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Abstract

The incorporation of experimental test data into the
optimization process is accomplished through the
use of Bayesian-validated surrogates. In the surro-
gate approach, a surrogate for the experiment (e.g.,
a response surface) serves in the optimization pro-
cess. The validation step of the framework provides
a qualitative assessment of the surrogate quality, and
bounds the surrogate-for-experiment error on designs
\near" surrogate-predicted optimal designs. The util-
ity of the framework is demonstrated through its ap-
plication to the experimental selection of the trailing
edge ap position to achieve a design lift coe�cient
for a three-element airfoil.

Introduction

To address the inherent di�culties in examining
many design points experimentally, a three-element
airfoil model with internally embedded actuators has
been developed.1 The model (Fig. 1) has a nested
chord of c = 18 in., a span of b = 36 in., and was de-
signed for low-speed testing in several local tunnels,
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Figure 1: Three-element model with internal
ap actuators.

including the NASA Langley Research Center 2- by
4-foot and the Old Dominion University (ODU) 3- by
4-foot low-speed facilities. The main element chord
is cmain = 14:95 in., and the ap and slat chords
(expressed as a percentage of the nested chord) are
30 and 14.5 percent, respectively. The ap and slat
are both deected to 30� for all tests. Although this
particular model is suitable only for low Reynolds
number testing, the techniques developed should be
applicable to higher Reynolds number testing as well.

The ap actuators are computer controlled and po-
sition the ap horizontally and vertically (x and y,
respectively). The model has been used in the ODU
tunnel to compile baseline values for lift coe�cient
Cl versus ap gap and overhang at �xed angles of
attack and slat riggings. A �rst-order optimizer that
uses a variant of the method of steepest ascent2;3 has
been demonstrated in real time.4 The capability of
the computer controller to automatically take data
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at a prescribed set of (x; y) coordinates makes this
setup ideal for the surrogate methods described next.

The Bayesian-validated surrogate framework ap-
plied in this paper provides a practical means to in-
corporate experimental data directly into the design
optimization process. In the surrogate approach to
optimization, a surrogate (i.e., a simpli�ed model,
for example a response surface) for the experiment is
constructed from o�-line appeals to the experiment.
The surrogate is then used in subsequent optimiza-
tion studies. This approach to optimization can be
contrasted with on-line (direct insertion) strategies,
in which appeals to the experiment are embedded di-
rectly into the optimization process.

The o�-line surrogate approach5�8 to optimization
o�ers several advantages to on-line approaches. First,
by construction, surrogates are computationally in-
expensive and are thus easily incorporated into op-
timization procedures. Additionally, the low com-
putational requirements create a highly interactive
and exible design environment, which allows the de-
signer to easily pursue and examine multiple design
points. Second, the number of appeals to the experi-
ment or simulation is known a priori, which ensures
that the design can be accomplished without exhaust-
ing available resources. Third the surrogate approach
o�ers a natural means to incorporate data from pre-
vious runs and/or other sources.

As regards disadvantages, the primary drawback is
that in high dimensional design spaces, surrogate con-
struction is di�cult and design localization is poor. A
second limiting factor in the application of the surro-
gate approach to experimental tests is the need to
validate the surrogate at input points chosen ran-
domly in the design space. This capability, present in
the experiment central to this work, is not typical of
most experimental tests. Finally, surrogate-based op-
timization introduces a new source of error. The sur-
rogate validation strategy and error norms discussed
in this paper seek to quantify the discrepancy be-
tween the surrogate and the experiment by providing
estimates to the system predictability and optimality.

In this paper, we �rst describe the experimental
model and the testing methods used. Second, we
present the optimization problem that is central to
the work. Third, we briey describe the three steps
of the baseline surrogate framework (i.e., construc-
tion/validation, surrogate-based optimization, and a

posteriori error analysis), summarize the inputs to
the framework, and then present an overview of the
more sophisticated surrogate algorithms. Finally, we
present sample results obtained from the surrogate
framework for output maximization and multiple-
target designs, and compare the surrogate approach
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Figure 2: De�nition of gap and overhang.

with the direct insertion results reported previously.4

Experimental Testing Methods

An important practical problem encountered in wind-
tunnel testing of multielement airfoils is the need to
test a range of con�gurations to ensure that the op-
timum is selected. Unfortunately, this testing can
be prohibitively time consuming if one considers all
possible variables, such as ap position and deec-
tion, slat position and deection, overall angle of at-
tack, and Reynolds number. For example, a range of
ap locations and orientations relative to the main
element is typically tested. In a cryogenic or pres-
surized facility, model geometry changes necessitate
large delays in testing. These delays often result in
investigators choosing a sparse test matrix and an op-
timum that is based on only a few points. The ability
to move the ap under computer control provides a
unique opportunity to explore the entire range of use-
ful gap and overhang values (Fig. 2).

In this experiment, the ap actuators, tunnel ow
setting, and data acquisition were controlled by a per-
sonal computer running Lab View9 software. A pro-
gram was written to allow any number of ap posi-
tions (in x and y) to be sampled in any order. Wind
tunnel power was controlled such that at the begin-
ning of each test the tunnel was restarted to avoid
hysteresis e�ects.4 The experimental setup allowed
the user to start the program, which at each loca-
tion in turn automatically measured the free-stream
properties, sampled and recorded pressures around
the centerline of the model, and then calculated lift
coe�cients for the three-element airfoil. This process
required approximately 2 min. for each data point.

Two typical pressure distributions are shown in
Figure 3, where the ordinate is the pressure coe�-
cient Cp and the abscissa is distance from the leading
edge expressed as a percent of the nested chord. The
data for Figure 3(a) represents a point near the peak
Cl for this con�guration, and the plot in Figure 3(b)
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Figure 3: Experimental pressure data.

indicates full separation over the ap.

Test matrices were developed to survey ap po-
sitions, which ranged from approximately 0:8 { 3:5
percent (gap) and �0:4 { 3:4 percent (overhang) rel-
ative to the nested chord c. Two angles of attack
and two slat geometries were selected. An angle of
attack � of 8� was chosen as representative of an ap-
proach value. An � of 14� represented the limit of
good-quality two-dimensional ow for the ODU tun-
nel installation without tunnel wall boundary-layer
control. Two slat settings were chosen: a slat gap of
3:03 percent with an overhang of 2:46 percent and,
for a smaller gap setting, a slat gap of 2:17 percent
with a slat overhang of �1:46 percent

Positional accuracy was enhanced by requiring that
the ap move to a reference point above and be-
hind the desired evaluation points (xref > xeval,
yref > yeval ) and then back to the evaluation point.
This eliminated any e�ect of backlash in the mechan-
ical drive-train. Two simple tests provided an indi-
cation of the inherent collective error due to instru-
mentation and positioning. The �rst test involved
two separate evaluation points; the �rst point was

in a region in which the ow was known to be fully
attached to all elements, and the second point was
chosen in a region in which ow over the ap was
fully separated. The positioning program was used
to move the ap between a reference point and one
of the evaluation points. The tunnel was restarted
before every evaluation, and the test was repeated 30
times in each case. The standard deviation of Cl was
found to be 0:004 for the separated case (0.16 per-
cent) and 0.0118 for the attached case (.36 percent).
For the second test, the program automatically sam-
pled 29 points over the entire test region for two dif-
ferent trials. The error in Cl between the two runs
averaged 0.71 percent with a standard deviation of
0.75 percent. Although these tests are not exhaus-
tive, they do provide a benchmark for the Cl error.
The turbulence intensity in the ODU tunnel was

measured at less than 0.2 percent. Flow quality over
the model was monitored through 12 spanwise taps: 6
on the ap, and 6 on the main element. The ow was
considered to be two-dimensional if the magnitude of
the spanwise nonuniformity was less than 5 percent
of the total Cp variation over the entire model.

10 The
data presented are uncorrected for boundary e�ects
were taken at a Reynolds Re number of 1�106 based
on the nested chord.

Optimization Problem

We begin by introducing a vector p of M design
inputs that lie in the input (or \design") domain

 � IRM , an input-output function S(p) : 
 ! IR,
and an objective function 	(S(p);p; �) that charac-
terizes our design goals, where � is a vector (or possi-
bly scalar) design parameter. For the work presented
here, we set p = (x; y) (the x- and y-positions of the
ap) as the M = 2 inputs and restrict ourselves to
an input domain 
 of reasonable ap positions (de-
scribed in more detail in the results section). The out-
put of interest is the lift coe�cient, S(p) = Cl(x; y).
The objective function is 	(S(p);p; �) = jS(p) � �j
which has been referred to as the \discrimination"
problem.11

With the above terms de�ned, the minimizer p� =
(x�; y�) to the exact optimization problem is given by

p� = argmin
p2


jS(p) � �j : (1)

In this formulation, the goal is to �nd that (or \an")
input vector p� = (x�; y�) that achieves as closely as
possible the target lift coe�cient value �. If the tar-
get lift coe�cient � is set su�ciently small (large), the
formulation describes the output minimization (max-
imization) problem, assuming that S(p) is bounded
from below (above).
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In the on-line approach, the experiment is invoked
at every optimization step needed to solve Equation
(1). In the o�-line approach, a surrogate, eS(p) �
S(p), for the experiment is inserted into the opti-
mization problem. The minimizer, ep� = (ex�; ey�), for
the resulting, surrogate-based, discrimination prob-
lem is then given byep� = argmin

p2

j eS(p)� �j : (2)

Here, the optimization proceeds exactly as it would
for the on-line approach, but the lift coe�cient surro-
gate eS(p) is invoked instead of the experiment. The
surrogate problem that corresponds to Equation (1),
but with a general objective function 	(S(p);p; �),
has been reported by Ye�silyurt12 and Ye�silyurt and
Patera.8

Surrogate Framework

The advantages to pursuing a surrogate-based ap-
proach to optimization have already been described.
However, to use a surrogate-based approach with con-
�dence in a design setting, the issues of predictabil-
ity and optimality must be addressed.13 For pre-
dictability, the concern is with how the actual ex-
periment performs in the vicinity of the surrogate-
predicted minimizer ep�. If the surrogate-predicted
minimizer is to be of value, we must be able to bound
jS(p0) � S(ep�)j for p0 \near" ep�, and this bound
must be acceptably small. In the case of optimality,
the designer requires con�dence that the surrogate-
predicted optimizer ep� is near the \exact" optimizer,
that is, ep� � p�. Optimality requires stronger as-
sumptions in regard to the form of the objective
function (e.g., quasi-convexity) and is, therefore, dif-
�cult to determine in real applications. Optimal-
ity is, however, an important consideration and, al-
though not addressed further here, has been exam-
ined elsewhere.8;12

The distinguishing attribute of the Bayesian-
validated surrogate methodology is that a com-
plete and rigorous validation step is fully inte-
grated into the a posteriori error analysis of the
surrogate-predicted design(s). The approach de-
scribed here is related to probably-approximately-
correct approaches14;15 and information-based com-
plexity theory.16 The surrogate approach di�ers,
however, from the former in that it is truly non-
parametric (no assumption is made in regard to the
distribution of ep�) and from the latter in that it re-
quires no regularity estimates for the input-output
function.
The surrogate approach is broken into three steps.

In the �rst stage, surrogate construction/validation,

experimental results and/or prior information are

used to construct the approximation, eS(p) � S(p);
additional queries to the experiment are used to val-
idate the approximation. In the second step of the
process, surrogate-based optimization, solutions to
surrogate optimization problem of Equation (2) are
obtained. In the third and �nal step, a posteri-

ori error analysis, the results of the validation are
used to analyze the consequences of the surrogate-for-
simulation substitution. In the following subsections,
we describe the three steps of the baseline surrogate
framework, summarize the inputs to the framework,
and review the more sophisticated surrogate algo-
rithms.

Construction/Validation

We construct the lift coe�cient surrogate eS(p) =
A(X co) � S(p) using an approximation scheme,
A : (IRM ; IR)N

co

! L1(
) and a construction sam-
ple set of input-output pairs

X co = f(pi; Rpi); i = 1; : : : ; N cog ; (3)

where Rpi = Cl(xi; yi) is a realization of the experi-
mentally measured lift coe�cient for the input ap
position pi = (xi; yi), and N co is the number of
input-output pairs in the construction sample. Al-
though the general surrogate framework can handle
noisy outputs,17 the noise contribution is neglected in
the work presented in this paper. Information from
prior studies, outside sources, or asymptotic behav-
ior can also be incorporated into the approximation
process. It is important to note that the surrogate
framework makes no assumptions in regard to the
approximation technique and will accept, and assess,
any approximation A(X co). Also, no restriction is
placed on either N co or the distribution of the con-
struction sample.
To proceed with the description of the surrogate

validation, we �rst introduce the importance function
�(p). The importance function serves as a probability
density function for the selection of the validation
points: Z




�(p)dp = 1: (4)

The importance function also leads to the notion of a
�{measure associated with �(p): for any subdomain
D � 
,

��(D) =

Z
D

�(p)dp < 1: (5)

The �{measure of D is simply the weighted relative
M -volume of D.
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With the importance function �(p) de�ned, we
form the validation sample set

X va = f(Pi; RPi
); i = 1; : : : ; Nvag ; Pi � �(p) ; (6)

where the input ap positions Pi for the validation
sample set are drawn randomly according to the prob-
ability density function �(p). In Equation (6), the �
should be read as \is drawn according to the proba-
bility density function." The validation sample size
Nva is given by

Nva =
ln "2

ln(1� "1)
; (7)

and "1 and "2 are the two uncertainty parameters
described below. The model prediction error U is
computed from the validation sample set X va as

U = max
Pi2X

va
P

jRPi
� eS(Pi)j

ĝ(Pi)
; (8)

where X va
P denotes the input points of the validation

sample set and ĝ(p) is a strictly positive, error-scaling
function described in more detail later.
The result of the construction/validation process

is a probabilistic statement that describes the global
quality of the surrogate eS(p). The validation state-
ment can be compactly written as

Prf��(�) < "1g � 1� "2; (9)

where Prfeventg is the \probability of event" and
� � 
 is the uncharacterized region de�ned as

� =
n
p 2 
j jS(p)� eS(p)j > Uĝ(p)

o
: (10)

The �{measure of the uncharacterized region is
bounded by "1, and the signi�cance level of the non-
parametric statistical bound is "2. This result can be
readily proved12 with order statistics.18

For the simple case of ĝ(p) = 1, Equation (9) states
that, with probability greater than or equal to 1�"2,
the surrogate error is bounded by U over a region of

 of �{measure greater than 1 � "1. Although this
statement is suggestive, it gives neither an indication
as to the location of � nor the magnitude of the sur-
rogate error in �.

Surrogate-Based Optimization

For the optimization problem, we assume that we are
given Q target drag coe�cient values �q ; q 2 Q =
f1; : : : ; Qg. The goal of the optimization is to �nd
the surrogate-predicted ap positions that minimize
the objective function,

pq = ep�(�q) = argmin
p2


j eS(p)� �q j; 8q 2 Q: (11)

The Q targets could represent di�erent target lift co-
e�cients during the ap deployment schedule, or re-
ect the goals at di�erent ight conditions (e.g., take-
o� and landing).

A posteriori Error Analysis

To present the predictability results, we must �rst
introduce the notion of a prediction neighborhood.
We begin with a pseudometric �(a;b) de�ned for
all (a;b) 2 
�
, which determines a \distance" be-
tween two input points a and b. Then for any subdo-
mainD � 
 we de�ne the radius of D about a point p
as rD(p) = maxp02D�(p;p0). The prediction neigh-
borhood located at point p with a �{measure of z,
P(p; z), is that (or a) region D � 
 of �{measure
z that minimizes rD(p). We assume that p lies in-
side P(p; z) and that P(p; z1) � P(p; z2) for z1 < z2.
We can then show that, with probability greater than
1�"2, for all q 2 Q, regions �

q � P(pq; "1) of nonzero
measure exist such that for all p0 2 �q,

jS(p0)� eS(pq)j � e(pq): (12)

It now remains to bound e(pq) and make precise the
extent of �q.
Several bounds are possible on e(pq), which we de-

note the predictability gap. If we wish to bound the
predictability of each design individually, we �nd that

e(pq) � E(pq ; "1); 8q 2 Q; (13)

where, for p 2 
 and 0 < z < 1,

E(p; z) = Ug(p; z) + �(p; z); (14)

and
g(p; z) = max

p02P(p;z)
ĝ(p0); (15)

�(p; z) = max
p02P(p;z)

j eS(p0)� eS(p)j; (16)

and U is the model prediction error from the valida-
tion step, Equation (8).
In addition to the joint estimates to the bound on

e(pq), we can also bound the average error over the
Q target designs. In particular, if we assume that the
P(pq; "1) are mutually disjoint, it can be shown that

1

Q

QX
q=1

e(pq) � max
�2CQ

"
1

Q

QX
q=1

E(pq ; �q"1)

#
; (17)

where � = f�1; : : : ; �Qg, and

CL = f�0 2 IRLj0 � �0l � 1; l = 1; : : : ; L;

LX
l=1

�0l = 1g;

(18)
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is the set of convex L{tuples. The \nonparametric
average" is relevant to multiple-target designs and
represents the average, as opposed to the worst-case,
estimate of the predictability. Also, it is important
to note that this predictability bound is calculated
entirely in terms of the inexpensive surrogate, eS(p).
Finally, for a successful validation (i.e., ��(�) <

"1), we can bound the expectation of the size of �q

with respect to the validation sample joint probability
density. The resulting bound is, 8q 2 Q,

E

�
��(�

q)

"1
j ��(�) < "1

�
� 1 +

1

ln "2
+

"2

(1� "2)
:

(19)
The expression in Equation (19) bounds the average
�{measure of the region �q, with respect to "1, for
many validations.

Several advantages to bounding the errors only to
within a �nite uncertainty exist.19 First, we achieve a
sense of stability in that the estimates apply not only
to a single point, but to regions �q of nonzero mea-
sure, assuring that many input points pq exist that
satisfy the error estimates. Second, for the multiple-
target case the estimates become sharper because
there is only a single uncharacterized volume of mea-
sure "1. Equation (17) is the upper bound for the
distribution of the single "1-sized uncharacterized re-
gion among the Q designs. This analysis results in
a bound on the average error which is less than the
average of the individual predictability gap bounds
E(pq ; "1). Finally, because our predictability analy-
sis is not premised on any particular set of points,
the designer has exibility in the choice of the metric
�(a;b) (discussed further in the next section).

As mentioned in the introduction, the primary
drawback to the surrogate approach is the di�cult
construction and validation of the surrogate in high
dimensional input spaces. We can easily illustrate
this point if we consider the uniform importance func-
tion �(p) and a neighborhood of �{measure "1 in the
input domain 
 = [0; 1]M . The neighborhood will

span at least "
1=M
1 in one of the input directions which

rapidly approaches one asM !1. The loss of local-
ization as M ! 1 produces a corresponding loss in
predictability through �(p; "1) in Equation (14). In
certain instances, the surrogate approach can be ef-
fectively applied to problems with high dimensional
input spaces. This includes cases in which the in-
puts are highly correlated (e.g., for shape optimiza-
tion where highly oscillatory geometries are not likely
optimizers20) or specialized formulations apply (e.g.,
Pareto formulations21). In general however, the sur-
rogate approach is restricted to a moderate number
of design variables.

Summary of Surrogate Inputs

To summarize the surrogate framework description,
and to highlight the exibility of the environment, we
note that four inputs to the process are determined
by the user. These are listed below:

i. An importance function �(p) : 
! IR+.

ii. An error-scaling function ĝ(p) : 
! IR+.

iii. Two uncertainty parameters, "1 and "2, that sat-
isfy 0 < "1; "2 < 1.

iv. A pseudometric �(a;b).

Each input provides the designer with exibility, and
allows the designer's experience to impact and im-
prove the �nal surrogate-predicted designs. Although
poor choices for the inputs do not inuence the valid-
ity of the surrogate results, they greatly reduce the
sharpness of the results. A short description and ex-
planation of each input follows.
The importance function �(p) reects the designers

prejudices in regard to the regions of 
 that are more
likely to contain optimizers. In this context, �(p)
is essentially a \prior" on ep�. To serve this purpose,
�(p) is used as the probability density function in the
random selection of validation points in Equation (6).
A judicious choice of �(p) (one that is large in the re-
gions of the �nal designs and small elsewhere) can
signi�cantly increase the sharpness of the a posteri-

ori error bounds. The increased sharpness is a conse-
quence of much better physical localization (in terms
of input variable extent) of the prediction neighbor-
hood P(ep�; "1), which in turn reduces the surrogate
sensitivity contribution �(ep�; "1) to the error bound
in Equation (14).
The error-scaling function ĝ(p) can be used by the

designer to reduce the impact of localized surrogate
errors on the error bounds of the �nal design. Be-
cause the model prediction error U in Equation (8) is
global, a large value of ĝ(p) in regions for which the
approximation is poor will result in a reduced value
of the �rst term on the right-hand side of Equation
(14), provided that the �nal design does not lie in a
region where ĝ(p) is large.
The uncertainty parameters "1 and "2 are related

to the number of validation points through Equation
(7). This formula allows the precise budgeting of re-
sources and ensures that useful solutions can be ob-
tained. In e�ect, Equations (7){(10) describe what is
known in a continuous sense about a function based
on discrete sampling. Analysis of Equation (7) shows
that, asymptotically for small "1 and "2, Nva in-
creases linearly as "1 decreases and only logarithmi-
cally as "2 decreases. This relationship suggests that

6
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although we can easily (in terms of validation sample
size) increase our con�dence in the results (smaller
"2), re�ning the localization of our results (through
smaller "1) is much more di�cult. The localization
has a direct impact on the �nal error analysis through
�(p; "1) in Equation (14). The relative di�culty in
further re�ning the localization illustrates the need
to intelligently select �(p) and where appropriate,
�(a;b), both of which can have similar e�ects on
the localization error.
The �nal input to the surrogate approach is the

pseudometric �(a;b). Because �(a;b) can be chosen
post-validation, various metrics can be examined, and
the most appropriate selected. One possible trade-
o� is between design localization (in terms of input
variable extent) and predictability in terms of �(p; "1)
in Equation (14). An example of the extreme of this
trade-o� is the sensitivity minimizing metric

�(a;b) = j eS(a)� eS(b)j (20)

used for the single-point design study of the results
section. This metric gives the lowest possible �(p; "1).

Improved Algorithms

Several, more sophisticated surrogate algorithms
have been developed8;12;17;19�23 but are not de-
scribed here. First, a surrogate formulation for noisy
outputs has been developed.17 This formulation is
clearly appropriate in an experimental setting but
is not addressed here. Second, the multiple output
case can be e�ciently handled, and the formulation
can be applied to model selection. Third, elemen-
tal decompositions of 
 are possible that yield lo-
cal errors and allow for rigorous construction/cross-
validation schemes.24 Fourth, sequential and adap-
tive techniques have been developed that allow the
incremental deployment of resources to achieve tar-
get surrogate accuracies and that more tightly couple
the construction and validation phases of the baseline
algorithm. Finally, nested validation, in which a hi-
erarchy of models exists (e.g., an extremely expensive
\truth" model! a high-�delity model! low-�delity
model), has been addressed as well.

Results

To demonstrate the surrogate framework, we have
applied it to the experimental design of multielement
airfoils; speci�cally, we are interested in determin-
ing the optimal location for the trailing edge ap,
based on the lift coe�cient Cl in low-speed, high-lift
ight regimes. The M = 2 design inputs to the prob-
lem p = (x; y) are the x and y positions of the ap,

measured from the leading edge of the main airfoil
element and normalized by the main element chord
cmain = 14:95 in. The output of interest is Cl. In ad-
dition, several other con�guration and ow condition
parameters are �xed for the study. These parameters
are listed in Table 1 and are the Reynolds number Re,
the airfoil angle of attack �, the ap and slat deec-
tion angles �flap and �slat, respectively, and the gap
and overhang of the slat (expressed as a percentage
of the nested chord c = 18:0 in.).
In this section, we �rst describe the method used

for the surrogate construction and report the vali-
dation results. Second, we consider the single-point
design problem of output maximization. Third, we
pursue a multiple-target design study which demon-
strates the increased sharpness of the nonparametric
average error results. Finally, we report the results
of on-line optimization studies and compare these re-
sults with the o�-line, surrogate results.

Surrogate Construction/Validation

The construction sample set X co consists of 119
input-output pairs that are uniformly spaced on a
17 � 7 grid. The (x; y) ap positions for the con-
struction sample are plotted as circles in Figure 4.
The input domain is divided into three subdomains,

 = 
1 [ 
2 [ 
3, based on the ow conditions over
the ap. In the �rst subdomain 
1, the ow over
the ap is attached, with the exception of the ex-
treme aft positions in which some trailing-edge sepa-
ration may be present (and desirable). In this region,
a radial basis function25 serves as the approximation
method, which yields the surrogate eS1(p). In 
3, the
ow over the ap is fully separated, and a second ra-
dial basis function �t serves as the surrogate eS3(p).
In 
2, the resolution of the construction points is
not su�cient to determine the precise location of the
separation line. In this region, a simple linear tri-
angulation between eS1(p) and eS3(p) is used as the

surrogate, eS2(p). The error function, ĝ(p), is set to
unity in 
1 and 
3, and ĝ(p) = 50 in 
2, reect-
ing our uncertainty in regard to the location of the

Re 1; 000; 000
� 14�

�flap 30�

�slat �30�

gapslat 2:17%
overhangslat �1:46%

Table 1: Fixed design study parameters.
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Figure 4: Surrogate construction points and
the input (\design") domain.

separation line and, hence, our lack of con�dence in
the quality of the surrogate in this region of the in-
put space. A three-dimensional surface plot of the
surrogate is shown in Figure 5.

To validate the lift coe�cient surrogate, we must
select a set of random input points in 
 and run the
experiment at each of these points to form the valida-
tion sample set X va. The input points are con�ned
to the design space 
 described in the previous para-
graph and shown in Figure 4. Because the construc-
tion data were obtained simultaneously with the vali-
dation data, we had no expectation in regard to those
regions of the input space that would be of most inter-
est; thus, we used a uniform probability density func-
tion �(p) for the selection of the validation points.
We budgeted Nva = 45 points for validation and, us-
ing the relationship in Equation (7), set "1 = 0:03
and "2 = 0:25. If we had known the form of the sur-
rogate prior to taking the validation data, we could
have restricted the design space to a more feasible re-
gion and perhaps chosen an importance function �(p)
that would have concentrated validation points close
to potential designs. The scaled model prediction er-
ror computed according to Equation (8) is U = :0482.
Note that the maximum un-scaled error does in fact
occur in 
2 as we presupposed and has a value of
0:4824. If we had chosen ĝ(p) = 1 everywhere (in-
stead of as described above), our model prediction er-
ror would have been approximately one order of mag-
nitude larger, and would surely have overwhelmed the
results.

The surrogate just described and the related vali-
dation results serve for all of the designs discussed in
the remainder of this paper. One primary advantage
to using the surrogate approach is the fact that no
additional experimental data are required to bound
the errors of future designs that are pursued with
the surrogate. This characteristic, combined with

the negligible computational time required for each
surrogate evaluation, yields a highly exible design
environment that does not sacri�ce predictability.

Single-Point Design, Surrogate Maximization

For the �rst study, we pursue a single-point design
that maximizes the surrogate output. We set � su�-
ciently large in Equation (2) and minimize the result-
ing function. To accomplish the optimization, we use
the unconstrained quasi-Newton optimizer that is in-
cluded in the optimization toolbox of Matlab26. The
resulting surrogate-based optimizer is located at ep� =
(x�; y�) = (:997; :036), and the surrogate-predicted

lift coe�cient value at this point is eS(ep�) = 3:388.
The optimizer was started with an initial guess at
p0 = (:987; :033) and required 44 surrogate evalua-
tions to arrive at ep�. Because the surrogate is inex-
pensive to evaluate (and because we are working with
only two inputs and can visualize the results graphi-
cally), we can verify that we do achieve a surrogate-
predicted global maximum. This veri�cation would
be more di�cult in a purely on-line optimization set-
ting if we did no begin the optimizer at multiple start-
ing points p0 until we had su�cient con�dence that
a global maximum had been obtained.
Finally, we choose the sensitivity minimizing met-

ric �(a;b) � j eS(a) � eS(b)j in Equation (20) and
perform the a posteriori error analysis for a single-
point design. We construct the prediction neighbor-
hood P(ep�; "1) around ep� and �nd the surrogate sen-
sitivity parameter � = :0328. The optimal point ep�
and the associated prediction neighborhood P(ep�; "1)
are plotted in Figure 6. The resulting predictabil-
ity statement reads as follows: with con�dence level
greater than :75, a region � � P(ep�; "1) of nonzero
measure exists such that for all p0 2 �

jS(p0)� eS(ep�)j � e(ep�) ; (21)

where

e(ep�) � Ug(ep�; "1) + � = :0810 : (22)

We see that the predictability is relatively good with
respect to the surrogate-predicted maximum lift co-
e�cient, but quite poor with respect to the range of
lift coe�cients of interest (i.e., corresponding to ap
positions in 
1).

Multiple-Target Designs

For the second design study, we pursue a multiple-
target design. The motivation for such a study might
be an interest in examining the lift coe�cient at
more than one point of the deployment of the ap.
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Figure 5: Three{dimensional mesh plot of the lift coe�cient surrogate eS(p).
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Figure 6: The surrogate{predicted optimizer,ep�, and the associated prediction neighbor-
hood, P(ep�; "1).
Speci�cally, we want to obtain two target lift coef-
�cients: �1 = 3:31 and �2 = 3:25. Isocontours of
the surrogate indicate that a locus of points in 
 ex-
ists for each target that exactly satis�es the design
goals. We arbitrarily select one point for each design:
p1 = (x[1]; y[1]) = (:987; :033) and p2 = (x[2]; y[2]) =
(:979; :033). Around each optimizer, we construct a
prediction neighborhood chosen from the family of el-
lipses that have area equal to "1, are centered at pq,
and are oriented such that they minimize surrogate
sensitivity �(pq ; "1). The optimizers and associated
prediction neighborhoods are plotted in Figure 7.

For each of the designs (q = 1; 2), we can state
with con�dence level greater than :75 that a region
�q � P(pq ; "1) of nonzero measure exists such that
for all p0 2 �q

j eS(pq)� S(p0)j < e(pq); (23)

where

e(p1) = U + �(p1; "1) = :0482+ :0198 = :0680; (24)

and

e(p2) = U + �(p2; "1) = :0482+ :0201 = :0683: (25)

The above bounds jointly hold on each design. We
obtain a slightly sharper bound on the average error
of the two designs:

1

2
[e(p1) + e(p2)] � U + :0149 = :0631: (26)

The increased sharpness results from an analysis of
the worst-case distribution of the uncharacterized re-
gion between the two prediction neighborhoods. Be-
cause of the low sensitivity of the surrogate in each of
the prediction neighborhoods relative to model pre-
diction error U , the improvement is slight.

Comparison with Direct Insertion

To date, cases at identical ow conditions have not
been examined with both on-line (the method of
steepest ascent) and o�-line (the surrogate approach)
optimization methods. However, rough comparisons
of the resource requirements are of (guarded) use.
The on-line results have been reported in an ear-

lier paper by Landman and Britcher.4 In that e�ort,
they found the optimizer to be very robust (successful
in 6 out of 6 attempts) and insensitive to the initial
guess. For each case, they started the optimizer at
in initial ap position with a low Cl value and ob-
tained a �nal value within approximately 0:7 percent
of the maximum Cl value in approximately 20 opti-
mizer steps, requiring approximately 60 experimental
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Figure 7: The surrogate{predicted optimizers
and the associated prediction neighborhoods
(shaded).

data points (3 points per step). With the surrogate
method, we required 119 points to construct the sur-
rogate and an additional 45 for the validation, for a
total of 164 experimental data points. For the max-
imization problem, the a posteriori error bound was
2:4 percent of the maximum surrogate value.

While the surrogate approach seems to compare
unfavorably to the on-line method, several subtleties
lie in its favor. First, for designs chosen with the
validated surrogate in the future (e.g., the multiple-
target design examined in this paper), similar error
bounds still apply and do not require additional ex-
perimental data. In contrast, the on-line approach
would require additional experimental results. Sec-
ond, a total of 60 evaluations to obtain an optimal
point with the on-line method can be deceptive; to be
assured that the result is indeed optimal, additional
information is required. The additional information
for the study cited was in the form of contour plots
of a matrix of data. If visualization is not possible,
a number of optimizer restarts would be required to
be assured of an optimal. Third, in cases for which
the objective function is less forgiving, restarts of the
on-line optimizer would be unavoidable, which would
further increase the required experimental data to a
level surpassing that of the surrogate approach. Fi-
nally, the obvious di�culty in pursuing on-line opti-
mization is related to the ultimate application; if the
intent is to incorporate the data as a portion of a
larger optimization study, no alternative is available
other than to store the experimental data for later
use and extract with some form of an approximation.
If one is restricted to a purely experimental setting,
then the ability to quickly, and automatically, �nd
optimal operating points with the on-line optimizer
is highly advantageous.
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