C matrix is now used to derive a test to predict the location of points in which the Py matrix may
become ill-conditioned. It must be assumed that P�1

y still exists and that the �lter will never actually
generate a singular Py . The test which is desired will be one which sets a numerical tolerance on how
close to singular we allow Py to become. Also, it is desired to have a test which is independent of
the �lter operations so that it could be operated on a reference or predicted trajectory to determine
beforehand which sections of the trajectory are susceptible to the ill-conditioned covariances. Such a
rank test can be derived by starting with (9).

As mentioned before, Eq. (9) expresses a matrix which must be of rank n as the sum of
a matrix of rank n � m and one of rank m. This would be possible as long as the n � m ba-
sis vectors f~c1;~c2; : : :~cn�mg are linearly independent of the column space of (@f=@x)Px(@f=@x)

T .
This has already been shown when deriving the �rst property of C. We now consider cases where
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at least one basis vector of C becomes close to being linearly dependent on the column space
of (@f=@x)Px(@f=@x)

T . To simplify this further and remove the time-dependent and �lter-state-
dependent covariance Px, consider that the column space of (@f=@x)Px(@f=@x)

T is spanned by the
m columns vectors f@f=@x1; @f=@x2; : : : @f=@xmg. This leads to a test to look for conditions under
which the set of n�m vectors f~c1;~c2; : : :~cn�mg become close to being linearly dependent upon the set
of m column vectors f@f=@x1; @f=@x2; : : : @f=@xmg. (From the assumption in Eq. (6) these partial
derivatives can be computed from a reference trajectory or from a state trajectory predicted ahead of
the current �lter time).

All of this can be summarized in a test of the numerical rank test of an n by n matrix.

rank

��
~c1;~c2; :::~cn�m;

@f

@x1
;
@f

@x2
; :::

@f

@xm

�
; �

�
< n (27)

for some tolerance �. Points for which the condition described in Eq. (27) is true are the locations where
an ill-conditioned �rst step covariance matrix would occur. The numerical rank of an n by n matrix
is de�ned as the number of singular values greater than � [3]. The span of f~c1;~c2; :::~cn�mg is �xed
(property 2) and the partial derivative matrix is computed along a reference trajectory (assumption
1). Therefore, the test de�ned in (27) could conceivably be applied to points ahead of the present �lter
state to identify future trajectory points in which generating an ill-conditioned covariance matrix is
possible.

Geometric Interpretation

These concepts are visualized geometrically using a system of two second step states and three �rst
step states (n = 3 and m = 2) as shown in Figure 1. The covariance matrix Px is represented by the
two-dimensional error ellipse in the x1�x2 plane. The e�ect of (10) is to rotate and scale that ellipse
to a new orientation in the y1 � y2 � y3 space. The column space of @f=@x de�nes the plane of that
ellipse. The �rst property of the C matrix is that its rank is 1, hence its column space is a single line
in the y1 � y2 � y3 space as shown in Figure 1.

The second property of C states that the orientation of this line would remain �xed in y1�y2�
y3 space. The plane de�ned by the column space of (@f=@x), however, would change orientation with
the state vector evolution. This line and plane together span R3 under non-degenerate conditions.
The orientation of the plane with respect to the line control the linear independence of the columns
of the Py matrix as described by Eq. (27).

As long as this line is not coplanar with the column space of (@f=@x) Py remains rank 3. If
this line does fall in the plane de�ned by the column space then the union of these two subspaces
would not span R3 and consequently Py would be singular. If the line lies nearly in the plane, then
the Py matrix is ill-conditioned. In this case, there will exist a coordinate transformation such that in
one direction in the y1 � y2� y3 space the linear covariance approximation given in (1) would predict
that the �rst step state estimate will have very little error. This transformation will de�ne a linear
combination of the over-determined �rst step states which the �lter predicts can be known almost
exactly. In reality, because the �rst and second step states are nonlinearly related, there cannot be a
linear combination of �rst step states which are known exactly.

NUMERICAL EXAMPLE

A simple two state example problem is used to illustrate this anomaly in the two step �lter. The
geometry of this problem is shown in Figure 2. The kinematics consist of a particle following a spiral
path de�ned by a constant angular velocity !0 and a constant radial velocity v0 as if the particle was
attached to a string of increasing length. The nonlinear di�erential equations in Cartesian coordinates
are

dx1
dt

=
x1v0p
x21 + x22

� x2!0 (28)
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Figure 2: Example Problem Geometry

dx2
dt

=
x2v0p
x21 + x22

+ x1!0 (29)

The linearized state dynamics matrix, A(~x), used to propagate the state transition matrix by
numerically integrating _� = A(~x)� is

A =

2
64

x22v0

(x2
1
+x2

2
)
3
2

� v0x1x2

(x2
1
+x2

2
)
3
2

� !0

� v0x1x2

(x2
1
+x2

2
)
3
2

+ !0
x21v0

(x2
1
+x2

2
)
3
2

3
75 (30)

The measurement is the range from a �xed point located at the coordinates (1; 0) to the
particle. This gives the measurement equation.

~z =

�q
(x1 � 1)2 + x22

�
(31)

The �rst step states are de�ned as the second step states augmented by the measurement, following
the suggestion in reference [1].

~y =

2
4
p
(x1 � 1)2 + x22

x1
x2

3
5 (32)

Hence H = [ 1 0 0 ] and the partial matrix, @f=@x, is given by;

@f

@x
=

2
64

x1�1p
(x1�1)2+x2

2

x2p
(x1�1)2+x2

2

1 0
0 1

3
75 (33)

Speci�c numbers used in the example and the �lter implementations are all listed in table
1. The initial conditions are in error from the reference starting conditions (2; 0) and a normally
distributed error is added to the measurements. A process noise term is included in the �lter to
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Table 1:

NUMERICAL DATA FOR EXAMPLE PROBLEM

Number of Filtered Points: 30001
Independent Variable (t) range: 0 : 6

Filter Initial State (x̂o(+)): f2:0; 0:0g
True Initial State (~x(0)): f2:583; 0:313g

Measurement Noise (1�, normal distribution): 0.01
Measurement Covariance (R): 10�4

Filter a priori Second Step State Covariance (Px0(�)): diagf0:25; 0:25g

Filter a priori First Step State Covariance (Py0(�)):
2
4 0:226 0:209 0:0

0:209 0:247 1:85� 10�4

0:0 1:85� 10�4 0:248

3
5

Second Step State Discrete Time Process Noise (Qd): diagf 10�12 10�12g

prevent the �lter from losing sensitivity to new measurements as t ! 1 and Py;x ! 0. No dynamic
noise was simulated in the truth model, however. A plot of the particle motion and one set of noisy
measurements is shown in Figure 3. A large number (30000) of data points were generated, this was
to illustrate the sharp decreases in eigenvalues of Py which can occur only over a very small time
period.

Eigenvalues of the Py(+) matrix on the order of 10�15 occurred near t � 1:3 and t � 4:8. The
matrix C is computed from each point in the �lter time history from the a posteriori state covariances
and estimated state. The largest eigenvector of C was used as the basis of the column space of C.
Figure 4 plots the numerical values demonstrating the aforementioned properties of C. The three
singular values of C are plotted in Figure 4(a). Note that the �rst singular values on the order of
1018 larger than the other two, and consequently the rank of C is 1 (property 1). The dot product
between the \steady state" ~c, computed as the average of the last 5000 points, and each previous ~ci is
plotted in Figure 4(b). This dot product is very nearly unity once the large initial state error has been
reduced by the �lter. Hence, it has been demonstrated that the column space of C is �xed (property
2).

The explanation given in this study for the constant basis of C's column space is illustrated
in Figure 4(c). In this �gure the dot product between the H matrix and the basis vector ~c is plotted.
After t � 0:5 this product becomes very small in comparison to the magnitude of the HT and ~c vectors
(both unity) indicating that the two vectors are orthogonal and therefore the column of HT is in the
nullspace of C. The small jump near t � 1:3 in Figure 4(c) is possibly caused by numerical problems
resulting from the near singularity at that point. The magnitude of this deviation is still very small
as compared to unity.

Figure 5 illustrates the rank test de�ned in Eq. (27) using a numerical tolerance of 10�4

on top of a plot of the eigenvalues of Py(+). This test condition is computed from the steady state
eigenvector of C and the partial derivative matrix computed along the true trajectory. The rank test
correctly predicts the two locations of low eigenvalues in the Py time history as illustrated on Figure
5.

Figure 6 plots the square of the error between the �lter a posteriori prediction for the �rst
step states and the true values of those states, rotated into the direction of the minimum eigenvalue of
Py. On top of that plot is the minimum eigenvalue of Py from the �lter predicted �rst step covariance.
All of the numerical results presented herein were from a single �lter run. Monte Carlo simulations
of a statistically distributed ensemble of runs would produce similar results. The speci�c locations of
the points in which Py becomes ill-conditioned, however, would be slightly di�erent for each member
of the ensemble because of di�erences in the orientation of the space f~c1;~c2; :::~cn�mg depending upon
the starting conditions and the (noisy) measurement time history.
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CONCLUSION

The occurrence of ill-conditioned time updates for the �rst step covariance matrix in the two step
�lter has been explained. This anomaly is the result of the linearized approximation to the �rst step
covariance propagation. In this approximation, there were conditions under which the positive de�nite
second step covariance matrices did not combine to produce a full set of linearly independent column
vectors for the �rst step covariance matrix. This analysis was simpli�ed by the ability to formulate the
�lter covariance propagation in terms of a reduced set of basis vectors which, under certain conditions
and assumptions, spanned a �xed space. One result of this study was a numerical test of the linear
dependence of those basis vectors and the partial derivative matrix which was shown to correspond
with the �rst step covariance matrix becoming ill conditioned.

APPENDIX

UDUT Factored Algorithm for the Two Step Filter [2], [5]

� Initialization of the following:

Pxo(+); Pyo(+); ~xo(+); ~yo(+) = f( ~xo(+)) (34)

� y Propagation of the second step states and the state transition matrix �(i;i�1) by numerical
integration from the i� 1ST to the iTH time step. The �rst step state is estimated from

ŷi(�) = ŷi�1(+) + f(x̂i(�))� f(x̂i�1(+)) (35)

The second step covariance is propagated by computing the block matrices Yx and ~Dx

Yx =
h
�i;i�1Uxi�1(+)

... Gd

i
(36)

~Dx =

2
664

Dxi�1(+)
... 0

� � � � � � � � �
0

... Qd

3
775 (37)

and then reducing them to a m by m upper triangular and diagonal matrices, Uxi(�) and
Dxi(�), respectively, such that

Uxi(�)Dxi(�)DT
xi
(�) = Yx ~DxY

T
x = Pxi(�) (38)

This is done using the Modi�ed Weighted Gram-Schmidt (MWGS) [5] method.

Similarly, the subsequent propagation of the �rst step states as de�ned in Eq. (1) is done by
computing the matrices Yy and ~Dy.

Yy =

�
Uyi�1(+)

... @f
@x

���
x̂i(�)

Uxi(�)
... @f

@x

���
x̂i�1(+)

Uxi�1(+)

�
(39)

~Dy =

2
66666664

Dyi�1(+)
... 0

... 0
� � � � � � � � � � � � � � �
0

... Dxi(�)
... 0

� � � � � � � � � � � � � � �
0

... 0
... �Dxi�1(+)

3
77777775

(40)

The MWGS process is then used to compute Uyi(�) and Dyi(�) such that

Uyi(�)Dyi(�)UT
yi
(�) = Yy ~DyY

T
y (41)
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� The measurement update is performed by converting the observation vector ~zi into l uncorrelated
scalar observations (~z�) with unity variance through a coordinate transformation.

WW T = Ri (42)

~z� =W�1~z (43)

H� =W�1H (44)

Details of the scalar measurement update are given in [5]. This step will result in the a posteriori
�rst step states (ŷi(+))and Uyi(+) and Dyi(+) factors. The inverse of P�1

yi
(+) can then be

computed by the more numerically stable method

P�1
yi

(+) = U�T
yi

(+)

2
6664

1=Dyi(+)(1; 1) 0 � � � 0
0 1=Dyi(+)(2; 2) � � � 0
...

...
. . .

...
0 0 � � � 1=Dyi(+)(n; n)

3
7775U�1

yi
(+) (45)

� The a posteriori second step states are found from the ŷi(+), Uyi(+) and Dyi(+) by numerically
minimizing the cost function

J(x̂) =
1

2
(ŷi(+)� f(x̂))TP�1

yi
(+)(ŷi(+)� f(x̂)) (46)

The Lavenberg-Marquardt method [4] is used for this numerical minimization.
z The iterations are initialized with x̂o = x̂i(�) and � = 0:001. At each kTH iteration, the
Hessian is computed from the approximation

HG � @f

@x

����
T

x̂k
P�1
yi

(+)
@f

@x

����
x̂k

(47)

The linear system

[�]�x̂ = � @J(x̂)

@x̂

����
x̂k

(48)

is solved to update the state estimate

x̂k+1 = x̂k + �x̂ (49)

in which the gradient of J is

@J

@x̂

����
x̂k

= �(ŷi � f(x̂k))P
�1
yi

(+)
@f

@x

����
x̂k

(50)

and � is computed from
�l;l = HGl;l

(1 + �) (51)

�p;q = HGp;q
for p 6= q (52)

The change in the cost function J(x̂k+1) determines how the next iteration is performed.

{ If J(x̂k+1) � J(x̂k) then � = 10�;

k = k + 1; x̂k+1 = x̂k and execution is returned to z.
{ If J(x̂k+1) < J(x̂k) then � = �=10; k = k + 1; and execution is returned to z.

The iterations are continued until the cost function decreases by less than 0:01. After this
indicates convergence, the a posteriori second step states are updated by

x̂i(+) = x̂k (53)

and the a posteriori second step covariance is computed from Eq. (2). Uxi(+) and Dxi(+) are
then obtained by Cholesky factorization. The time step is incremented i = i+ 1 and execution
is returned to y
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