Helicopter Rotor Noise Prediction:
Background, Current Status, and Future Direction

Kenneth S. Brentner
NASA Langley Research Center

Seminar presented at the University of Tennessee Space Institute
December 10, 1997
Introduction

- Helicopter noise prediction is increasingly important
 - certification
 - detection

- A great deal of progress has been made since the mid 1980’s

- Purpose of this talk
 - Put into perspective the recent progress
 - Outline current prediction capabilities
 - Forecast direction of future prediction research
 - Identify rotorcraft noise prediction needs
Outline of Talk

- Introduction and Historical perspective
- Description of governing equations
- Current status of source noise prediction
- Future directions
- Summary
Rotor Source Noise

- Thickness and High-speed impulsive noise
- Blade-vortex interaction noise
- Loading and Broadband noise
- Blade-vortex interaction noise
Historical Perspective

History of Helicopter Noise Prediction

<table>
<thead>
<tr>
<th>Event</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propeller noise theory developed</td>
<td>1940</td>
</tr>
<tr>
<td>(steady loading, thickness)</td>
<td></td>
</tr>
<tr>
<td>Importance of unsteady loading recognized</td>
<td>1950</td>
</tr>
<tr>
<td>Rotor noise theory development</td>
<td>1960</td>
</tr>
<tr>
<td>Helicopter rotor noise mechanisms proposed</td>
<td>1970</td>
</tr>
<tr>
<td>Ffowcs Williams–Hawkings equation</td>
<td>1980</td>
</tr>
<tr>
<td>– computer power limited</td>
<td></td>
</tr>
<tr>
<td>– inadequate blade loading available</td>
<td></td>
</tr>
<tr>
<td>(NR)2 program</td>
<td>1990</td>
</tr>
<tr>
<td>Kirchhoff formulation / quadrupole noise prediction / new application of FW–H equation</td>
<td>2000</td>
</tr>
</tbody>
</table>

NASA Langley Research Center, Hampton, VA
Available Methods for Rotor Noise Prediction

- Acoustic Analogy
 - treats real flow effects by fictitious sources; exact in principle
 - for rotor blades: Ffowcs Williams–Hawkings equation (1969)
 - most developed, widely used in the helicopter industry

- Kirchhoff Formula
 - originally suggested by Hawkings (1979); (Farassat and Myers 1988)
 - method currently under development (development has been very rapid)
 - depends upon high resolution aerodynamics input data from CFD.

- CFD based Computational Aeroacoustics (CAA)
 - least mature
 - most computationally demanding
 - advances in CAA will help other methods
Lighthill Acoustic Analogy

- Treats real flow effects by fictitious sources
- A mathematical device which is exact in principle
- Capable of supplying good qualitative and quantitative results
- For rotating blades
 - Aerodynamic and acoustic problems separated
 - Powerful methods of linear analysis can be used
 - Inclusion of nonlinear effects feasible now
- Acoustic analogy is and will remain a very useful tool in aeroacoustics
Lighthill Acoustic Analogy Derivation

- Idea: rearrange governing equation into a wave equation

\[
\frac{\partial}{\partial t} \left\{ \frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} \right\} = 0 \quad \text{continuity}
\]

\[
- \frac{\partial}{\partial x_i} \left\{ \frac{\partial \rho u_i}{\partial t} + \frac{\partial}{\partial x_j} (\rho u_i u_j + P_{ij}) \right\} = 0 \quad \text{momentum (N-S)}
\]

\[
\frac{\partial^2 \rho}{\partial t^2} = \frac{\partial^2}{\partial x_i \partial x_j} (\rho u_i u_j + P_{ij})
\]

form wave equation

\[
\frac{\partial^2 \rho}{\partial t^2} - c_o \frac{\partial^2 \rho}{\partial x_i \partial x_i} = \frac{\partial^2 T_{ij}}{\partial x_i \partial x_j}
\]

where \(T_{ij} = \rho u_i u_j + P_{ij} - c_o \rho \delta_{ij} \)
Ffowcs Williams–Hawkings Equation Derivation Procedure

- **Embed exterior flow problem in unbounded space**
 - define generalized functions valid throughout entire space
 - interpret derivatives as generalized differentiation

\[
\tilde{\rho} = \begin{cases}
\rho & f > 0 \\
\rho_0 & f < 0
\end{cases}
\]
\[
\rho\tilde{u}_i = \begin{cases}
\rho u_i & f > 0 \\
0 & f < 0
\end{cases}
\]
\[
\tilde{P}_{ij} = \begin{cases}
P_{ij} & f > 0 \\
0 & f < 0
\end{cases}
\]

- **Generalized conservation equations:**

 \[
 \frac{\partial \tilde{\rho}}{\partial t} + \frac{\partial \rho \tilde{u}_i}{\partial x_i} = \left(\rho \frac{\partial \tilde{f}}{\partial t} + \rho u_i \frac{\partial \tilde{f}}{\partial x_i} \right) \delta(f) \quad \text{continuity}
 \]

 \[
 \frac{\partial \rho \tilde{u}_i}{\partial t} + \frac{\partial \rho \tilde{u}_i \tilde{u}_j}{\partial x_j} + \frac{\partial \tilde{P}_{ij}}{\partial x_j} = \left(\rho u_i \frac{\partial \tilde{f}}{\partial t} + (\rho u_i u_j + P_{ij}) \frac{\partial \tilde{f}}{\partial x_i} \right) \delta(f) \quad \text{momentum}
 \]
FW – H Equation

■ Numerical solution of the FW–H equation

\[p'(\vec{x}, t) = \frac{\partial}{\partial t} \left[\rho_0 \nu_\delta(f) \right] - \frac{\partial}{\partial x_i} \left[l \delta(f) \right] + \frac{\partial^2}{\partial x_i \partial x_j} [T_{ij} H(f)] \]

■ Three source terms
 ➤ thickness source (monopole)
 – requires blade geometry and kinematics
 ➤ loading source (dipole)
 – requires blade geometry, kinematics, and surface loading
 ➤ quadrupole source
 – requires flow field (i.e., \(T_{ij} \)) around the blade (volume integration)

■ WOPWOP+ implements all three of these source terms
Kirchhoff Derivation Procedure

- Use embedding procedure on wave equation
 > define generalized pressure perturbation:

\[
\tilde{p}' = \begin{cases}
p' & f > 0 \\
0 & f < 0
\end{cases}
\]

- use generalized derivatives
- generalized wave equation is Kirchhoff governing equation:

\[
\Box^2 p'(\tilde{x}, t) = -\left(\frac{\partial p'}{\partial t} \frac{M_n}{c} + \frac{\partial p'}{\partial n} \right) \delta(f) - \frac{\partial}{\partial t} \left(p' \frac{M_n}{c} \delta(f) \right) - \frac{\partial}{\partial x_i} \left(p' \hat{n}_i \delta(f) \right)
\]

\[\equiv Q_{kir}\]
Formulation Development

■ **Model wave equation to solve** (valid in entire unbounded space)
 \[\Box^2 \phi(\vec{x}, t) = Q(\vec{x}, t) \delta(f) \]

■ **Integral representation of solution** (Green’s function \(\frac{\delta(g)}{4\pi r} \))
 \[4\pi \phi(\vec{x}, t) = \int_{-\infty}^{t} \int_{-\infty}^{\infty} \frac{Q(\vec{y}, \tau) \delta(f) \delta(g)}{r} d\vec{y} d\tau \]

■ **Three potential formulations:**
 \[4\pi \phi(\vec{x}, t) = \int_{-\infty}^{t} \int_{-\infty}^{\infty} \frac{Q(\vec{y}, \tau)}{r \sin \theta} cd\Gamma d\tau = \int_{F=0}^{\infty} \int_{g=0}^{\infty} \frac{1}{r} \left[\frac{Q(\vec{y}, \tau)}{\Lambda} \right]_{ret} d\Sigma = \int_{F=0}^{\infty} \int_{g=0}^{\infty} \left[\frac{Q(\vec{y}, \tau)}{r|1 - M_r|} \right]_{ret} dS \]

 collapsing sphere formulation
 emission surface formulation
 retarded time formulation
Integral Formulation of FW – H

- **Retarded-time solution to FW–H equation** (neglecting quadrupole)

\[4\pi p' (\vec{x}, t) = \frac{\partial}{\partial t} \left[\int_{f=0}^{\infty} \frac{Q}{r(1 - M_r)} \right]_{\text{ret}} dS + \frac{\partial}{\partial x_i} \left[\int_{f=0}^{\infty} \frac{L_i}{r(1 - M_r)} \right]_{\text{ret}} dS \]

where \(Q = \rho v_n \) and \(L_i = P_{ij} \hat{n}_j \)

- **Take derivatives inside integrals analytically (formulation 1A)**

\[4\pi p' (\vec{x}, t) = \int_{f=0}^{\infty} \left[\dot{Q} + \frac{\dot{L}_r}{c} \frac{1}{r(1 - M_r)^2} \right]_{\text{ret}} dS + \int_{f=0}^{\infty} \left[\frac{L_r - L_M}{r^2 (1 - M_r)^2} \right]_{\text{ret}} dS + \int_{f=0}^{\infty} \left[\frac{(Q + L_r/c)(\dot{r}M_r + c(M_r - M^2))}{r^2 (1 - M_r)^3} \right]_{\text{ret}} dS \]
NASA Rotor Noise Prediction Codes

■ WOPWOP
 ➤ Uses FW–H equation, Farassat’s formulation 1A
 ➤ Used for discrete-frequency noise prediction
 ➤ Representative of time-domain prediction codes (Primary U. S. code)
 ➤ Code features
 – Near and far-field acoustics
 – Forward flight and hover
 – Stationary and moving observers
 – Unsteady and impulsive loading allowed as input
 – Loading input may be analytical, computational, or experimental
 – Transportable, efficient, and robust

■ WOPWOP+
 ➤ includes a far-field quadrupole computation
NASA Rotor Noise Prediction Codes

- **RKIR**
 - original code from Purdue University; modified by Sikorsky and NASA Langley to include all WOPWOP blade motions
 - utilizes Farassat and Myers’ Kirchhoff formulation for moving surfaces
 - requires p, $\frac{\partial p}{\partial t}$, and ∇p on the Kirchhoff surface

- **FW–H/RKIR** (prototype code)
 - based on RKIR (Rotating Kirchhoff code)
 - utilizes Farassat’s formulation 1A (FW)
 - quadrupole source neglected; could be included

- **Tiltrotor Aeroacoustic Codes (TRAC)**
 - collection of codes to predict the airloads, flow-field, and noise
 - utilizes any of these codes to predict rotor noise
Examine Current Prediction Capability

- Thickness and Loading Noise
- Blade Vortex Interaction Noise
- High-Speed Impulsive Noise
- New Prediction Tools
 - Kirchhoff Predictions
 - FW-H Equation applied off the body (i.e. like a Kirchhoff formula)
- Broadband Noise
Thickness and Loading Noise

- Predictions accurately reflect design changes

\[V_\infty = 110 \text{ kts} \]
upstream mic in TPP on advancing side

ref: Brentner 1987

NASA Langley Research Center, Hampton, VA
Thickness and Loading Noise

- Predictions distinguish between small differences in input parameters
- Computations are efficient (29 CPU sec/observer on 22 MFLOPS workstation)

ref: Brentner et al. 1994

NASA Langley Research Center, Hampton, VA
Blade-Vortex Interaction (BVI)

Tip vortex

Air flow

Noise Directivity

Blade-vortex interaction

$\psi = 0^\circ$

$\psi = 90^\circ$
BVI Noise Prediction: *with measured airloads*

- Amplitude, waveform, and spectra predicted well
- High temporal and spatial resolution of blade loads essential

- microphone located upstream of rotor on advancing side, 25 deg. below TPP
 \[\mu = 0.152, \quad C_T / \sigma = 0.07, \quad \text{decent condition} \]

Ref: Brentner et al. 1994, Visintainer et al. 1993

NASA Langley Research Center, Hampton, VA
BVI Noise Prediction: *with calculated airloads*

- Near first principles prediction
- Representative of state-of-the-art

ref: Tadghighi et al. 1990

![Diagram showing the relationship between Comprehensive Code, CFD Flow Solver, and Acoustic Prediction with measured and predicted acoustic pressure over time.](image-url)
High-Speed Impulsive Noise

- High-speed impulsive (HSI) noise
 - particularly intense and annoying
 - occurs in high-speed forward flight
 - onset usually very rapid
 - primarily in-plane directivity

- HSI noise prediction
 - requires knowledge of 3D, nonlinear flow field
 - computationally intensive
 - modeled by FW–H quadrupole source
Quadrupole Noise Prediction History

Importance of quadrupole source recognized
Yu, Caradonna, and Schmitz (1978)
- simplified source strength
- far-field assumption / preintegration in z direction
- relatively immature flow field calculation

Recent efforts
- Prieur (1986) - frequency domain, hover only
- Schultz and Splettstoesser (1987) - followed Yu et al.
- Schultz et al (1994) - approx. source strength, both volume integration and preintegration
- Ianniello and De Bernardis (1994) - full volume integration

NO readily available quadrupole prediction code in U.S.
High-Speed Impulsive Noise

- Prediction by approximate quadrupole calculation
 - Measured blade pressures and computed flow field used in prediction

\[M_H = 0.9 \]

hovering rotor
mic in TPP

ref: Schultz and Splettstoesser 1987

NASA Langley Research Center, Hampton, VA
High-Speed Impulsive Noise

- Prediction by direct CFD computation
 - Nonlifting, symmetric rotor in hover

Ref: Baeder 1991

\[M_h = 0.92 \]

Acoustic pressure

Time, msec

Exp.

Euler

NASA Langley Research Center, Hampton, VA
Why Use the Acoustic Analogy?

- FW–H source contributions linearly superimpose
 \[p'(\bar{x},t) = p'_t(\bar{x},t) + p'_\ell(\bar{x},t) + p'_Q(\bar{x},t) \]
 - develop quadrupole source prediction independently
 - can identify contributions from each source
- Current prediction codes based on FW–H equation
 - significant knowledge base
 - thickness & loading noise predictions very efficient
- Less demanding CFD computation
 - only compute the source region
 - don’t need to capture long-distance wave propagation
- Easy to study role of complicated rotor kinematics
Quadrupole Development Considerations

FW-H: \[\square^2 p'(\bar{x},t) = \frac{\partial}{\partial t}[\rho o v n \delta(f)] - \frac{\partial}{\partial x_i}[\ell_i \delta(f)] + \frac{\partial^2}{\partial x_i \partial x_j}[T_{ij} H(f)] \]

- Source terms linearly superimpose
 \[p'(\bar{x},t) = p_t'(\bar{x},t) + p_\ell'(\bar{x},t) + p_Q'(\bar{x},t) \]
- Quadrupole source region is a volume
 ➤ needs large amount of data – 3D time dependent
 ➤ naturally separate
- Current WOPWOP very efficient
 ➤ desirable to not change thickness and loading now
 ➤ want to benefit from knowledge gained in thickness and loading noise development
Collapsing Sphere Formulation

Equation

\[
4\pi p'_Q(\bar{x}, t) = \frac{1}{c} \frac{\partial^2}{\partial t^2} \int_{-\infty}^{t} \int_{r>0} \frac{T_{rr}}{r} d\Omega d\tau \\
+ \frac{\partial}{\partial t} \int_{-\infty}^{t} \int_{r>0} \frac{3T_{rr} - T_{ii}}{r^2} d\Omega d\tau \\
+ c \int_{-\infty}^{t} \int_{r>0} \frac{3T_{rr} - T_{ii}}{r^3} d\Omega d\tau
\]

Interpretation

- \(f > 0 \) - everywhere outside of blade surface
- \(d\Omega \) - element of collapsing sphere surface
- \(T_{ij} = \rho u_i u_j + (p' - \rho' c^2)\delta_{ij} \)

Collapsing sphere (\(g = 0 \))

Observer position \(\bar{x} \)

\(\Gamma \) curve
Far-Field Approximation

Assumptions
- Far-field observer
- In-plane observer

Define new tensor

\[Q_{ij} = \int_{-\infty}^{\infty} T_{ij} dz \]

Collapsing sphere approximated as a cylinder

Integration in \(z \) is independent of source time
Far-Field Approximation

Contours of quadrupole source strength

approximation to collapsing sphere

collapsing sphere
WOPWOP+ Validation

Validation case
- UH-1H, 1/7th scale model rotor (untwisted)
- Experimental data available - Boxwell et al., Purcell
- Unique Euler calculation available (Baeder)
 - good resolution of flow field around blade
 - solution extends to microphone position at 3.09 R
 - symmetric solution

Operating conditions for comparison
- hover
- $M_H = \{0.88, 0.925\}$
- inplane microphone at 3.09 R
UH-1H Model Rotor Comparison

- Observer inplane at 3.09 R from rotor hub, $M_H = .85$

- Quadrupole contribution roughly one-third that of thickness and loading
- Good agreement with Euler calculation and experiment
UH-1H Model Rotor Comparison

- Observer inplane at 3.09 R from rotor hub, $M_H = .88$

- Good agreement with Euler calculation and experiment
Observer inplane at 3.09 R from rotor hub, $M_H = .90$

- Quadrupole contribution is larger than thickness and loading and has steepened
- Retarded-time formulation does not allow all contributing panels to be included
UH-1H Model Rotor Comparison

- Observer inplane at 3.09 R from rotor hub, $M_H = 0.925$

- Quadrupole negative peak pressure shifts at higher speed
- Quadrupole contribution nearly twice that of thickness and loading

NASA Langley Research Center, Hampton, VA
UH-1H Model Rotor Quadrupole Strength

- Contours of Q_{ii}

M_re=.85

M_re=.88

M_re=.90

M_re=.925

M_re=.95

UH-1H model rotor untwisted; no lift hover test

sonic circle

extent of quadrupole integration

WOPWOP+ preprocessor output

NASA Langley Research Center, Hampton, VA
Components of acoustic pressure

UH-1H Model Rotor Noise

UH-1H model rotor untwisted; no lift hover test

NASA Langley Research Center, Hampton, VA
UH-1H Model Rotor Comparison

- Observer inplane at 3.09 R from rotor hub, $M_H = .95$

- Quadrupole term dominates pressure time history
- Predicted signal amplitude overpredicted
- Complete signal widening not predicted, but shock-like feature captured

NASA Langley Research Center, Hampton, VA
Efficiency

■ Preprocessor
 ➤ nominal run time: 3-5 CPU seconds

■ Acoustic calculation
 ➤ thickness and loading noise: ~ 5 CPU seconds
 ➤ quadrupole noise: ~ 11-17 seconds*
 ➤ total: ~ 16-22 CPU seconds
* ~ 45 CPU seconds when code forced to use 20pts/panel on last two rows
 CPU times for HP 735-99 scientific workstation

■ Efficiency considerations
 ➤ quadrupole noise computation comparable to thickness and loading on a per panel basis
 ➤ adaptive quadrature enables use of a large number of quadrature points when needed
 ➤ reductions in CPU time possible
New Prediction Methods Compared

- FW-H applied off the blade surface (like a Kirchhoff method)
- Kirchhoff method for moving surfaces
FW–H for a penetrable surface

- Not necessary to assume integration surface $f=0$ is coincident with body

\[
\Box^2 p'(\bar{x}, t) = \frac{\partial^2}{\partial x_i \partial x_j} \left[T_{ij} H(f) \right] \\
- \frac{\partial}{\partial x_i} \left[(p_{ij} \hat{n}_j + \rho u_i ((u_n - v_n)) \delta(f) \right] \\
+ \frac{\partial}{\partial t} \left[(\rho o u_n + \rho ((u_n - v_n)) \delta(f) \right]
\]

- FW–H can be used as a Kirchhoff formula
Identification of Noise Components

- Compare components from FW–H/RKIR with WOPWOP+
 - UH-1H rotor in hover
 - Hover solution from TURNS (Baeder)

- Two predictions necessary with FW–H/RKIR
 - thickness and loading from surface coincident with rotor blade
 - total signal (including quadrupole) from a surface approximately 1.5 chords away from blade.

- New application of FW–H equation retains advantage of predicting noise components
Comparison with Kirchhoff

- Manipulate FW–H source terms into form of Kirchhoff source terms (inviscid fluid)

\[\Box^2 p'(\vec{x}, t) = Q_{kir} + \frac{\partial}{\partial x_i \partial x_j} \left[T_{ij} H(f) \right] \]

- Extra source terms are 2nd order in perturbations quantities

- FW–H and Kirchhoff source terms
 - equivalent in linear region \(p' \approx c^2 \rho' \ u_i \ll 1 \)
 - NOT equivalent in nonlinear flow region

NASA Langley Research Center, Hampton, VA
Numerical Comparison: UH-1H hovering rotor

- UH-1H rotor
 - 1/7th scale model
 - untwisted blade
- Test setup (Purcell)
 - Hover, $M_H = 0.88$
 - inplane microphone, 3.09 R from hub
 - minimal rotor lift
- Flow-field computation
 - full potential flow solver used (FPRBVI)
 - 80 x 36 x 24 grid (somewhat coarse)
 - no rotor lift

$p', \text{ Pa}$ vs. time, msec

NASA Langley Research Center, Hampton, VA
Numerical Comparison: Sensitivity to Surface Placement

- Principal advantage of the FW–H approach is insensitivity to surface placement

Kirchhoff

(Note difference in pressure scales)

FW–H

NASA Langley Research Center, Hampton, VA
Numerical Comparison: Forward Flight Case

- Advancing-side acoustic pressure underpredicted
- Agreement with data is good
- All three codes agree with each other — non-lifting rotor
FW–H vs. Kirchhoff

- **FW–H method of choice for aeroacoustic problems**
 - conservation of mass and momentum built in
 - unified theory with thickness, loading, and quadrupole source terms
 - insensitive to integration surface placement

- **FW–H approach the “better” than linear Kirchhoff because:**
 - valid in linear and nonlinear flow regions
 - surface terms include quadrupole contribution enclosed
 - physical noise components can be identified with two surfaces

- **The Kirchhoff approach**
 - valid only in the linear flow region (not known a priori)
 - input data must satisfy the wave equation
 - wakes and potential flow field can cause major problems
 - solution can be sensitive to placement of Kirchhoff surface
Broadband Noise

■ Understanding
 ➤ Subjectively very important
 ➤ Many different mechanisms responsible – separate treatment for each
 ➤ Physical generation mechanisms well understood

■ Prediction status
 ➤ Unsteady blade loads calculation difficult – classical methods used
 ➤ Frequency domain methods only – turbulence data in frequency domain
 ➤ Good prediction where turbulence statistics are known
 ➤ Good prediction of self-noise with semi-empirical methods

■ Little explored approaches
 ➤ Application of FW–H equation
 ➤ Direct simulation of blade turbulence
Future Directions

■ Ffowcs Williams – Hawkings equation
 ➤ Maturity level high — first choice for discrete frequency noise
 ➤ Efficient and robust codes currently available
 ➤ Solutions to current challenges in hand (BVI and HSI noise)

■ Alternate approaches — feasible due to advances in CFD and computer technology
 ➤ FW–H equation used as Kirchhoff method
 ➤ Direct computation of acoustics

■ Relative importance of broadband noise increasing

■ Continued work needed
 ➤ wake prediction
 ➤ aeroelastic coupling
 ➤ full configuration aerodynamics/aeroacoustics
Summary

- Rotor noise prediction capability is advanced
 - Discrete frequency noise
 - Thickness and loading noise – prediction now routine
 - Blade-vortex interaction noise – good agreement demonstrated
 - High-speed impulsive noise – robust solutions available; depends upon CFD
 - Broadband noise
 - Semi-empirical predictions give good results for standard helicopter rotors

- Challenges for the future remain
 - Accurate prediction of high resolution airloads
 - Increased importance of broadband-noise prediction
 - Systems noise prediction – component interaction; scattering; reflection