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A Subsonic Aircraft Design Optimization With Neural 
Network and Regression Approximators 

Surya N. Patnaik* 
Ohio Aerospace Institute 
Brook Park, Ohio 44142 

 
Rula M. Coroneos, James D. Guptill, Dale A. Hopkins, and William J. Haller 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

 
The Flight-Optimization-System (FLOPS) code encountered difficulty in analyzing a subsonic 

aircraft. The limitation made the design optimization problematic. The deficiencies have been 
alleviated through use of neural network and regression approximations. The insight gained from 
using the approximators is discussed in this paper. The FLOPS code is reviewed. Analysis models 
are developed and validated for each approximator. The regression method appears to hug the data 
points, while the neural network approximation follows a mean path. For an analysis cycle, the 
approximate model required milliseconds of central processing unit (CPU) time versus seconds by 
the FLOPS code. Performance of the approximators was satisfactory for aircraft analysis. A design 
optimization capability has been created by coupling the derived analyzers to the optimization test 
bed CometBoards. The approximators were efficient reanalysis tools in the aircraft design 
optimization. Instability encountered in the FLOPS analyzer was eliminated. The convergence 
characteristics were improved for the design optimization. The CPU time required to calculate the 
optimum solution, measured in hours with the FLOPS code was reduced to minutes with the 
neural network approximation and to seconds with the regression method. Generation of the 
approximators required the manipulation of a very large quantity of data. Design sensitivity with 
respect to the bounds of aircraft constraints is easily generated. 

Nomenclature 
n number of design variable, number of basis functions 
Obj merit function 
R number of kernel functions 
w weight factor 
x design variables 
y functional approximation 

y∇  gradient matrix 
β regression coefficients 
ϕ kernel function 
τ threshold parameter 
 
Subscripts/Superscripts 
 
i,j,k regression indices 
k kth merit function 

 lth design variable, lower bound 
ri ith basis function for the rth kernel 
 

                                                           
*NASA Resident Research Associate at Glenn Research Center. 
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Acronyms 
 
CometBoards comparative evaluation test bed of optimization and analysis routines for the design of structures 
CPU central processing unit 
DV design variable 
FD method of feasible directions 
FLOPS Flight Optimization System 
IFM Integrated Force Method 
I/O input/output pairs 
NEPP NASA Engine Performance Program 
NLPQ nonlinear quadratic programming algorithm 
NN neural network 
OPR overall pressure ratio 
SLP sequential linear programming 

I. Introduction 
The Flight Optimization System (FLOPS1) of NASA Langley Research Center is a standard aircraft analyzer. 

The FLOPS code combines multiple disciplines from aerodynamics and engine cycle analysis to mission 
performance. The code uses data tables for internal calculations. A brief description of the FLOPS code is given in 
Appendix 1. For a subsonic aircraft problem the code became unstable for some design points. The analysis 
limitation propagated into design optimization, and it encountered convergence difficulty. The anomalous design 
points resided in the vicinity of the optimum solution. These designs cannot be segregated prior to the optimization 
calculations. The aircraft problem appears to be a good candidate for the application of approximation techniques. 

Two competing approximation techniques: neural network (NN) and regression methods are investigated to 
overcome the deficiency. The regression method uses a set of basis functions and provides both function and 
gradient information. NN approximation also uses a variety of kernel functions and produces the same two pieces of 
information. Both methods have been applied successfully for a variety of multidisciplinary applications.2–4 The 
approximate methods are developed using a set of high-fidelity training pairs and selected basis functions. The 
approximate models are validated for use as an alternate reanalysis tool for the subsonic aircraft analysis and design 
optimization. 

Design optimization of the subsonic aircraft is obtained via the CometBoards5–6 test bed of NASA Glenn 
Research Center. CometBoards has been successfully used to solve a number of problems: structural design of space 
station components,7 the design of nozzle components for air-breathing engines,2 design of supersonic aircraft,3 
mixed flow turbofan engines,8 and wave rotor concepts in jet engines.9 The regression method and neural-network-
based aircraft analysis tools have been incorporated into CometBoards. The optimum solution of the subsonic 
aircraft can be obtained using any one of the three analysis methods: the FLOPS code, NN, and regression method 
analyzers. The design capability is also used to calculate sensitivity with respect to the bounds on aircraft 
constraints; for example, the takeoff and landing field lengths. 

This paper examines the performance of different analysis methods in design of a subsonic aircraft. Optimal 
solutions calculated by three different methods are compared. The efficiency in analysis and design is examined by 
comparing the central processing unit (CPU) time to solution. The paper is organized in 11 sections: the subsonic 
aircraft design optimization problem, the FLOPS aircraft analyzer, the CometBoards design optimization test bed, 
justification for use of approximate methods, regression method, NN technique, training approximate analyzers, 
performance of approximators for analysis and design optimization, design sensitivity analysis, positivity 
constraints, and conclusions. 

II. Subsonic Aircraft Design Optimization Problem 
The subsonic aircraft is powered by two high-bypass-ratio engines with a nominal thrust of about 48 925 lbf. The 

aircraft is to carry 200 passengers and an eight-member crew, fly at a cruise speed of 0.8 Mach over a range of 
2500 n mi. The objective of the optimization is to determine the airframe-engine design combination that will meet 
specified constraints and minimize the gross takeoff weight. A good match between airframe and engine is achieved 
by combining the airframe variables with engine parameters. Nine active variables, listed in Table 1, were selected. 
There are four airframe design variables: wing aspect ratio DV1, wing area DV3, sweep angle DV4, and thickness to 
chord ratio DV5. The five engine design parameters are engine thrust DV2, the turbine inlet temperature DV6, the 
overall pressure ratio DV7, the bypass ratio DV8, and the fan pressure ratio DV9. Constraints are as follows: the 
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landing velocity g1 is not to exceed 125 knots. Field lengths for takeoff g2 and landing g3 are not to exceed 6000 ft. 
Missed approach gradient thrust g4 and second segment climb thrust g5 are required to be positive. Compressor 
discharge temperature g6 should not exceed 1460 °R. Excess fuel g7 should be positive. Constraints g1, g2, g3, and g6 
restrict the landing approach velocity, takeoff field length, landing field length, and compressor discharge pressure, 
respectively, to not exceed their upper bounds. The g4, g5, and g7 constraints, scaled with respect to 101 000, 
100 000, and 5 000 lbf, respectively, restrict the variables to be positive. These are referred to as the positivity 
constraints.  
 

The FLOPS code has a provision to use a composite merit function that can be expressed as 

 
7

1
k k

k
Obj w

=
= β∑  (1) 

Here, Obj represents the merit function, wk represents the kth weight factor, and the parameter βk can be selected 
from the following list:  

 
(1) Gross takeoff weight of the aircraft 
(2) Mission fuel 
(3) The product of the Mach number and the ratio of lift-to-drag 
(4) Range 
(5) Cost 
(6) Specific fuel consumption 
(7) NOx emissions 
 
For the subsonic problem, the gross takeoff weight is selected as the merit function by setting w1 = 1.0, and the 

other weight factors to zero. The objective of the optimization study is to determine the optimum gross takeoff 
weight of the aircraft for the nine design variables and the seven behavior constraints listed in Table 1. Optimum 
solution is also calculated for the aircraft to operate on shorter and longer runways in the 4500 to 7500 ft range. This 
exercise is referred to as sensitivity analysis.  

Table 1. Design variables and constraints of the subsonic aircraft 
 

Design variables Constraints 
DV1. Wing aspect ratio, (EAR) 
DV2. Engine thrust, (ETHRUST) 
DV3. Wing area, (ESW) 
DV4. Quarter chord sweep angle, (ESWEEP) 
DV5. Thickness to chord ratio, (ETCA) 
DV6. Turbine inlet temperature, (EETIT) 
DV7. Overall pressure ratio, (EEOPR) 
DV8. Bypass ratio, (EEBPR) 
DV9. Fan pressure ratio, (EEFPR) 

g1. Landing approach velocity, (VAPP) 
g2. Takeoff field length, ( FAROF) 
g3. Landing field length, (FARLD) 
g4. Missed approach gradient thrust, (AMFOR) 
g5. Second segment climb thrust, (SSFOR) 
g6. Compressor discharge temperature, (CDT) 
g7. Excess fuel capacity, (EXFUE) 

Variables not used but can be considered include 
DVa. Taper ratio of wing, (ETR) 
DVb. Cruise Mach number, (EVCMN) 
DVc. Cruise altitude, (ECH) 
DVd. Engine throttle ratio, (EETTR) 

Constraints not used but can be considered include 
ga. Range of aircraft, (RANGE) 
gb. Specific thrust, (ST) 
gc. Specific fuel consumption, (SFC) 
gd. Compressor discharge pressure, (CDP) 
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III. FLOPS: An Aircraft Analyzer 
The FLOPS code calculates the performance parameters for subsonic and supersonic aircraft generating the 

constraints and merit function required for design optimization. The code synthesizes eight disciplines: weight 
estimation, aerodynamic analysis,10,11 engine cycle analysis,12–14 propulsion data interpolation, mission performance, 
airfield length requirements for takeoff and landing, noise footprint calculations,15 and cost estimation.16–21 The 
FORTRAN code has 11 modules with over 42 000 statements. The subsonic aircraft problem required several 
input/output (I/O) files. A brief description of the code is given in Appendix 1. Numerical data tables (or table 
lookups) used in the code can abruptly interrupt the calculations. Approximate methods can alleviate such 
limitations of the FLOPS code.  

IV. CometBoards: A Design Optimization Test Bed 
The research to compare different optimization algorithms and alternate analysis methods for structural design 

applications has grown into a multidisciplinary design test bed that is still referred to by its original acronym, 
CometBoards, which stands for comparative evaluation test bed of optimization and analysis routines for the design 
of structures. The modular organization of CometBoards, shown in Fig. 1, allows innovative methods (or computer 
codes) to be tested quickly through its soft coupling feature. Optimizers and analyzers are two important modules of 
CometBoards. The optimizer module includes a number of algorithms:  
 

The fully utilized design22 
Optimality criteria methods22 
The method of feasible directions23 
The modified method of feasible directions 24 
Three different sequential quadratic programming techniques25–27 
The Sequential Unconstrained Minimizations Technique28 
Sequential linear programming23 
A reduced gradient method29  
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Likewise, the analyzer module includes 
 
COSMIC/NASTRAN30 
The nonlinear analyzer MHOST31 
The U.S. Air Force ANALYZE/DANALYZE code32 
IFM/ANALYZERS 33 
The aircraft flight optimization analysis code FLOPS 1 
The NASA Engine Performance Program NEPP 34  
 

Some of the other unique features of CometBoards are 
 
A multiple optimizer cascade strategy 8 
Design variable and constraint formulations 
A global scaling strategy 
Analysis and sensitivity approximations through regression and NNs 
Substructure optimization on sequential as well as parallel computational platforms35 
 
CometBoards has provisions to accommodate up to 10 different disciplines, each of which can have a maximum 

of 5 subproblems. The test bed can optimize a large system, which can be defined in as many as 50 different 
subproblems. Alternatively, a component of a large system can be optimized. The design test bed has been 
successfully used to solve a number of multidisciplinary problems. The CometBoards test bed has over 50 numerical 
examples. It is written in FORTRAN 77, except for the NN code Cometnet,36 which is written in the C++ language. 
The C++ code is integrated into the CometBoards FORTRAN code through soft-coupling. Soft-coupling is achieved 
by first generating an executable file from the Cometnet C++ source code; then Cometnet is invoked from 
CometBoards through a system call. Information is exchanged between the two programs through data files. 
CometBoards is available on UNIX-based SGI and Sun workstations. CometBoards is continuously being improved 
to increase its reliability and robustness for optimization at system as well as at component levels. Stochastic 
calculations are being implemented into CometBoards. This paper emphasizes the approximation module of 
CometBoards, which includes regression method and NN approximations for the design optimization of the 
subsonic aircraft.  

V. Justification for Use of Approximate Methods 
The difficulty encountered in the FLOPS code is illustrated by generating its response for a set of design points 

that lie in the vicinity of the optimum solution. The FLOPS code is run for three sets of analysis data that are created 
by a pseudo-random perturbation about a base design within prescribed upper and lower bounds as shown in 
Table 2. The design space spread is about 10 percent of the base design on each side. The first set of data is referred 
to as “small-model,” and it contains 1200 design points. The “standard-model” and the “large-model” contain 2400 
and 4800 points, respectively. Each set of the nine design variables and the seven response variables (associated 
with design constraints) constitutes one I/O pair (which is also used to train the approximate methods). The success 
rate of the FLOPS analyzer is given in Table 3. The rate of success was about 80 percent for each model. For the 

Table 2. Base design bounds 
 

Design variables Lower bound Initial design Upper bound 
Wing aspect ratio (DV1)  7.340  8.500  8.810 
Engine thrust (DV2), lb  28000  31500  34200 
Wing area (DV3), ft2  1830  2000  2200 
Quarter chord sweep angle (DV4), deg  16.0  18.5  21 
Thickness to chord ratio (DV5)  0.088  0.095  0.0997 
Turbine inlet temperature* (DV6), °R  2950  3000  3100 
Overall pressure ratio* (DV7)  38  40  40.50 
Bypass ratio* (DV8)  5  6  6.10 
Fan pressure ratio* (DV9)  1.8  1.85  2 

 

*Redundancy in these design variables may cause instability in the subsonic aircraft calculations. 
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standard model only 1943 usable I/O 
pairs could be generated out of the 2400 
requested design points. The aircraft 
weight saturated at a quarter million 
pound-force for 448 design points. The 
code aborted for seven designs.  Turbine 
entry temperature reached a million 
degrees for one case and a zero thrust 
condition was encountered for another 
case. The 250 000 lbf weight, 106 °R 
temperature, and zero thrust condition 
are either reference or flagged value of 
the unsized aircraft. The response for the 
small and large model was similar with 
minor deviations.  

The design space of an aircraft 
optimization problem is distorted 
because both design variables and 
constraints vary over a wide range. For 
example, an engine thrust design variable 
measured in kilo pound-force is 
immensely different than the bypass 
ratio, which is a small dimensionless 
number. Likewise, a landing velocity 
constraint in knots and a field length 
limitation in thousands of feet differ both 
in magnitude and in units of measure. In 
the design optimization test bed 
CometBoards the effect of distortion is 
reduced by scaling the merit function, 
design variables, and constraints such that their normalized magnitudes are around unity. 

Design optimization of the subsonic aircraft was attempted using the combined CometBoards-FLOPS code. 
None of the one dozen individual optimization algorithms available in the CometBoards test bed could successfully 
solve the problem. A better solution could be obtained when a cascade strategy was employed. The generation of an 
optimum solution required manual intervention, restarts, as well as a change of the initial designs and bounds. A 
four-optimizer cascade was employed to solve the problem: sequential linear programming (SLP), followed by a 
nonlinear quadratic programming algorithm (NLPQ), then method of feasible directions (FD), and finally NLPQ.  

Solutions generated on IBM and SGI workstations are depicted in Fig. 2. The cascade algorithm converged to 
199 276 lbf for the aircraft weight. The same cascade algorithm encountered difficulty on an SGI workstation when 
it was initiated from a different initial design. Likewise a slightly different cascade exhibited a contrary move. The 
problem was solved on the SGI workstation with the original cascade algorithm when the design bounds were 

Table 3. Success rate of the FLOPS analyzer for the subsonic aircraft 
 

I/O Pairs Small Standard Large 
Total I/O pairs—FLOPS 1200 2400 4800 
Usable I/O 991 1943 3880 
Success rate, percent 83 81 81 
Bad I/O 209 (17.42%) 457 (19.04%) 920 (19.17%) 
Saturated at 250 kip for aircraft weight 204 448 891 
Code aborted 3 7 16 
Negative million for engine thrust 1 1 6 
Zero thrust 1 1 7 
Used for training 900 1800 3600 
Used for validation 91 143 280 
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changed, see Fig. 2(b). The optimum designs are given in Table 4. A minor deviation is observed in the two 
solutions. There was only a 0.1-percent change in the aircraft weight. There was a 3-percent deviation in the engine 
bypass ratio design variable and 1 percent variation in the second segment climb thrust constraint. Such deviation is 
considered minor because the subsonic airframe engine synthesis is a difficult nonlinear multidisciplinary analysis 
as well as design problem. The subsonic aircraft problem appears to be a candidate for the use of approximation 
techniques because the FLOPS analyzer can fail for some design points, the subsonic aircraft optimization process 
can become tedious, and a significant reduction can be achieved in the CPU time to solution. 

VI. Regression Method 
The linear regression method and NN technique are used as two competing approximators in CometBoards. The 

regression method uses several types of basis functions. These functions can be selected from (1) a full cubic 
polynomial, (2) a quadratic polynomial, (3) a linear polynomial in reciprocal variables, (4) a quadratic polynomial in 
reciprocal variables, and (5) combinations thereof. Consider, for example, regression analysis of an n-variable model 
with a combination of a cubic polynomial in design variables and a quadratic polynomial in reciprocal design 
variables. The regression function has the following explicit form: 

 ( ) 0
11 1 1 1 1

1 1n n n n n n n n n

i i ij i j ijk i j k i ij
i ji i j i i j i k j i i j i

y x x x x x x x
x x x= = = = = = = = =

= β + β + β + β + β + β∑ ∑∑ ∑∑∑ ∑ ∑∑  (2) 

The regression coefficients β  are determined by using the double precision general matrix linear least squares 
solver (DGELS) routine of the Lapack library.37 The gradient matrix of the regression function with respect to the 
design variables is obtained in closed form. For the example with n variables, the gradient matrix for the regression 
function has the following form: 

Table 4. Summary of optimum design solutions with positivity constraints 
 

 Success 1 
IBM workstation 

Success 2 
SGI workstation 

Percent 
variation 

Aircraft weight, lb 199275.578 199254.844 0.010 
    
Design variables:     
Wing aspect ratio (DV1) 8.547 8.63 –0.96 
Engine thrust (DV2), lb 31589.572 31595.923 –0.020 
Wing area (DV3), ft2 1897.735 1879.461 0.972 
Quarter chord sweep angle (DV4), deg 15.650 16.411 –4.637 
Thickness to chord ratio (DV5) 0.093 0.093 0.0 
Turbine inlet temperature (DV6), °R 3060 3100 –1.290 
Overall pressure ratio (DV7) 40 40.188 –0.469 
Bypass ratio (DV8) 5.936 5.896 0.678 
Fan pressure ratio (DV9) 1.824 1.80 1.333 
    
Constraints:    
Landing approach velocity (g1), kn 119.25 119.72 –0.392 
Takeoff field length (g2), ft 6000 6042.66 –0.706 
Landing field length (g3), ft 5490 5514.84 –0.450 
Missed approach gradient thrust (g4), lb 3737 3905.67 –4.318 
Second segment climb thrust (g5), lb 8300 8548.0 –2.901 
Compressor discharge temperature (g6), °R 1423.50 1429.81 –0.441 
Excess fuel capacity (g7), lb 0.2 0.0 ------- 
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x xx x x

−
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β β∂ = β + β + β + β + β + β + β − − β −
∂ ∑ ∑ ∑ ∑ ∑ ∑  (4) 

and βij = βji for i > j, βijk = βikj for j > k > i, etc. 

  
Reanalysis and sensitivity calculations given by Eqs. (2) to (4) require trivial computation, once the regression 

coefficients have been obtained from a single training cycle. 

VII. Neural Network Technique 
The NN approximator Cometnet is a general-purpose object-oriented library. Cometnet is soft-coupled to the 

CometBoards test bed. The NN capability provides both the function value and its gradient. Cometnet approximates 
the function and its gradient with R kernel functions as follows: 

 ( ) ( )
1 1

rnR

ri ri
r i

y x w x
= =

= ϕ∑∑  (5a) 

 ( ) ( )∑∑
= = ∂

ϕ∂
=

∂
∂ R

r

n

i

ri
ri

r

x
x

w
x

xy

1 1
 (5b) 

where y is the functional approximation, x  is the vector of independent variables, ϕri represent R kernel 
functions, nr represents the number of basis functions in a given kernel, and wri are the weight factors. 

Cometnet permits approximations by using different types of kernels, which include linear, reciprocal, and 
polynomial, as well as Cauchy and Gaussian, radial functions. A Singular Value Decomposition algorithm38 for 
computing the weight factors in the approximating function is used to train the network. A clustering algorithm is 
used to select suitable parameters for defining the radial functions. The clustering algorithm, in conjunction with an 
optimizer, seeks optimal values for the parameters over a range for the threshold parameter τ within its domain  
(0 < τ < 1). The mean-square error during training is reduced by increasing the threshold, which corresponds to an 
increase in the number of basis functions. Over-fitting is avoided with a competing complexity-based regularization 
algorithm. Training of the merit function and each of the constraint functions can use different basis functions. 

VIII. Training Approximate Analyzers 
The I/O pairs generated earlier (see Table 3) are used to train three models for the NN and regression methods. 

The models are referred to as small, standard, and large. The number of I/O pairs used to train and validate the 
models is (900, 91) for the small model, (1800, 143) for the standard model, and (3600, 280) for the large model. 
Each method has nine free variables, being the design variables given in Table 1. Aircraft weight and the seven 
constraints are approximated individually. The basis functions for both approximators contain a full quadratic 
polynomial in the design variables (DV) along with a linear reciprocal expression in the DV. Each approximator has 



NASA/TM—2004-213059 9 
 

64 unknown coefficients. The redundancy (ratio of I/O pair to number of coefficients) is 14, 28, and 56 for the 
small, standard, and large models, respectively. The values of the coefficients in NN and regression need not be the 
same because they are generated following different procedures. The CPU time for training, reanalysis, and design 
optimization on an SGI octane workstation with the irix 6.5.19m operating system and a 300 MHZ processor is 
given in Table 5. The regression method required a fraction of a CPU second for training. The NN training required 
between 1 and 9 minutes. For a single analysis cycle, the FLOPS code required about 3 CPU seconds. This was 
reduced to milliseconds by the approximators. Gradient calculation is inexpensive by the approximators. For 
optimization the CPU time to solution by FLOPS was 34 minutes. This was reduced to less than two seconds by the 
regression method, while the NN average time was about 4 minutes. For analysis and design calculations the 
approximate methods are found to be efficient.  

IX. Performance of Approximators for Analysis and Design Optimization 
Solutions obtained by different approximation models for a randomly selected design point (DV1, … ,  

DV9 = 8.9579, 31607.7515, 2177.9724, 18.5423, 0.0874, 2982.4585, 37.2243, 5.8297, 1.8295) are given in Table 6. 
The three regression models predicted the aircraft weight with 2 percent error. It was reduced to less than 1 percent 
for the NN technique. For the compressor discharge temperature, the error in regression and NN methods averaged 
0.1 and 2 percent, respectively. The average error in the field length constraints ranged between 1 and 3 percent for 
both approximators. However the error was positive for the regression method, while it was negative for the NN. 
The error in approach velocity was similar to field length constraints. The error was higher for the positivity 
constraints g4, g5, and g7. The solution fidelity was about the same for the small, standard, and the large models.  

To further assess the overall performance of the approximators the errors in the aircraft weight is calculated at 
101 design points for engine thrust (in the range 28 to 35 kip), wing area (1800 to 2200 ft2), and turbine inlet 
temperature (2900 to 3100 °R). The mean errors and the standard deviations for the three models is given in Table 7.  

Table 5. CPU time in seconds in an SGI octane workstation 
 

Regression method Neural network technique  

Small Standard Large Small Standard Large 

Training, s 0.2 0.4 0.8 59.1 136 538.8 

Re-analysis, ms 
(FLOPS = 3.1 s) 

--- --- 0.08 --- --- 2.4 

Re-analysis with 
 closed form gradient, ms 

--- --- 0.14 --- --- 13.5 

Design optimization, s 
 (percent of FLOPS solution  
 time = 2031 s) 

1.6 
(0.78) 

1.7 
(0.84) 

1.6 
(0.78) 

300.9 
(15) 

199.2 
(9.8) 

166.7 
(8.2) 

 

Table 6. Performance of the approximators during analysis 
 

  
Regression method,  

percent error 
Neural network technique, 

percent error 

Response variables 
FLOPS 
solution 

Small Standard 
 

Large Small 
 

Standard Large 
 

Aircraft weight, lb 204 725.75 1.85 1.67 1.60 –0.21 –0.47 –0.66 
Approach velocity, kn 112.73 0.91 0.83 0.80 –1.93 –0.09 –2.18 
Takeoff field length, ft 5490.55 3.66 3.09 2.91 –1.12 –1.59 –2.03 
Landing field length, ft 5173.08 0.94 0.88 0.85 –1.94 –2.11 –2.21 
Missed approach thrust, lb 3766.80 –14.48 –12.82 –12.22 –5.76 –3.66 –1.91 
Second segment climb, lb 8516.09 –5.29 –4.67 –4.45 –2.68 –1.91 –1.25 
Compressor discharge temp, °R 1383.64 –0.07 0.20 0.01 –2.03 –1.84 –2.06 
Excess fuel, lb 4237.26 –77.59 –70.03 –66.94 4.77 17.08 24.87 
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Both approximators produced about a 1-percent mean error for all three variables, except for a 2-percent error for 
the turbine inlet temperature by the NN technique. The standard deviation in error with the regression method was 
less than 0.3 percent. This was increased to about 1 percent with the NN technique. The error was comparable for 
the small, standard, and large models. 

In the aircraft design optimization, the FLOPS analyzer was replaced by the approximate models without any 
other change. This combined code was run to obtain optimum solution for the aircraft. The combined solution is 
given in Table 8. CPU time to solution is given in Table 5. A convergence graph that shows the aircraft weight 

Table 7. Percent absolute error in weight over certain design variable ranges 
 

       Regression Neural network 

Variable, range, and model Mean 
Standard 
deviation Mean 

Standard 
deviation 

 
Thrust (28 to 35 kip)  

 
   

 Small 0.90 0.15 1.05 0.69 
 Standard 1.22 0.28 0.92 0.61 
 Large 1.50 0.16 1.01 0.66 
Turbine inlet temperature (2900 to 3100 °R)     
 Small 0.73 0.26 2.08 1.19 
 Standard 0.81 0.31 2.09 1.21 
 Large 1.10 0.34 2.11 1.21 
Wing area (1800 to 2200 ft2)     
 Small 1.16 0.22 1.30 1.05 
 Standard 1.10 0.11 1.12 0.96 
 Large 1.44 0.07 1.16 0.91 

 

Table 8. Optimum solution with original and modified positivity constraints 
 
 FLOPS  

original 
Regression 

original 
FLOPS 

modified  
Regression 
modified 

Aircraft weight, lb 199046.9 196965.1 199395.3 198240.8 
 
Design variables:  

 
   

Wing aspect ratio (DV1) 8.6 8.8 8.8 8.8 
Engine thrust (DV2), lb 31408.5 30179.5 32346.6 32181.1 
Wing area (DV3), ft2 1899.8 1915.0 1851.3 1834.7 
Quarter chord sweep angle (DV4), deg 16.0 16.7 20.2 17.0 
Thickness to chord ratio (DV5) 0.1 0.1 0.1 0.1 
Turbine inlet temperature (DV6), °R 3100 3100.0 3100.0 3094.5 
Overall pressure ratio, (DV7) 40.5 38.0 40.5 38.0 
Bypass ratio (DV8) 6.1 5.0 6.1 5.1 
Fan pressure ratio (DV9) 1.8 1.8 1.8 1.8 
 
Constraints: 

 
   

Landing approach velocity (g1), kn 119.0 117.9 120.7 120.9 
Takeoff field length, (g2), ft 6000 6000.0 5998.3 6000.0 
Landing field length (g3), ft 5479.4 5425.8 5562.8 5573.7 
Missed approach gradient thrust (g4), lb 3746.1 3136.1 5000 5000 
Second segment climb thrust (g5), lb 8385 7721 9619 9594 
Compressor discharge temperature (g6), °R 1429.0 1405.2 1428.3 1405.9 
Excess fuel capacity (g7), lb 0 2553.8 500 500 
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versus iteration is depicted in Fig. 3 for the large regression model. From a comparison of this graph with Fig. 2(b), 
which used the FLOPS code, we observe: 
 

1. Design with the approximator required about double the number of iterations than it did with the FLOPS 
code. However, the time to solution was in favor of the approximator: 1.6 CPU seconds for the regression 
method, versus 2031 s for the FLOPS code. The NN used 222 s.  

2. The convergence pattern contained oscillations for both the regression method and the FLOPS code. The 
amplitudes of the oscillations in the first cascade algorithm were considerably smaller for the regression 
method, see Figs. 2(b) and 3. However, a cascade algorithm was required for the FLOPS code as well as for 
the regression method. 

3. The approximator exhibited 1 percent error in the optimum weight of the aircraft. For field length and 
approach velocity constraints the error was less than 2 percent. Error was greater for the positivity 
constraints, which is discussed subsequently. 

X. Design Sensitivity Analysis 
Design sensitivity was examined for the aircraft to land and takeoff on shorter and longer runways ranging from 

4500 to 7500 ft in length with 6000 ft as the nominal value. Other parameters are retained at their nominal value. 
The optimum solutions are depicted in Fig. 4. Optimum aircraft weight versus the field length obtained by the three 
methods (FLOPS, NN, and regression) is shown in Fig. 4(a). Likewise the overall pressure ratio and second segment 
climb thrust are given in Figs. 4(b) and (c), respectively. The approximators exhibited less than 1 percent error in the 
aircraft weight. Aircraft weight is increased for shorter field length and it is decreased for longer length, as expected. 
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The NN and regression methods exhibited 
0.34 and 0.61 percent error, respectively. 
Overall pressure ratio (OPR) constraint is 
graphed in a magnified scale in Fig. 4(b). 
The approximators hardly exhibit any 
deviation from the FLOPS solution. 
Observe however, the discontinuity in the 
OPR constraint. The regression method has 
a tendency to hug the data points while NN 
exhibited a propensity to follow a mean 
path. The discontinuity will adversely effect 
the aircraft optimization when the FLOPS 
code is used. The NN should experience no 
limitation in design optimization. The 
performance of the regression method for 
design optimization is expected to be 
intermediate between the FLOPS code and 
NN method. Behavior of the second 
segment climb thrust constraint is similar to 
that for OPR. The regression method closely 
follows the constraint while NN takes an 
average path.  

XI. Positivity Constraints 
4

5

7

bounds: g ≤ g, 4g = 5g = 5000 lbf and 

7g = 500 lbf. The optimum solutions for 
four different situations are given in 

 
1. Aircraft weight: The modified regression 
solution (see the last column in Table 8) 
matched the base solution with a 

0.58 percent error. The errors with the original regression and FLOPS solutions were 1.2 and 0.2 percent, 
respectively. 

2. Design variables: The modified regression solution for engine thrust and turbine entry temperature 
exhibited 0.5 and 0.2 percent error, respectively. The quarter chord sweep angle variable exhibited the most 
deviation: 16.0 percent for the modified regression versus 21 percent for the original solution.  

3. Constraints: There was little error in constraints between the modified regression solution and the base 
design. Constraints g4 and g7 became active for both the FLOPS and regression methods.  For the g5 
constraint, the error was 0.3 percent for the modified regression case; between the original FLOPS and 
original regression cases, it was 13 and 20 percent, respectively.  

4. Overall, the modified regression solution exhibited a closer match with the base design. 

Table 8. From a comparison of the FLOPS-
modified case to the base design (second to 
the last column), we observe 

Three constraints of the problem: g  
(missed approach gradient thrust), g  
(second segment climb thrust), and g  
(excess fuel capacity) restrict the associated 
parameter to be positive. The parameters 
were allowed to approach zero. In a 
modified case the parameters are pushed 
away from zero, through specified lower 
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XII. Conclusions 
The cascade optimization strategy solved the subsonic aircraft design optimization problem, even though restarts 

were required. It is preferable to restrict the behavior parameters from approaching zero values. The optimum 
aircraft weight calculated by the Flight Optimization System (FLOPS) analyzer and the regression method 
approximation matched well. The deviation in the design variables between the two analyzers was not significant. 
Deviation can be significant for some behavior constraints when these constraints approach zero values. Overall, the 
performances of the neural network and regression method were comparable. The neural network followed a mean 
path, while the regression method exhibited a tendency to closely follow the FLOPS solution. For a single analysis 
cycle the FLOPS time measured in seconds is reduced to milliseconds by the approximators. The training, 
validation, and solution required a small fraction of FLOPS analysis and design time. For design optimization, the 
central processing unit (CPU) time with the FLOPS analyzer measured in hours was reduced to minutes by the 
neural network, and seconds by the regression method. Generation of high-fidelity input/output pairs to train the 
approximators was time consuming.  
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Appendix 
Organization of Flight Optimization System—FLOPS code 

 
The multidisciplinary FLOPS code can be used for preliminary design evaluation of aircraft concepts. The 

FLOPS FORTRAN code has nine modules: weights, aerodynamics, engines cycle analysis, propulsion data scaling 
and interpolation, mission performance, takeoff and landing, noise footprint, cost analysis, and program control. The 
FLOPS manual (Ref. 1) specifies preparation of input data, which follows a namelist format with default values.  

The subsonic aircraft has a fuselage with a length of 152.35 ft, width of 16.44 ft, and depth of 17.00 ft. It is to 
carry 200 passengers with 5 stewardesses and 3 flight crewmembers. It is powered by two wing-mounted engines 
with a design point net thrust of 48925.0 lbf per engine. It is a separate-flow turbofan engine with two compressor 
components. The weight of the engine is 9410 lbf. The baseline engine nacelle is 19.75 ft long with an average 
diameter of 7.81 ft. Wing area is 2272 ft2, sweep angle is 31.5°, taper ratio is 0.267, and wing thickness-to-chord 
ratio is 0.109. 

Nominal parameters of the engine include a bypass ratio of 5, overall pressure ratio of 29.5, fan pressure ratio of 
1.67, compressor discharge temperature of 1460 °R, and maximum dynamic pressure of 800 lbf/ft2. Fuel capacity is 
57 000 lbf, and there are 10 tanks. 

The range of the aircraft is 2500 n mi, the maximum cruise altitude is 4000 ft, and the maximum operating Mach 
number is 0.843. The ramp weight is 250 000 lbf. Maximum allowed takeoff and landing field length is 6000 ft. 
Maximum allowed approach velocity is 125 n mi. Ground operations include a takeoff time of 0.4 min, taxi in-and-
out time of 10 min, and reserve holding time of 0.5 hr. 
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