
A Parallel Pre�x Algorithm

for

Almost Toeplitz Tridiagonal Systems�

Xian-He Sun Ronald D. Joslin

Dept. of Computer Science Mail Stop 170

Louisiana State University NASA Langley Research Center

Baton Rouge, LA 70803-4020 Hampton, VA 23681-0001

Abstract

A compact scheme is a discretization scheme that is advantageous in obtaining highly
accurate solutions. However, the resulting systems from compact schemes are tridiago-
nal systems that are di�cult to solve e�ciently on parallel computers. Considering the
almost symmetric Toeplitz structure, a parallel algorithm, simple parallel pre�x (SPP),
is proposed. The SPP algorithm requires less memory than the conventional LU de-
composition and is e�cient on parallel machines. It consists of a pre�x communication
pattern and AXPY operations. Both the computation and the communication can be
truncated without degrading the accuracy when the system is diagonally dominant. A
formal accuracy study has been conducted to provide a simple truncation formula. Ex-
perimental results have been measured on a MasPar MP-1 SIMD machine and on a Cray
2 vector machine. Experimental results show that the simple parallel pre�x algorithm
is a good algorithm for symmetric, almost symmetric Toeplitz tridiagonal systems and
for the compact scheme on high-performance computers.
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1 Introduction

Recent technological advances have made it possible to build computers that contain thousands of

processors and can obtain gigaops (109 oating-point operations per second) on real applications.

Emerging parallel computers are designed to solve large problems and achieve better accuracy

than could previously be obtained [22]. Parallel computers demand new models, new discretization

methods, and new algorithms to explore the potential of high-performance computing.

Conventionally, partial di�erential equations (PDEs) are discretized by �nite-di�erence or �nite-

element methods, and are solved by Gauss-Seidel, conjugate-gradient, or successive overrelaxation

(SOR) methods. A new discretization method, the compact �nite-di�erence scheme (or compact-

di�erence scheme, compact scheme) was proposed by Kreiss and Oliger [12] and was later im-

proved upon by Lele [15]. Compared with the traditional �nite-di�erence scheme, the compact

�nite-di�erence scheme achieves higher accuracy with smaller di�erence stencils and leads to more

accurate approximations because of the smaller coe�cients on the truncation error. With these ad-

vantages, the compact scheme has quickly gained popularity. In practice, the resulting discretized

system of the compact schemes are tridiagonal systems that can be solved e�ciently on sequential

machines. However, tridiagonal systems are di�cult to solve e�ciently on parallel computers. For

example, to study the physics of compressible homogeneous turbulence, the CDNS (compressible

direct simulation of Navier-Stokes) code, based on a sixth-order compact scheme and a third-order

time discretization, was implemented on the Intel Delta [7]. After carefully choosing an existing

tridiagonal solver, mapping the algorithm to the architecture, and overlapping communication with

computation, the communication overhead consumed about 30 percent of the total execution time.

Clearly, more e�cient algorithms are needed to explore the potential of compact schemes on parallel

computers.

In recent years, intensive research has been done to develop e�cient tridiagonal solvers on

parallel computers. A good survey can be found in references [17], [9], and [13]. Of the known

tridiagonal solvers, both the recursive-doubling reduction method (RCD) developed by Stone [19],

and the odd-even, or cyclic, reduction method (OER) developed by Hockney [10] are able to solve an

n-dimensional tridiagonal system in O(log(n)) time using n processors. These methods are designed

for �ne-grain computing. Substructured methods developed by Lawrie and Sameh [14], Wang [27],

and Sun, Zhang, and Ni [26] were designed for median-grain and coarse-grain computing (i.e., the

case of p < n or p << n, where p is the number of processors available). Lawrie and Sameh's

algorithm is designed for shared-memory machines; Wang's algorithm is designed for distributed-

memory machines; and Sun et al. proposed three di�erent algorithms, each of which may be a better

choice depending on the problem and the machine. For compact schemes, the tridiagonal systems

have a special structure that consists of diagonal dominance and are almost symmetric Toeplitz.

For this special structure, a parallel tridiagonal solver for �ne-grain computing, the simple parallel
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pre�x (SPP) algorithm, is proposed in this paper. It shows that compact schemes can be solved

e�ciently on parallel computers. Since the same special structure appears in many other scienti�c

applications, such as alternating direction implicit method [21], wavelet collocation method [2],

spline curve �tting [4], etc., the importance of the SPP algorithm is beyond compact schemes.

The SPP method is simple to implement. It requires only 2 � log(n) AXPY (vector plus scalar

times vector) operations and pre�x communication patterns. If the tridiagonal system is diagonally

dominant, then the AXPY operations can be truncated after a certain number of steps without

degrading the accuracy. A formal accuracy analysis is conducted and simple formulas are provided

to compute the number of AXPY operations necessary.

This paper is organized as follows. Section 2 will present the compact scheme and discretized

tridiagonal systems. Section 3 will introduce three versions of the simple parallel pre�x algorithm:

the SPP for tridiagonal systems with the given special structure, the SPP for solving symmetric

Toeplitz tridiagonal systems, and the SPP for solving almost symmetric Toeplitz systems. Accuracy

analysis will be conducted in Section 4. Section 5 will give experimental results on a 16K processing

elements (PEs) MasPar SIMD computer and on a Cray 2 supercomputer. Finally, Section 6 will

give the conclusions.

2 Compact Finite-Di�erence Schemes

With either conventional �nite-di�erence or �nite-element discretization methods, as the order of

the approximation increases, the required number of boundary and near-boundary relations and

the required number of mesh points per derivative stencil increases accordingly. To achieve higher

accuracy with less additional mesh points, the compact scheme [12] was introduced. As originally

suggested by Kreiss and Oliger [12], and later discussed for uid dynamics problems by Hirsh [8],

the �rst and second derivatives for compact di�erences may be approximated by

f 0n =

 
D0

1 + 1
6h

2
xD+D�

!
fn and f

00

n =

 
D+D�

1 + 1
12h

2
xD+D�

!
fn; (1)

where

D0fn =
1

2hx
(fn+1 � fn�1); D+fn =

1

hx
(fn+1 � fn);

D�fn =
1

hx
(fn � fn�1);

and hx is the mesh spacing, which is constant for simplicity. By multiplying (1) by the respective

denominators, relations for the derivatives may be found, which yield

1

6
f 0n�1 +

2

3
f 0n +

1

6
f 0n+1 =

1

2hx
(fn+1 � fn�1); (2)
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and
1

12
f 00n�1 +

5

6
f 00n +

1

12
f 00n+1 =

1

h2x
(fn+1 � 2fn + fn�1): (3)

These equations yield tridiagonal systems when the appropriate boundary conditions are applied.

To make an accurate comparison between the compact-di�erence (equations (2) and (3)) and the

standard central-di�erence schemes, Taylor-series expansions are employed. As Hirsh has shown,

the truncation error for the compact di�erences are

E(f 0n) = �
1

180
h4xf

(v) and E(f 00n) = �
1

240
h4xf

(vi):

Similar error analyses for the central di�erences yield

E(f 0n) = �
1

30
h4xf

(v) and E(f 00n) = �
1

90
h4xf

(vi):

Although both schemes are fourth-order accurate, the compact-di�erence scheme should lead to

more accurate approximations as a result of the smaller coe�cients on the truncation error. Similar

results hold for other higher order approximations.

As yet, no mention has been made about the boundary treatment for the compact scheme.

At the boundaries, Hirsh [8] experimented with a variety of boundary conditions, and Adams [1]

suggested a boundary relation that includes near-boundary derivatives in the formulation. The

boundary conditions used by both Hirsh and Adams retained the tridiagonal nature of the system.

Demonstrated some 30 years ago, the boundary-condition stencil can take the form

c0f
0
0 + f 01 = �f0 + �f1 + f2 + "f3; (4)

where c0 = 1, � = �2
hx
, � = ��, and  = " = 0 for a second-order boundary condition; c0 = 1

2 ,

� = �5
4hx

, � = 1
hx
,  = 1

4hx
, and " = 0 for a third-order boundary condition; and c0 =

1
3 , � = �17

18hx
,

� =  = 1
2hx

, and " = �1
18hx

for a fourth-order boundary condition. Additional high order stencils

have been described by Carpenter, Gottlieb, and Abarbanel [3]. To demonstrate the SPP algorithm,

for simplicity, explicit fourth-order one-sided �nite di�erences will be used for boundary conditions.

Many relevant uid dynamics applications can make use of high-order compact-di�erence oper-

ators to numerically solve the governing systems of equations. For example, Burger's equation, the

boundary-layer equations, and the driven cavity problem were solved by Hirsh [8] with compact-

di�erence operators. Further, Joslin et al. [11] used the compact-di�erence equations (2) and (3)

to numerically solve the fully nonlinear Navier-Stokes equations of uid dynamics.

@ui
@xi

= 0; (5)
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@ui
@t

+ uj
@ui
@xj

= �1
�

@p

@xi
+ �

@2ui
@xj@xj

; (6)

where ui = (u1; u2; u3) are the velocity components that correspond to the steamwise, normal, and

spanwise directions, xi = (x1; x2; x3); � is the kinematic viscosity, � is the density, and repeated

indices infer a summation over the index. To demonstrate how compact-di�erence operators could

be employed to solve the nonlinear PDE's (5) and (6), consider the model problem of the one-

dimensional heat-conduction equation:
@u

@t
= �

@2u

@x2
(7)

To solve this equation computationally, discretizations in time and space must be chosen. From

the Taylor-series expansions in time, one derives the discrete equation

un+1 = un + �4t@
2un

@x2
; (8)

where n corresponds to a time level. If the result at level un is known, then the solution un+1 can be

obtained if @2un=@x2 can be determined. The spatial derivative can be computed with the second-

derivative operator (3). Each time-step advancement requires a single compact-di�erence solve. In

the original nonlinear PDE systems (5) and (6), an explicit or semi-implicit time discretization will

lead to both �rst and second order derivative operators evaluated on previous time-step information.

On standard cartesian grids, the resulting discrete system requires di�erential operator solves which

are scalar matrices and are similar to the model problem (8). Because time-marching is necessary,

compact-di�erence solves are required at each time level. This necessitates a fast compact-di�erence

solver. By observation, equations (2) and (3) take the matrix form

2
6666666664

c0 1

1 c 1
. . .

. . .
. . .

1 c 1

1 c00

3
7777777775
x = d (9)

where x = ff 0; f 00g and c = f4; 10g correspond to the compact-di�erence parameters. The �rst and

last rows of equation (9) arise from boundary conditions.

With higher orders of approximation, the resulting matrix will di�er only in the boundary

conditions, however, the resulting tridiagonal systems can be written in the almost symmetric

Toeplitz form described in the next section, Eqn. (10), where A is given by (12).
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3 The Simple Parallel Pre�x Algorithm

We are interested in solving a tridiagonal linear system of equations

Ax = d: (10)

In this system of equations, A is either a symmetric Toeplitz tridiagonal system of order n

A =

2
666666664

c 1

1 c 1

� � �
� � 1

1 c

3
777777775
= [1; c; 1]; (11)

or an almost symmetric Toeplitz tridiagonal system of order n

A =

2
666666664

c0 1

1 c 1

� � �
� � 1

1 c00

3
777777775
; (12)

where x = (x1; � � � ; xn)T and d = (d1 � � � ; dn)T are n-dimensional vectors. We assume that matrix

A is diagonally dominant (i.e., jcj > 2). Although we assume that A, x, and d have real coe�cients,

the extension to the complex case is straightforward.

3.1 The Simple Pre�x Method

Before solving symmetric systems and almost symmetric Toeplitz systems with two boundary condi-

tions, the simple pre�x method is �rst introduced to solve a special kind of one-boundary-condition

systems typical of hyperbolic systems. The simple pre�x method. then, can be modi�ed for more

general situations. In this section, we study how to e�ciently solve the system

~A~x = d (13)
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on parallel computers, where

~A =

0
BBBBBB@

a 1

1 c
. . .

. . .
. . . 1

1 c

1
CCCCCCA
= a

0
BBBBBB@

1

b 1
. . .

. . .

b 1

1
CCCCCCA

0
BBBBBB@

1 b
. . .

. . .

. . . b

1

1
CCCCCCA
= a � [b; 1; 0] � [0; 1; b];

and a and b are the real solutions of: 8<
: a+ b = c

a � b = 1
(14)

For a given value of c, the relations in (14) de�ne the values of a and b. In general, the value

obtained for a would lead to an inconsistency with the coe�cients of the boundary stencils given

in equation (4). However, for the fourth-order compact-di�erence scheme described here, which

will require at least third-order accurate boundary conditions, the third and fourth order boundary

conditions shown in equation (4) can be combined to yield a one-parameter family of boundary

conditions,

af 00 + f 01 =
a

6hx
(�(15 + 2�)f0 + (12� 3�)f1 + (3 + 6�)f2 � �f3) ;

where a = 1
2(1��) . The value of a is used to determine �. Note, � = 0 and � = 1 correspond to the

original third and fourth order conditions of equation (4). Because a � b = 1 and jcj > 2, we may

further assume that jaj > 1 and jbj < 1. By equation (13),

~x = a�1 � [0; 1; b]�1[b; 1; 0]�1d = b � [0; 1; b]�1[b; 1; 0]�1d:

Let L = [�b; 0; 0]. Then

[b; 1; 0] = [0; 1; 0] � [�b; 0; 0] = I � L

and

[b; 1; 0]�1 = (I + L+ L2 + � � � + Ln�1) (15)

= (I + L2dlgne�1
)(I + L2dlgne�2

) � � � � � � (I + L4)(I + L2)(I + L): (16)

Note that n is the dimension of matrix ~A and that equations (15) and (16) can be veri�ed directly.
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The superscript of matrix L represents matrix multiplication

Li =

0
BBBBBBBBB@

0

0 0

(�b)i 0 0

0
. . .

. . .
. . .

0 0 (�b)i 0 0

1
CCCCCCCCCA
;

where the �rst nonzero element (�b)i is at position (i+ 1; 1). Similarly, let U = [0; 0;�b]. Then,

[0; 1; b] = [0; 1; 0] � [0; 0;�b] = I � U;

and

[0; 1; b]�1 = (I + U + U2 + � � � + Un�1)

= (I + U2dlgne�1
) � � � � � � (I + U2)(I + U);

where

U i =

0
BBBBBBBBB@

0 0 (�b)i 0 0
. . .

. . .
. . . 0

0 0 (�b)i
0 0

0

1
CCCCCCCCCA
:

The �rst nonzero element of U i is at position (1; i + 1). Thus, the solution of equation (13) is

~x = b � (I + U2dlgne�1
) � � � (I + U) � (I + L2dlgne�1

) � � � � � � (I + L)d: (17)

Let v = (v1; v2; � � � ; vn)T be an n-dimensional vector. Given the special structure of Li, we �nd

(I + Li)v = v + (�b)iv(i);

where

v(i) = (0; � � � 0; v1; � � � vn�i)
T

and v1 is the i+ 1 element of v(i). Similarly, given the special structure of U i, we �nd

(I + U i)v = v + (�b)iv(i);
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where

v(i) = (vi+1; � � � ; vn; 0 � � � 0)T :

Equation (17) shows that equation (13) can be solved with 2 � dlg ne AXPY operations. Because

jbj < 1, jjLijj ! 0 and jjU ijj ! 0 when n ! 1, the AXPY operation may be truncated without

inuencing the accuracy. Formulas will be given in Section 4 to compute the smallest truncation

integer �k. A sequential code for solving equation (17) within truncation error is given in �gure 1.

for i 0 to �k � 1 do

for j  2i to n do

dj = dj + (�b)2idj�2i
j  j + 1

i i+ 1

for i 0 to �k + 1 do

for j  1 to n� 2i do

dj = dj + (�b)2idj+2i

j  j + 1
i i+ 1

for j  1 to n do

~xj = b � dj
j  j + 1

Figure 1. The simple pre�x method.

If n processing elements are available and dj is stored in processor j, then the two for loops of

i in �gure 1 will lead to pre�x computations. Figure 2 shows the pre�x computation pattern that

correspond to the second for loop of i when n is equal to 8. The �rst for loop of i in �gure 1 leads

to a similar pre�x computation pattern, except that the communication is from right to left. Pre�x

(or recursive doubling) computation is a widely used computation model in scienti�c computing.

Any linear recursive relation can be computed by recursive doubling [23]. A recursive-doubling

algorithm exists for solving tridiagonal systems and involves matrix-matrix multiplications [6, 26].

Compared with the existing recursive-doubling algorithm, our method achieves a smaller operation

count by adopting the \vertical pre�x" computation, in which the matrix-vector multiplication in

equation (17) is conducted in a parallel pre�x fasion. Compared with the cyclic reduction method

[10], the proposed pre�x method has a simpler communication pattern. We call the pre�x method

given in �gure 1 the simple pre�x method. Figure 3 shows the communication pattern of the widely

used cyclic reduction method [10]. In a comparison of �gures 2 and 3, we can see that the pre�x
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method has a relatively simple communication pattern. Both of the SPP algorithm and the cyclic

reduction method need 2 � log(n) communication and computation steps, and both can truncate

these steps if the system is diagonally dominant. The SPP algorithm has a slightly lower bound

than that of the existing algorithm on the solution accuracy for the truncated algorithm, in the

case of diagonally dominant systems. On the other hand, the proposed pre�x method also has its

limitation. It is only feasible for solving almost Toeplitz tridiagonal systems.

Figure 2. Communication of pre�x computation.

Figure 3. Communication of cyclic reduction method.

Fast sine transform (FST), which can be implemented e�ciently on certain parallel machines,

can also be used to solve symmetric Toeplitz tridiagonal systems. The FST method has a similar
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communication pattern (see Fig. 4) and similar computation count1 as the SPP algorithm on

�ne-grain parallel computers. However, the communication and computation of the FST method

cannot be truncated even the linear system is diagonal dominant.

Figure 4. Communication of Fast sine transform method.

3.2 Modi�cation of Symmetric Toeplitz System

Our goal is to �nd the solution of equation (10). Modi�cation is needed to convert the solution of

equation (13) to the desired solution. The modi�cation will be di�erent for symmetric Toeplitz sys-

tems and for almost symmetric Toeplitz systems. For a given symmetric Toeplitz system, equation

(13) is modi�ed as

A = ~A+4A = ~A+ V ET ;

where

4A =

0
BBBBBBBBB@

b 0

0 0 0
. . .

. . .
. . .

0 0 0

0 0

1
CCCCCCCCCA
; (18)

1Here we assume that the n unit roots are readily available. Otherwise, the FST method will have a high

initialization time.
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and V = (b; 0; � � � ; 0)T and E = (1; 0; � � � ; 0)T are n-dimensional vectors. By the matrix-modi�cation

formula [18, 5, 26], equation (10) can be solved by

x = A�1d = ( ~A+ V ET )�1d

x = ~A�1d� ~A�1V (I +ET ~A�1V )�1ET ~A�1d

= ~x� ~A�1V (I +ET ~A�1V )�1~x1;

where ~x1 is the �rst element of vector ~x. If the calculation approach given in [21] is followed, we

have

(I +ET ~A�1V )�1 =
1

1 +
Pn

i=1 b
2i

and

~A�1V = (
nX

i=1

b2i;
n�1X
i=1

(�b)b2i;
n�2X
i=1

(�b)2b2i; � � � ; (�b)n+1)T :

Thus

~A�1V (I +ET ~A�1V )�1

= b2
 

1� b2n

1� b2(n+1)
; (�b)1� b2(n�1)

1� b2(n+1)
; � � � ; (�b)i 1� b2(n�i)

1� b2(n+1)
; � � � ; (�b)n�1 (1� b2)

1� b2(n+1)

!T

: (19)

The �nal solution is

x = ~x� ~x1z; (20)

where vector z is the right side of equation (19). Because jbj < 1, z can be truncated at some

integer k1 without a�ecting the accuracy (see section 4). Furthermore, when n is large, b2(n�i+1),

i = 0; 1; � � � ; k1, will be less than machine accuracy, and z reduces to

~z = ((�b)2; (�b)3; � � � ; (�b)k1+2; 0; � � � ; 0)T :

The program of modi�cation is given in Figure 5, and the algorithm for solving the symmetric

Toeplitz tridiagonal system is given in Figure 6.

for i 1 to k1 do

x = ~xi � ~x1~zi
i i+ 1

Figure 5. Modi�cation for symmetric Toeplitz systems.
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Step 1:

Use the simple pre�x method to �nd the solution to equation (13).

Step 2:

Use the modi�cation equation (20) to obtain the �nal solution.

Figure 6. Algorithm for solving symmetric Toeplitz system.

3.3 Modi�cation of Almost Symmetric Toeplitz System

A similar modi�cation can be given to solve almost symmetric Toeplitz systems. For almost sym-

metric Toeplitz systems, equation (13) is modi�ed such that

A = ~A+4 ~A = ~A+ ~V ~ET ;

where

4 ~A =

0
BBBBBBBBB@

c1

0
. . .

0

c2

1
CCCCCCCCCA
; (21)

c1 = c0 � a, c2 = c00 � c, and

~V =

0
@ 1 0 ::: 0

0 ::: 0 1

1
A

T

; ~E =

0
@ c1 0 ::: 0

0 ::: 0 c2

1
A

T

;

Following the matrix modi�cation formula [26, 21], the solution to equation (10) becomes

x = A�1d = ~A�1d� ~A�1 ~V (I + ~ET ~A�1 ~V )�1 ~ET ~A�1d

= ~x� ~A�1 ~V (I + ~ET ~A�1 ~V )�1
0
@ c1~x1

c2~xn

1
A ;

where ~x1 and ~xn are the �rst and last element of ~x, respectively. With this new modi�cation,
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~A�1 ~V =

0
@ Pn�1

i=0 b2i+1 Pn�2
i=0 �b2i+2 � � � Pn�j

i=0 (�1)j�1b2i+j � � � (�1)n�1bn
(�1)n�1bn (�1)n�2bn�1 � � � (�1)n�jbn�j+1 � � � b

1
A

T

=

0
@ y1

y2

1
A

T

= yT :

(I + ~ET ~A�1 ~V )�1 =

0
@ 1 + c1b

1�b2n

1�b2
(�1)nc1bn

(�1)nc2bn 1 + c2b

1
A
�1

:

The �nal solution is

x = ~x� b1y
1 � b2y

2; (22)

where b1; b2 are the solutions of the reduced 2� 2 system.

0
@ b1

b2

1
A = (I + ~ET ~A�1 ~V )�1

0
@ c1~x1

c2~xn

1
A : (23)

Similar to the symmetric case, when n is large, jbjn may be less than machine accuracy. In

these cases,

(I + ~ET ~A�1 ~V )�1 =

0
@ 1 + c1

a�b

1 + c2b

1
A
�1

;

and 0
@ b1

b2

1
A =

0
@ (a�b)c1

a�b+c1
~x1

c2
1+c2b

~xn

1
A :

Thus, when n is large, the �nal solution can be computed through a simpli�ed form,

x = ~x� c1~x1
a� b+ c1

~y1 � c2~xn
1 + c2b

~y2 (24)

where

0
@ ~y1

~y2

1
A

T

=

0
@ 1 �b � � � (�b)j�1 � � � (�b)n�1

(�1)n�1bn (�1)n�2bn�1 � � � (�1)n�jbn�j+1 � � � b

1
A

T

:

The modi�cation computation for the almost symmetric Toeplitz system is given in �gure 7.

The algorithm for solving the almost symmetric Toeplitz systems is similar to the algorithm for

solving the symmetric Toeplitz system (see �gure 6), except in step 2 the new modi�cation (�gure

7) is used to replace the symmetric Toeplitz system modi�cation. Notice that when c0 = a and

c00 = c, we have c1 = c2 = 0 and there is no modi�cation necessary. When c0 = c and c00 = c, we
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have c1 = b, c2 = 0, and �gure 7 is equivalent to �gure 5.

for i 1 to n do

x = ~xi � c1~x1
a�b+c1

~y1i � c2~xn
1+c2b

~y2i

i i+ 1

Figure 7. Modi�cation for almost symmetric Toeplitz system.

4 Accuracy Analysis

In a previous section, the claim was made that the AXPY operations and modi�cations can be

truncated without inuencing the accuracy. In this section, we will study the truncation accuracy

of symmetric Toeplitz systems. For simplicity, we truncate the �rst for loop and the second for

loop at the same step �k. The norm used in this section is the 1-norm.

4.1 Accuracy Study of the Simple Pre�x Method

Let ~x; y be exact solutions as

y = b � [b; 1; 0]�1d;
= (I + L+ L2 + � � �+ Ln�1)b � d;

~x = b � [0; 1; b]�1[b; 1; 0]�1 � d
= (I + U + U2 + �+ Un�1) � y:

Let y� and ~x0 be the solutions given by the �rst for loop and the second for loop, respectively,

as

y� = (I + L+ � � � + Lk�1) � b � d;

where k is a power of 2 (k = 2
�k), and

~x0 = (I + U + � � �+ Uk�1)y�:

Also, we de�ne ~x� as a hypothetical solution by

~x� = (I + U + � � � + Uk�1)y:

14



The di�erence between ~x and ~x� is

~x� ~x� = (I + U + � � �+ Un�1)y � (I + U + � � �+ Uk�1)y

= (Uk + Uk+1 + � � �+ Un�1)y

= (Uk + � � � + Un�1)(I � U)~x

= (Uk � Un)~x:

Thus, we �nd
jj~x� ~x�jj
jj~xjj � jjUkjj � jjI � Un�kjj � jbjk(1 + jbjn�k): (25)

Equation (25) gives the relative error between ~x and ~x�. Because the di�erence between ~x� and ~x0

is
~x� � ~x0 = (I + U + � � �+ Uk�1)y � (I + U + � � �+ Uk�1)y�

= (I + U + � � �+ Uk�1)(y � y�)

= (I + U + � � �+ Uk�1)(Lk + � � � + Ln�1) � b � d
= (I + U + � � �+ Uk�1)(Lk + � � � + Ln�1)(I � L)(I � U)~x

= (I + � � �+ Uk�1)(Lk � Ln)(I � U)~x;

the norm becomes
jj~x� � ~x0jj
jj~xjj � 1� jbjk

1� jbj � jbj
k � (1 + jbjn�k)(1 + jbj): (26)

If equations (25) and (26) are combined, then the relative error between the exact solution ~x and

the truncated solution ~x0 is

jj~x� ~x0jj
jj~xjj � jj~x� ~x�jj

jj~xjj +
jj~x� � ~x0jj
jj~xjj

� jbjk(1 + jbjn�k)(1 +
1� jbjk
1� jbj (1 + jbj))

� 2 � jbjk � (1 + jbjn�k):

4.2 Final Accuracy of Symmetric Toeplitz Systems

The truncation error of the simple pre�x method (Figure 1) will be carried into the modi�cation

step and will inuence the accuracy of the �nal solution. Let x be the solution of a symmetric

Toeplitz tridiagonal system (10) and x� be the corresponding solution that has been modi�ed with

the truncated solution,

x = ~x� ~x1z;

x� = ~x0 � ~x01z;
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where z = b2
�

1�b2n

1�b2(n+1) ; (�b)1�b2(n�1)

1�b2(n+1) ; � � � (�b)n�1 (1�b2)
1�b2(n+1)

�T
; see equation (19). The error gener-

ated by this truncation is

jjx� x�jj = jj(~x� ~x0) + (~x1 � ~x01)zjj
� jj~x� ~x0jj+ jj~x1 � ~x01jj � jjzjj
� jj~x� ~x0jj(1 + jjzjj):

The norm of vector z can be computed directly as

jjzjj =
b2

1� b2(n+1)

n�1X
i=0

j(b)i(1� b2(n�i))j

� b2

1� b2(n+1)
(
n�1X
i=0

jbji +
n�1X
i=0

jbj2n�i)

� b2

1� b2(n+1)
� (1 + jbj

n+1)(1 � jbjn)
(1� jbj)

� b2 � (1� jbjn)
(1� jbjn+1)(1� jbj) �

b2

1� jbj =
jbj
jaj � 1

:

Therefore,

jjx� x�jj � jj~x� ~x0jj(1 + jbj
jaj � 1

) (27)

= jj~x� ~x0jj( jcj � 1

jaj � 1
) (28)

= jj~x� ~x0jj(1� jbj+ jbj
2

1� jbj ) � jj~x� ~x0jj( 1

1� jbj ); (29)

and

jj~x� ~x�jj
jjxjj � jj~x� ~x0jj

jjxjj (
1� jbj+ jbj2

1� jbj ) (30)

=
jj~x� ~x0jj
jj~xjj � jj~xjjjjxjj (

1� jbj+ jbj2
1� jbj ): (31)

The only unknown in the right side of equation (31) is jj~xjj
jjxjj , where ~x is the solution of equation (13)

and x is the solution of equation (10). For a symmetric Toeplitz system,

A = ~A+4A;

16



where 4A is given by equation (18). If equations (10) and (13) are combined, we have

( ~A+4A)x = ~A~x;

(I + ~A�14A)x = ~x;

and
jj~xjj
jjxjj � jjI +

~A�14Ajj: (32)

After several calculations, we �nd

~A�1 = b

0
BBBBBBBB@

1 �b b2 � (�b)n�1
1 �b � (�b)n�2

� � �
1 �b

1

1
CCCCCCCCA

0
BBBBBBBB@

1

�b 1

b2 �b 1

� � � �
(�b)n�1 � � �b 1

1
CCCCCCCCA

and

~A�14A =

0
BBBBBBBB@

Pn
i=1 b

2i 0 � � 0Pn�1
i=1 (�b)b2i 0 � � 0Pn�2
i=1 (�b)2b2i 0 � � 0

� � � � �
(�b)n+1 0 � � 0

1
CCCCCCCCA
:

Therefore,

jj ~A�14Ajj �Pn�1
i=0

���(�b)i b2(1�b2(n�i))
1�b2

���
� b2

1�b2

Pn�1
i=0 jbi(1� b2(n�i))j

� b2

1�b2
� (1+jbjn+1)(1�jbjn)

(1�jbj)

and

jjI + ~A�14Ajj � 1 +
b2

(1� b2)
� (1 + jbj

n+1)(1� jbjn)
(1� jbj) :

The relative error of the solution to equation (10) is

jjx� x�jj
jjxjj � jj~x� ~x0jj

jj~xjj � jj~xjjjjxjj �
1

1� jbj (33)

� jbjk(1 + jbjn�k)

1� jbj

 
1 +

(1� jbjk)(1 + jbj)
1� jbj

! 
1 +

b2(1 + jbjn+1)(1� jbjn)
(1� b2)(1� jbj)

!
(34)

� jbjk(1 + jbjn�k)

1� jbj

 
1 +

(1� jbjk)(1 + jbj)
1� jbj

! 
1 +

b2

(1� b2)(1� jbj)

!
: (35)
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In addition to the truncation error carried from step 1, the truncated modi�cation will also generate

truncation error. If

x0 = ~x0 � ~x01~z;

(Figures 5 and (20)), then

x� x0 = ~x� ~x0 � (~x1 � ~x01)~z + ~x1(z � ~z):

The 1-norm is given by

jjx� x0jj � jj~x� ~x0jj+ jj~x� ~x0jj � jj~zjj+ jjxjj � jjz � ~zjj
� jj~x� ~x0jj(1 + jj~zjj) + jjxjj � jjz � ~zjj;

which leads to
jjx� x0jj
jjxjj � jj~x� ~x0jj

jj~xjj � jj~xjjjjxjj (1 + jj~zjj) + jjz � ~zjj: (36)

In equation (36),

jjz � ~zjj =
b2

1� b2(n+1)

n�1X
i=k1

jbi(1� b2(n�i))j

=
b2

1� b2(n+1)

n1�1X
j=0

jbi+k1(1� b)2(n1�j))j;

where j = i� k1, n1 = n� k1. Then

jjz � ~zjj � jbjk1+2

1� b2(n+1)
� (1 + jbj

n1+1)(1� jbjn1)
(1� jbj) :

� jbjk1+2

1� b2(n1+1)

(1 + jbjn1+1)(1� jbjn1)
(1� jbj)

� jbjk1+2

1� jbj :

Note that jj~zjj � jjzjj, so that we have the inequality

jjx� x0jj
jjxjj � jj~x� ~x0jj

jj~xjj
jj~xjj
jjxjj (1 + jjzjj) +

jbjk1+2

1� jbj (37)

� jbjk
1� jbj

 
1 +

(1� jbjk)(1 + jbj)
1� jbj

! 
1 +

b2

(1� b2)(1� jbj)

!
+
jbjk1+2

1� b
: (38)

The error introduced by the truncated modi�cation is insigni�cant if k1 > k � 2. In practice, we

can choose k1 = k and use the inequality (35) to compute the truncation number k.
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5 Experimental Results

In this section, the performance of the SPP algorithm on the MasPar parallel computer and on the

Cray vector computer will be presented.

5.1 Parallel Computing

The MasPar MP-1 is a distributed-memory massively parallel SIMD computer with a high-speed

two-dimensional toroidal mesh topology. A control unit (ACU) has a direct connection to all

the processing elements (PEs) and issues instructions at a 12.5 MHz clock rate. Each processing

element in the array is a 4-bit custom load and storage processor with a minimum of 16 kilobytes

of memory. Communication is relatively cheap on the MasPar. For example, on the MasPar M-1,

a double-precision multiplication function is ten times more expensive than sending the product to

an adjacent PE.

Table 5.1 gives the computation and communication count of the simple parallel pre�x (SPP)

algorithm based on the algorithm (see �gure 6) and the communication pattern (see �gure 2). Since

the SPP algorithm can be used for almost symmetric Toeplize systems, the best sequential algo-

rithm used is the conventional algorithm, Thomas algorithm [20], the LU decomposition method

for tridiagonal systems. For symmetric Toeplize systems, a fast method proposed by Malcolm and

Palmer [16] only requires 5n+ 2k � 3 arithmetic operations for solving a single system, where k is

a decay parameter depending on the diagonal dominancy of the system. The computation savings

of Malcolm and Palmer's method is in the LU decomposition. For systems with multiple right

hand sides, in which the factorization cost is not considered, the Malcolm and Palmer's method

and Thomas method have the same computation count. We assume that the AXPY operations are

truncated after �k operations; the modi�cation vector used is either equation (20) or (38), for sym-

metric and almost symmetric system, respectively. The b2
i

; i = 1; � � � ; �k, are computed sequentially,

or redundantly, on each PE. The modi�cation vector ~z or ~yi, i = 1; 2, will be computed concurrently

on di�erent PEs. We count a power-function computation as 8 oating-point operations. So, the

modi�cation phase costs 10 parallel operations (20 for almost symmetric systems) in total. The

calculation of b (equation (14)) is not considered. In the computing phase, 2 � log(k) = 2 � �k parallel,

one-to-one communications are required. We use � to represent the one-to-one communication.

On the MasPar, the one-to-one communication is achieved by using the router command. We use

� to represent the broadcast. On the MasPar, the broadcast is achieved by transferring the local

data to ACU and then distributing it to all PEs. One broadcast communication is needed in the

modi�cation phase. Because the tridiagonal systems that arise in the compact scheme have multi-

ple right sides, the computation and communication count for solving multiple right-side systems is

also listed in Table 1, where the computation of b2
i

and the modi�cation vector are not considered.

Note that n1 is the number of right sides.
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Table 1. Computation and communication count of the Simple Pre�x Algorithm
Best SPP

System sequential Computation Communication

Single system 8n-7 5 � �k + 10 2 � �k � �+ �

Multiple right sides (5n� 3) � n1 (4 � �k + 2) � n1 (2 � �k � �+ n1 � �)

Two sample matrices are chosen to illustrate the performance of the SPP algorithm and to verify

the theoretical error bounds given in the previous section. Both of the matrices are symmetric

Toeplitz matrices that arise in the compact schemes. One matrix is

A1 = [1; 3; 1] �4 ~A:

The other matrix is

A2 = [1; 10; 1] �4 ~A:

Equation (18) de�nes 4 ~A. The corresponding solution of equation (14) is b = 3�p5
2 and b = 7�p45

2

for A1 and A2, respectively. The error is measured relative to the LU solution. The accuracy

comparison for solving system A1 is given in �gure 8. In this implementation, no truncation

is implemented in the modi�cation phase, and the prediction formula used is equation (35). In

solving A2, the modi�cation is applied at the modi�cation stage with k2 = k, and the prediction

formula used is equation (38). The accuracy comparison for solving system A2 is given in �gure 9.

From �gures 8 and 9, we can see that the theoretical bound matches the measured results well.

Speedup is de�ned as sequential execution time over parallel execution time. Figure 10 shows

the speedup of the SPP algorithm over the conventional sequential algorithm for solving a single

system. The sequential algorithm, Thomas algorithm, is based on the LU decomposition, and is �ne-

tuned to take advantage of the almost symmetric Toeplitz structure. All computations are double

precision. Truncation numbers �k = 6 and �k = 4 are chosen to achieve double-precision (10�16) and

single-precision (10�7) accuracy, respectively. The order of matrix is the same as the number of

PEs available. Because of the high-speed communication, with n equal to 1K; 2K; 4K; 8K; and

16K (where K = 210), the execution time is not noticeably changed in parallel processing. The

sequential algorithm is implemented on a single PE. Because of memory limitations, only small

systems are solved by the sequential algorithm. The data used in �gure 10 is predicted based on

the small-size timing. Figure 11 shows the corresponding speedup of solving a system with 1024

right sides. The factorization of the matrix is not included in timing for solving the system with

multiple right sides. The speedup is slightly higher for solving multiple right-side systems.

Because the order of the matrix increases linearly with the number of PEs available, the speedups

given by �gures 10 and 11 are memory-bounded speedup [24]. From table 5.1, the problem size,
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Figure 8. Measured and predicted accuracy for solving matrix A1.
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Figure 9. Measured and predicted accuracy for solving matrix A2.
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Figure 10. Speedup over the best sequential algorithm on single system.
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Figure 11. Speedup over the best sequential algorithm on system with 1024 right sides.
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in terms of oating-point operations, is a linear function of the order of the matrix. The linear

memory-bounded speedups given by �gures 10 and 11 indicate a linear speed increase. In accordance

with the isospeed metric of scalability [25], the SPP algorithm is perfectly scalable on the SIMD

MasPar machine. The reader may refer to [25] for more information regarding scalability of parallel

algorithm-machine combinations.

5.2 Vector Computing

Vector computing is widely used at national laboratories, universities, and supercomputing cen-

ters for large-scale computing applications. For this reason, a CRAY-2S/4-128 at NASA Langley

Research Center was also used to test the SPP algorithm on a vector machine. The Cray-2 no-

tation \S" indicates that the memory is static rather than dynamic, and \4-128" indicates that

the machine has 4 processors and 128 million 64-bit words of central memory. Each CPU is a

register-to-register vector processor with a 4.1 nsec minor cycle clock that can generate 100-300

megaops. The four processors can be used for a single problem (multi-tasking) to achieve over 1

gigaop of performance.

The speed of a vector machine depends on the vector length, vector stride, and the computa-

tional richness of the loops. Because the vector register length is 64 and the CPU is extremely

fast in carrying out oating-point operations, once operands are in the registers, best performance

can be obtained with loop which have lengths that are multiples of 64, which are computationally

intensive, and which use unit stride (separation of memory between elements).

The chosen sample tridiagonal matrices are symmetric Toeplitz and correspond to the �rst and

second derivative compact-di�erence operators (2) and (3). The diagonals and necessary coe�cients

are:

A3 = [1; 4; 1] with a; b = 2�
p
3

A2 = [1; 10; 1] with a; b = 5� 2
p
6

For the �rst experiment on the Cray, single tridiagonal solves were made. The test problem

used here and in the rest of this section corresponds to f(x) = 3x3 � 2x + 1, which has smooth

exact derivatives f 0(x) = 9x2 � 2 and f 00(x) = 18x. Figure 12 shows the performance of the

SPP in terms of CPU seconds and the matrix order compared with the LU decomposition for

computing f 0 and f 00. In addition to the reduced memory requirements of SPP compared to LU,

the performance shown in �gure 12 clearly indicated that the SPP is faster on the vector machine

than the conventional LU solver; the bene�ts increase with the operator size. The signi�cant

di�erence between the SPP and LU timing can be explained in light of vector operations versus

scalar operations. The SPP approach can be vectorized over the direction of the solve; the LU

approach must use scalar operations. For the SPP approach, note that the diagonal dominance of
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the second-derivative operator f 00 leads to faster computations compared with the �rst-derivative

operator f 0. This time reduction results from the truncation of the SPP approach to obtain a

predetermined level of error (10�14), which is essentially machine precision. For the �rst-derivative

operator (A3), k = 32 = 26 and k1 = 24; for the second-derivative operator (A2), k = 16 = 24 and

k1 = 16, where k = 2
�k and k1 are the truncation numbers on the solving and modi�cation phases,

respectively.
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Figure 12. Timing of SPP and LU algorithms: single system.

Real applications which use compact-di�erence operators require many tridiagonal solves that

correspond to time-marching algorithms and involve many right sides corresponding to the mul-

tidimensionality of the application. In this second evaluation, with the same accuracy 10�14, the

performance of the SPP is compared with LU for multiple right sides. Shown in �gure 13 are

CPU times for the SPP and LU for various orders of the second-derivative compact operator A2.

(Similar results were obtained with the operator A3 but are not shown.) For applications that

use small operators (N < 96), the LU solver is more e�cient than SPP; for applications that use

large operators (N > 96), the SPP is much cheaper than the LU approach. This di�erence occurs

because the LU approach vectorizes the do loop associated with the number of right sides, and

the SPP vectorizes in the direction of the tridiagonal solve. With some creative programming, one

could potentially vectorize the entire SPP approach with a single array, while the LU approach can

vectorize over the right-side arrays.

In the �nal experiment, the ability of SPP to control truncation error is demonstrated. The

highest order of accuracy in the solution is based on the truncation error of the compact-di�erence
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Figure 13. Timing of SPP and LU algorithms: multiple right sides.

approaches in equations (2) and (3). As a result, to require machine-zero is overkill for the compact

solver and leads to unnecessary computational cost. By using the inequality (38), the choice of

truncation can be determined based on a desired error bound. Figure 14 shows the SPP results

of truncations �k = 3 and �k = 5, which correspond to errors 10�5 and 10�14, respectively. If the

accuracy of the SPP is relaxed, the computational cost decreases by a factor of 2.

6 Conclusion

A central goal of parallel processing is to achieve better, more accurate solutions. Because obtain-

ing more accurate solutions, in general, means adding more discretization points, larger systems

result and require greater computational power. The accuracy of a simulation solution is also

bounded by the discretization scheme used. A clear requirement for obtaining a more accurate

solution is to adopt discretization methods with high-order accuracy. Previously, a highly accurate

discretization scheme, the compact �nite-di�erence scheme [15], has been proposed. However, the

almost symmetric Toeplitz tridiagonal systems that arise from compact schemes are sequential in

nature and di�cult to solve e�ciently on parallel computers. In this paper, we have introduced

a parallel algorithm, the simple parallel pre�x (SPP) algorithm, for compact schemes and other

related schemes.

The SPP algorithm is designed for �ne-grain computing. With n processors, the SPP algorithm

solves an n-dimensional system with 2 log(n) + 1 AXPY operations. Two pre�x communications

are required in the solving phase and one broadcast communication is required in the modi�cation
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Figure 14. Timing of SPP with di�erent accuracies.

phase. In comparison with existing tridiagonal solvers [19, 10], the SPP algorithm is simple in

computing and simple in communication. It requires storage of only one log(n)-dimensional vector

for the computing phase and one n-dimensional vector for the modi�cation phase. When the

tridiagonal system is diagonally dominant, both the computing and the modi�cation phases can

be truncated without degrading the accuracy. Memory requirements will be further reduced when

truncation is applied. A detailed accuracy analysis has been conducted to �nd the appropriate

truncation number. Experimental results show that the SPP algorithm achieves a speedup greater

than 1000 over the best sequential algorithm on a 16K PEs MasPar M-1 SIMD parallel computer.

In addition to the good performance on the SIMD machines, the SPP algorithm also out performs

the best sequential algorithm on a vector machine (Cray 2), even on systems with multiple right

sides. Experimental and theoretical results show that the SPP algorithm is a good choice for

compact schemes and for the emerging high-performance parallel computers.

The SPP algorithm is designed for symmetric and almost symmetric Toeplitz tridiagonal sys-

tems. It is a good candidate for compact schemes, alternating direction implicit method, wavelet

collocation method, spline curve �tting, and many other scienti�c applications. It can be modi�ed

for di�erent boundary conditions and for cases where the number of processors p is less than the

dimension of the system. However, generalization of the algorithm for general tridiagonal systems

or for band systems is unlikely.

The work presented in this paper is a continuation of e�orts to design e�cient parallel solvers

for compact scheme. An e�cient solver, the PDD algorithm, for coarse- or median-grain computing
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has been proposed [21]. The PDD algorithm and the SPP algorithm can be combined on parallel

machines with vector processing units.
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