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Abstract

Sound transmission through an infinite cylindrical
sandwich shell is studied in the context of the
transmission of airborne sound into aircraft interiors.
The cylindrical shell is immersed in fluid media and
excited by an oblique incident plane sound wave.  The
internal and external fluids are different and there is
uniform airflow in the external fluid medium.  An
explicit expression of transmission loss is derived in
terms of modal impedance of the fluids and the shell.
The results show the effects of (a) the incident angles of
the plane wave; (b) the flight conditions of Mach
number and altitude of the aircraft; (c) the ratios between
the core thickness and the total thickness of the shell;
and (d) the structural loss factors on the transmission
loss.  Comparisons of the transmission loss are made
among different shell constructions and different shell
theories.

1.  Introduction

The use of high strength-to-weight ratio
composite materials in transport aircraft may result in
increased interior noise levels.  Previous studies have
shown that more noise can be transmitted through
laminated fiber-reinforced structures than through
isotropic structures in the high frequency range [7].
Noise transmission, measured by transmission loss
(TL) through the aircraft, has been studied by Smith
[13], White [14], Koval [4 to 7], and Blaise et al. [1] for
isotropic, orthotropic, and laminated fiber-reinforced
composite shells.  Smith presented a theoretical study
of transmission of sound energy through a thin,
isotropic elastic cylindrical shell from an oblique plane
wave excitation.  He defined a cross-sectional absorption
coefficient that is the ratio of the power absorbed to the
incident power per unit length.  White investigated
sound transmission into an infinite and a finite
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cylindrical shells and found two important
characteristics, the ring and coincidence frequencies, at
which TL takes on minima.  Koval extended Smith's
work to present an analytical model for predicting of TL
for isotropic, orthotropic, and laminated fiber-reinforced
composite shells.  The effect of external airflow was
included and the fluids are different inside and outside the
shell.  The significance of the ring and coincidence
frequencies was revealed.  Blaise et al. then extended
Kaval's work to consider an orthotropic shell excited by
an oblique plane sound wave with two independent
incident angles.  The diffuse field transmission
coefficient was examined.  Two fluids inside and outside
the shell are the same and the external airflow was not
included in their study.

The objective of this paper is to study sound
transmission through an infinite cylindrical sandwich
shell under flight conditions.  An aircraft in flight with
an external airflow and a negative pressure differential
between the inside and outside is modeled as an infinite
cylindrical shell.  The shell is assumed to be immersed
in a fluid media and excited by an incident oblique plane
sound wave with two independent angles.  The
properties of the internal and external fluids surrounding
the shell are different.  The sandwich shell consists of a
honeycomb core and face sheets.  The face sheets are
made of isotropic materials, orthotropic materials, or
laminated fiber-reinforced composite materials.  An
explicit expression of the frequency spectrum of TL
including the effect of the external airflow and two
independent incident angles is derived in terms of the
modal impedances of the fluids and the shell.  In order
to study TL, two shell theories are applied.  The first is
the thin shell theory in which the Reissner-Naghdi-
Berry theory [10] is used.  For thick shells or in the
high frequency range of vibrational shells, the transverse
shear deformation effect was found to be significant [2,
8, 11, 12].  Hence, the first-order shell theory, in which
the shear and rotation effects are taken into account, is
considered.

The effects of different source conditions,
structural properties and flight conditions on TL are
studied for a range of values, specifically, incident angle
of the plane wave; Mach number and the flight altitude
of the aircraft; the ratios between the core thickness and
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the total thickness of the shell, and the structural loss
factors are shown.  Comparisons of TL are made among
an aluminum monocoque shell, an aluminum sandwich
shell with aluminum face sheets and an aluminum core,
and a composite sandwich shell with laminated
graphite/epoxy face sheets and the same aluminum core
as aluminum sandwich shell and between a thin shell
theory and the first-order shell theory.

2.  Mathematical model

Figure 1 shows an infinite cylindrical sandwich
shell with radius R and wall thickness h.  The shell is
immersed in fluid medium 1 (external fluid) and
contains fluid medium 2 (internal fluid).  The mass
density and sound speed for fluid media 1 and 2 are {ρ1,
c1} and {ρ2, c2}, respectively.  An oblique plane sound
wave pI is approaching the shell with incident angles
{γ1 , ψ1}.  Airflow in fluid medium 1 (external) is
moving with a constant velocity V = {Vx, Vy, Vz} in
the x, y, and z directions.

2.1. Governing equations of the fluids

Due to the existence of airflow in the external
fluid medium, the external pressure, which is the
summation of the incident wave pI and the reflected
wave pR, satisfies the convected wave equation

c1
2∇ 2(pI+pR) + ∂

∂t
+V.∇

2

(pI+pR)  =  0  (1)

where ∇  and ∇ 2 are the gradient operator and the
Laplacian operator, respectively.

The internal pressure satisfies the acoustic wave
equation

c2
2∇ 2  p T + ∂

2pT

∂t 2
   =  0 (2)

where pT is the transmitted wave.  Note that Eq. (2)
implies that the shell interior is totally absorptive.
Therefore only an inward-traveling wave exists in the
shell interior.  Although this is not representative of an
aircraft interior, the model allows the transmission loss
of the cylindrical wall to be studied in a straight forward
manner.

2.2. Governing equations of the sandwich shell

Let the non-dimensional axial coordinate be ξ
=z/R, the circumferential direction be θ, and the normal
direction to the middle surface of the shell be ζ , as
shown in Fig. 2.  Denote the shell displacement
components at the midsurface in the axial,
circumferential, and radial directions as {u0, v 0, w 0},
respectively.  Let {ψξ, ψθ} be the rotations of the
normal direction relative to the undeformed midsurface.
The displacement components at an arbitrary distance ζ
from the midsurface along the axial, the circumferential,
and the radial directions are

u  =  u 0+ζψξ,  v  =  v 0+ζψθ,  w  =  w 0 (3)

It should be mentioned that if the thin shell theory is
applied, then the rotations  are ψξ = w,ξ 

0 /R  and
ψθ = w ,θ 

0 /R  , where the comma denotes the partial
derivative with respect to the named variable.

Using the strain-displacement relations, the
constitutive laws, and the equations of motion of the
three-dimensional theory of elasticity in the cylindrical
coordinate system {r, θ, ξ}, where r is the radial
coordinate, one can obtain the following equations of
motion for an N-layered cylindrical sandwich shell [2]

N1, ξ + N6, θ  =  R0 Ru,tt
0  + R1 Rψξ,tt (4)

N2, θ + N6, ξ – Q2   =  R0 Rv ,tt
0  + R1 Rψθ,tt (5)

Q1,ξ+Q2,θ+N2  = R0 Rw ,tt
0  +[p T–(pI+pR)]|r = R (6)

M1, ξ + M6, θ – RQ1    =  R1 Ru,tt
0  + R2 Rψξ,tt (7)

M2, θ + M6, ξ – RQ2    =  R1 Rv ,tt
0  + R2 Rψθ,tt (8)

where t is time.  Equations (4) to (6) present the
equation of the translation motion and Eqs. (7) and (8)
present the equations of rotational motion.  The
meaning of each term in these equations is explained in
the following.

The inertia terms R0 , R1 , and R2  in Eqs. (4) to (8)
are defined by

{R0, R1 , R2 }  =  ∑
k =  1

N

hk
ρk {1, ζ , ζ 2}dζ (9)

where ρk and hk are the mass density and the thickness
of the k-th layer.

In Eqs. (4) to (8), the stress resultants N1 , N2 , and
N6  and couples M1 , M2 , and M6  are given by

Ni  =  Aij εj
0+Bij χj

0,   Mi  =  Bij εj
0+Dij χj

0 (10)
where the subscripts (i, j) (1, 2, 6) follow Voigt's
notations and the stretching, bending-stretching
coupling, and bending stiffness constants Aij, Bij, and
Dij are

{Aij, Bij, Dij}  =  ∑
k =  1

N

hk
cij

k {1, ζ , ζ 2}dζ (11)

and cij
k are the transformed reduced stiffness constants of

the k-th layer [3].  The strains at the midsurface εi 
0 in

Eq. (10) are

{ ε1
0, ε2

0, ε6
0 } = {u,ξ

0, (v,θ
0 –w 0), (v,ξ

0+u,θ
0 )}/R (12)

and the curvatures at the midsurface χ i
0 for the thin shell

theory are

{χ1, χ2 , χ6 } = {w,ξξ
0 , (w ,θθ

0 –v,θ
0 ), (2w,ξθ

0 –v,ξ
0)}/R2 (13)

and for the first-order shell theory are

{χ1, χ2 , χ6 }  =  {ψξ,ξ, ψθ,θ, (ψξ,θ+ψθ,ξ)}/R (14)
The transverse shear forces Q1 and Q2 in Eqs. (5)

to (8) are obtained differently for the thin shell theory
and the first-order shell theory.  For the thin shell
theory, because the effects of shear and rotation are
neglected, the inertial terms R1  = R2  = 0 and the shear
forces Q1 and Q2 can be obtained directly from Eqs. (7)
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and (8).  However, for the first-order shell theory, the
shear forces Q1 and Q2 are

Q1   =  k4
2A44 (w,ξ

0/R+ψξ)+k4 k5A45 (w,θ
0 /R+ψθ) (15)

Q2   =  k5
2A55 (w,θ

0 /R+ψθ)+k4 k5A45 (w,ξ
0/R+ψξ) (16)

Here, in Eqs. (15) and (16), k4  and k5  are the shear
correction factors and the shear elastic constants A44 ,
A45 , and A55  are

{A44 , A45 , A55 }  =  ∑
k =  1

N

hk
{c44

k , c45
k , c55

k }dζ (17)

where c44
k , c45

k , and c55
k  are the transformed shear

stiffness constants of the k-th layer [3].

2.3. Boundary conditions

The boundary conditions inside and outside the
shell are given by following

∂(pI + p R)

∂r
 

r = R

  =  –ρ1   ∂
∂t

 + V.∇
2

w (18)

∂pT

∂r
 

r = R

  =  –ρ2   ∂
2 w

∂t 2
 (19)

which describe the effect of the fluid pressure on the
shell motion.

2.4. Solutions

To obtain the solution of Eq. (1), the given
incident wave pI can be expanded as

pI  =  p0 εn (–i)nJncos[n(θ–ψ1)]exp[i(ωt–k1 zz)]∑
n = 0

∞
(20)

where p0 is the amplitude of the incident wave, n  the
order of the circumferential mode, εn  = 1 when n  = 0
and εn  = 2 when n ≠ 0, and Jn = Jn(k1 rr) the Bessel
function of the first kind of order n.  The wave numbers
k1 r and k1 z are to be determined.  The reflected wave pR

can be obtained by following

pR  =  An Hn
2cos[n(θ–ψ1)]exp[i(ωt–k1 zz)]∑

n = 0

∞
(21)

where Hn
2 = Hn

2(k1 rr) is the Hankel function of the
second kind of order n and An  are yet-to-be-determined
complex amplitude factors.  Substituting Eqs. (20) and
(21) into Eq. (1), one can obtain the wave numbers

k1 z  =  k1  cosγ1 ,  k1 r  =  k1  sinγ1  (22)
where
k1  =  ω

c1
×

1
1–(Mxsinγ1 cosψ1+Mysinγ1 sinψ1+Mzcosγ1 )

(23)

Mx  =  Vx/c1 ,  My  =  Vy/c1 ,  Mz   =  Vz /c1 (24)
The transmitted wave pT, which satisfies Eq. (2),

is

pT  =  BnHn
1cos[n(θ–ψ1)]exp[i(ωt–k2 zz)]∑

n = 0

∞
 (25)

where Hn
1 = Hn

1(k2 rr) is the Hankel function of the first
kind of order n,

k2   =  ω/c2 ,  k2 z  =  k1 z,  k2 r  =  k2
2 – k2 z

2 (26)
and Bn  are yet-to-be-determined complex amplitude
factors.

The displacement components u0, v 0, and w 0 are
also assumed as

u0  =  iun
0cos[n(θ–ψ1)]exp[(ωt–k1 zz)]∑

n = 0

∞
(27)

v 0  =  vn
0sin[n(θ–ψ1)]exp[(ωt–k1 zz)]∑

n = 0

∞
(28)

w 0  =  wn
0cos[n(θ–ψ1)]exp[(ωt–k1 zz)]∑

n = 0

∞
(29)

For the first-order shell theory, the rotation components
ψξ and ψθ are assumed as

ψξ  =  iun
1cos[n(θ–ψ1)]exp[(ωt–k1 zz)]∑

n = 0

∞
 (30)

ψθ  =  vn
1sin[n(θ–ψ1)]exp[(ωt–k1 zz)]∑

n = 0

∞
 (31)

Here, in Eqs. (27) to (31), {un
0, vn

0, wn
0} and { un

1, vn
1}

are unknown complex amplitudes of the displacement
and rotation components, respectively.  It can be seen
that for each mode number n, there are five unknowns
{un

0, vn
0, wn

0, An , Bn} and five equations (4) to (6), (18),
and  (19) for the thin shell theory and seven unknowns
{un

0, vn
0, wn

0, un
1, vn

1, An , Bn} and seven equations (4) to
(8), (18), and (19) for the first-order shell theory.  To
obtain simplified and meaningful results, one can get a
set of equations in terms of An  Bn   and wn

0 by
eliminating un

0 and vn
0 for the thin shell theory and un

0,
vn

0, un
1, and vn

1 for the first-order shell theory.  Solving
these coupled equations yields

An   =  –p0  εn  (–i)n  Jn
′ (k1 rR)

Hn
2 ′(k1 rR)

 
Zn

S+Zn
T+Zn

I

Zn
S+Zn

T+Zn
R

(32)

Bn  =  p0εn (–i)n ρ2k1 rJn
′ (k1 rR)

ρ1k2 rHn
1 ′(k2 rR)

Zn
R+Zn

I (k1 c1/ω)2

Zn
S+Zn

T+Zn
R

(33)

wn
0  =  p0εn (–i)nk1 rJn(k1 rR)

ρ1 ω 2

Zn
R+Zn

I (k1 c1/ω)2

Zn
S+Zn

T+Zn
R

(34)

where

Zn
I  =   iω  ρ1

k1 r

  Jn (k1 rR)

Jn
′ (k1 rR)

(35)

Zn
R  =  –iω  ρ1

k1 r

  Hn
2(k1 rR)

Hn
2 ′(k1 rR)

  k1c1

ω
2
 (36)

Zn
T  =   iω  ρ2

k2 r

  Hn
1(k2 rR)

Hn
1 ′(k2 rR)

(37)

Zn
S  =  1

iω Dn

(38)

Here, in Eqs. (32) to (38), the primes denote derivatives
with respect to the argument;  Zn

I, Zn
R, and Zn

T are modal
characteristic acoustic impedances of the fluids; Zn

S is
the modal impedance of the shell; and Dn  is the modal
amplitude of the displacement component of the shell in
the radial direction with a unit pressure.
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2.5.  Transmission loss

The transmission loss of the shell is defined by
the ratio of the transmitted power W T and the incident
power W I per unit length of axial section of the shell as
follows [9]

TL  =  –10 log10
W T

W I
(39)

where

W I  =  p0
2 R  cosγ1

ρ1 c1
(40)

W T  =  1
2

 Re
S
(pTw

*
)|r = R dS (41)

in which Re[.] is the real part, the superscript *
represents the complex conjugate of the argument, and
S  is the area of the cross section of the shell.
Substituting Eqs. (25) and (29) by using Eqs. (33) and
(34) into Eq. (39) leads to the expression of TL in terms
of the modal impedances

TL  =  –10 log10  ∑
n = 0

∞
2 εn

k1 r R
 ω

k1c1

2
*

Re[Zn
R] Re[Zn

T]

 | Zn
R + Zn

T + Zn
S |2  

(42)

where |.| is the absolute value of the argument.

3.  Parametric studies

Parametric numerical studies of transmission loss
(TL) are conducted for frequency from 0.1 to 20 times
the ring frequency fR.  These studies provide insight into
the effect of the acoustic properties of the fluids and the
structural or material parameters of the shells on TL.  A
typical narrow-bodied jet fuselage made of the sandwich
shells with radius R = 1.83m is considered.  The inner
and outer face sheets are assumed to be the same.  The
properties of the fluids and the shells are as follows:

The aircraft is in cruising flight at 10,000ft (ρ1 =
0.9041kg/m 3, c1 = 328.558m/s), 25,000ft (ρ1 =
0.5489kg/m 3, c1 = 309.966m/s), and 35,000ft (ρ1 =
0.3795kg/m 3, c1 = 296.556m/s) with Mach number
Mx= My= 0, and Mz  = 0, 0.5, 1.0, 1.5.  The fuselage
interior is pressurized to 10,000ft, such that no pressure
differential exists at 10,000ft.  The plane sound wave
approaches the shell with incident angles  γ1  = 1500,
1350, and 1200 and ψ1  = 00, respectively.

Two kinds of the sandwich shells with the same
weight, radius, and aluminum core are considered.  One
is an aluminum sandwich shell whose face sheets are
made of aluminum, and the other is a composite
sandwich shell whose face sheets are made of laminated
cross-ply graphite/epoxy layers.  The core has low
density and high out-of-plane modulus.  Therefore,
assume the material constants of the aluminum core
including the mass density, Young's modulus, Poison's
ratio, and shear modulus to be ρ  = 55kg/m 3, E ≈ 0, µ ≈
0, and G = 1.38GPa, respectively.  The core thickness

of both aluminum and composite sandwich shells is
denoted as hc.  The material constants of the aluminum
face sheets are ρ = 2750kg/m 3, E  = 72GPa, and µ  =
0.3.  The material constants of the laminated
graphite/epoxy face sheets are ρ  = 1600kg/m 3, Eα =
221GPa, Eβ = 6.9GPa, µαβ = 0.25, and Gαβ = 4.8GPa,
where α   is the fiber direction and β is the direction
perpendicular to the fiber.  Both inner and outer
laminated graphite/epoxy face sheets consist of four
layers with the fiber orientations {900, 00,  900, 00} and
{00, 900, 00, 900} with ξ  direction on the shell outer
surface, respectively.  The ratio of the core thickness and
the total thickness of the shell is hc/h = 0.8, 0.9, and
0.95.  The structural loss factors are assumed as η  =
0.01, 0.05, and 0.1.

For reference purposes, the same weight and radius
aluminum monocoque shell with the wall thickness h =
0.159cm is considered  (other material constants are
given above).  Then the wall thicknesses of the
aluminum and composite sandwich shells are h =
0.736cm and h = 1.2cm, respectively.  The frequency
parameter of all results in the following figures is
normalized by the ring frequency of the aluminum
monocoque shell,  fR = (2πR)–1 E/ρ = 445Hz.  The
effect of the pressure on TL is neglected since
contribution of the pressure to the shell mode
impedance is less than 1%.

4.  Results

The effects of the incident angles of the plane
sound wave, the Mach numbers, the flight altitudes, the
ratios of the core thickness to the total thickness of the
shell, and the loss factors of the shell material on TL
are shown in Figs. 3 through 7 based on the thin shell
theory.  Figures (a) and (b) represent TL versus the
normalized frequency for the aluminum sandwich shell
and the composite sandwich shell, respectively.

4.1. The effect of the fluid properties on TL

Figure 3 shows the effect of the incident angles
with γ1  = 1500, 1350, and 1200 on TL.  There are two
major minima in TL for the aluminum sandwich shell
at the ring frequency fR and the critical frequency fc,
(>fR) which corresponds to the coincidence frequency of
an infinite plate with the same shell thickness, as
shown in Fig. 3(a).  The frequency fc is shifted upwards
when the plane sound wave is close to the normal
incidence (γ1  = 900) (see Fig. 3(a)).  However, only one
major minimum in TL at fR is observed for the
composite sandwich shell, as shown in Fig. 3(b).  In
this case, the bending wave of the shell that corresponds
to fc becomes unimportant for sound transmission in
the composite sandwich shell when fc < fR.

Figure 4 shows the effect of Mach numbers with
Mz  = 0, 0.5, 1.0, and 1.5 on TL.  Two major minima
of TL at fR and fc occur for the aluminum sandwich
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shell.  Only one major minimum in TL at fc is seen in
the composite sandwich shell, as shown in Fig. 4(b).
The frequency fc is shifted upwards with increase of
Mach number for both sandwich shells.

Figure 5 shows the effect on TL of altitudes of
10,000ft, 25,000ft, and 35,000ft altitudes with the same
interior pressure at 10,000ft.  The effect of the pressure
differential inside and outside the shell on the model
impedance of the shell is small so that it can be
neglected.  A higher flight altitude will lead to a larger
acoustic impedance (ciρi) mismatch between the fluids
inside and outside the shell.  The curves in Figs. 5a and
5b illustrate that with an increase of the acoustic
impedance mismatch, the transmission loss increases
except near fc (see Fig. 5).  Figure 5(a) shows that fc is
shifted downwards slightly when the flight altitude
increases.  Figure 5(b) shows only one major minimum
in TL at fR for the composite sandwich shell.

4.2. The effect of the structural properties on TL

Figure 6 shows the effect of the different thickness
ratios with hc/h  = 0.8, 0.9, and 0.95 on TL.  For the
ratio hc/h increasing, this indicates that the core
thickness increases while the thicknesses of the face
sheets decrease since the total thickness is kept constant
for each shell.  The increase of hc/h will results in that
the bending stiffness is improved and the in-lane
stiffness is the same since bending modes are more
important at higher frequencies to transmit wave.  The
minimum in TL at fc is observed only when hc/h  = 0.8
for the aluminum sandwich shell, as shown in Fig.
6(a).  The curves in Fig. 6 reveal that when f < fR the
transmission loss follows a stiffness-controlled law in
which TL decreases 5-6 dB/octave and  when f > fc for
the aluminum sandwich shell and f > fR for the
composite sandwich shell, the transmission loss
increases about 20 dB/octave.

Figure 7 shows the effect of the structural loss
factors with η   = 0.01, 0.05, and 0.1 on TL.  The
structural damping becomes unimportant in the study of
TL except at frequencies fc and fR where magnitude of
TL increases with increase of the loss factor near fc and
fR as shown in Fig. 7(a).

4.3. Comparison of TL among different shells

Figures 8(a) and (b) show TL of the aluminum
monocoque shell, aluminum sandwich shell, and
composite sandwich shell with hch = 0.8 and hch =
0.95, respectively.  Below fR, transmission loss is
almost the same in the aluminum monocoque shell and
in the aluminum sandwich shell.  It can be seen that
when f>fR, the transmission loss of the composite
sandwich shell is the largest among the shells.
However, when f<fR, the transmission loss for the
composite sandwich shell is the least of the three shells.
It can also be seen that at high frequencies, an increase

in wall thickness ratio (hc/h) has a large effect on TL for
the sandwich shell than the monocoque shell.

Figures 9(a) and (b) show TL the aluminum
monocoque shell, aluminum sandwich shell, and
composite sandwich shell at altitudes 25,000ft and
35,000ft with the same interior pressure (at 10,000ft
altitude), respectively.  Below fR, transmission loss is
almost the same in the aluminum monocoque shell and
in the aluminum sandwich shell.  Results illustrate that
the composite sandwich shell offers an advantage in
noise reduction over the aluminum monocoque and
sandwich shells in the high frequency range.

4.4. Comparison of TL for different shell theories

Figures 10(a) and (b) show a comparison on TL
for the thin shell theory and the first-order shell theory.
The selected shear correction factors k4  = k5  = √5/6.  At
the lower frequency, the effects of shear and rotation on
TL are negligible.  However, in the high frequency
range, the shear waves transmit sound through the shell
resulting in a decrease of TL.  The effect of the shear
wave on sound transmission becomes more important
for the composite sandwich shell than the aluminum
sandwich shell because the composite sandwich shell is
thicker than the other.

5.  Conclusion

In this paper, we studied sound transmission
through an infinite cylindrical sandwich shell.  An
explicit expression for the shell transmission loss (TL)
including the effect of the external airflow and two
independent incident angles is derived.  The frequency
spectrum of TL versus the normalized frequency is
studied by varying parameters of the fluids and shells.
Comparison of TL is made among the aluminum
monocoque shell, aluminum sandwich shell, and
composite sandwich shell based on the thin shell theory
and between the thin and first order shell theories,
respectively.  The following conclusions can be drawn
from this numerical study:
1. Two major minima in TL at fR and fc are present

in the aluminum sandwich shell.  However, only
one major minimum in TL at fR is shown in the
composite sandwich shell.  In this case, the
bending wave of the composite sandwich shell
becomes unimportant for sound transmission
because no major minimum in TL is shown at fc.

2. Increase of the ratio hc/h will lead to an increase of
TL in the high frequency range.  The structural
damping is unimportant in the study of TL
although the magnitude of TL varies slightly for
different dampings near at fR and fc.

3. The composite sandwich shell offers an advantage
in noise reduction over both the aluminum
monocoque shell and the aluminum sandwich shell
for the larger impedance mismatch between the
fluids inside and outside the shell and the larger
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ratio of the core thickness and total thickness in
high frequency range based on thin shell theory at
the high frequency.

4. The effects of shear and rotation of the sandwich
shells on TL can be neglected only in the lower
frequency range.  In the high frequency range, the
shear wave's transmission of sound will result in
decreased TL.
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Figure 3.  The effect of the incident angles on the TL at
no airflow with the flight altitude (25,000ft) and the
interior pressure (10,000ft):  η  =0.01; hc/h =0.8.  (a).
aluminum sandwich shell; (b) composite sandwich
shell.
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Figure 4.  The effect of the Mach numbers on the TL
with the flight altitude (25,000ft) and the interior
pressure (10,000ft):  η  = 0.01; γ1  = 1500; hc/h = 0.8.
(a). aluminum sandwich shell;  (b) composite sandwich
shell.
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Figure 5.  The effect of the flight altitudes on the TL at
no airflow with the interior pressure (10,000ft):  η  =
0.01; γ1  = 1500; hc/h = 0.8.  (a). aluminum sandwich
shell;  (b) composite sandwich shell.
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Figure 6.  The effect of the thickness on the TL ratios
at no airflow with the flight altitude (25,000ft) and the
interior pressure (10,000ft):  η  =0.01; γ1  = 1500.  (a).
aluminum sandwich shell;  (b) composite sandwich
shell.
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Figure 7.  The effect of the structural loss factors on the
TL at no airflow with the flight altitude (25,000ft) and
the interior pressure (10,000ft):  γ1  = 1500; hc/h = 0.8.
(a). aluminum sandwich shell; (b) composite sandwich
shell.
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Figure 8.  Comparison of the effect of the thickness
ratio on the TL at no airflow with the flight altitude
(25,000ft) and the interior pressure (10,000ft):  η  =
0.01; γ1  = 1500. shell 1: aluminum monocoque shell;
shell 2: aluminum sandwich shell;  shell 3: composite
sandwich shell.  (a).  hc/h = 0.80;  (b) hc/h = 0.95.
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Figure 9.  Comparison of the effect of the flight
altitudes on the TL at no airflow with the interior
pressure (10,000ft):  η = 0.01; γ1  = 1500; hc/h = 0.80.
shell 1: aluminum monocoque shell; shell 2: aluminum
sandwich shell; shell 3: composite sandwich shell.  (a).
flight altitude 25,000 ft;  (b)  flight altitude 35,000 ft.
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Figure 10.  Comparison of the TL between the thin and
the first-order deformation shell theories at no airflow
with the flight altitude (25,000ft) and the interior
pressure (10,000ft):  η  = 0.01; γ1  = 1500; hc/h = 0.8.
(a). aluminum sandwich shell;  (b)  composite sandwich
shell.


