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Introduction

Throughout the literature authors have consistently discussed the
suspicion that regression results were less than satisfactory when
the independent variables were correlated.  Camm, Gulledge, and
Womer [1], and Womer and Marcotte [2] provide excellent applied
examples of these concerns.  Many authors have obtained partial
solutions for this problem as discussed by Womer and Marcotte [2]
and Wonnacott and Wonnacott [3], which result in generalized least
squares algorithms to solve restrictive cases.

This paper presents a simple but relatively general multivariate
method for obtaining linear least squares coefficients which are
free of the statistical distortion created by correlated independent
variables.

The Method

The multivariate linear least squares problem is stated as
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minimize ∑
k

 εk
2

with respect to a − and εk

subject to εk = yk - x
−

k
T a−  for k = 1 ... n,

where yk is the kth measurement of the dependent variable, a− is the

vector of m desired parameters ai, x
−

k is the kth measurement of the
vector

x− = 
 



 

x0

...
xm

of the independent variables xi with  x0k = 1,

x−k
T = ( )xk0 ... xkm

is the transpose of x −
k, and εk is the kth value of the error ε.

The problem is called linear since the model

ε = y - x−T a−

is linear in the parameter vector a−.  Setting x0k  = 1 provides a
constant term a0 in the model.

Note that the linear least squares problem exists as an optimization
problem independent of statistics.  It also has a statistical
interpretation when either the independent variables xk or the error
εk are considered as random variables.  In this context the error is
often called the residual.

Traditional econometric methods apply statistics to the analysis of
the residuals.  The foundations for this paper are based on a second
approach found in Fukunaga [4].  He assumes that the data
observations themselves are random variables.  The independent
variables in aerospace parametrics are typically observations of
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possible projects as measured by system requirement, system
performance, system design, or engineering process metrics.  Since
the finished project is only one of the many possible projects which
could have been completed [5,6], the data observations are
themselves drawn from the distributions of the measures of the
possible projects.  Thus Fukunaga's paradigm applies.

In classical linear least squares as described by Draper and Smith

[7] we let y− be the vector of the n dependent variable observations

yk, ε− be the vector of the n errors εk, and

X = 

 



 

x−1

T

.

x−n
T

be the vector of n independent variable observation transpose

vectors x−
k
T, the problem may be restated in vector form as

minimize ε−T ε− = (y− - X a−)T (y− - X a−).

Setting the partial derivatives with respect to a− to zero we have the
normal equations

XT X a~ = XT y−

where a~ is the estimate of a −.

Noting that XT X is a m by m matrix, which with at least m distinct
data points should have full rank, we assume that XTX may be
inverted to obtain

a~ = (XT X)−1 XT y−.

It is important to note that, when the xk are not considered random
variables, the components ai are linear functions of the random

dependent observations yk.  Under this interpretation, a~ provides a

statistically unbiased estimate of a− which has the minimum



4

variance of all linear unbiased estimators of a−, irrespective of
distribution properties of the errors.

However, when the x− are considered random variables, the
components ai are no longer linear functions of random variables.
Following Papoulis [8] we use the property of conditional probability
distributions that for independent random variables zi

E{g(z−) | z−} = g(z−)

to obtain

E{a~ | x−, ε−} = E{(XT X)−1 XT y− | x−, ε−} = (XT X)−1 XT y− = a−

since y− is a function of x− and ε−  Thus if the random variables x− and

the errors ε− are statistically independent a~  is still an unbiased

estimate of a −.

Unfortunately, statistical independence is a strong condition in
practice since many of the metrics used in cost analysis are highly
correlated.  Thus it is desired to obtain coefficients ai which are
free of the statistical distortion caused by performing a linear least
squares fit when there is correlation between the xi.

A general method follows through which the coefficients ai may be
found by first transforming the xi into a new set of random variables
zi, performing the least squares fit on the zi, and then transforming
the coefficients bi found by the least squares process to obtain the
desired coefficients ai.

Following Fukunaga [4] an uncorrelated and if normally distributed a
statistically independent set of random variables may be obtained
using the eigenvalues and eigenvectors of the covariance matrix

Hx = E{(x−-µx)(x
−-µx)

T}

= E{(xi-µxi
)(xj-µxj

)}
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= E 
 



 

(x1-µx1

)(x1-µx1
)  ...  (x1-µx1

)(xm-µxm
)

 ...   ...   ... 
(xm-µxm

)(x1-µx1
) ... (xm-µxm

)(xm-µxm
)

The eigenvectors of the covariance matrix Hx are directions of
statistically independent random variables and the eigenvalues are

the associated variances.  The eigenvectors ω− i are called principal
components in statistical jargon.  Figure 6.1 illustrates the
principal component axes formed in two dimensions by correlated

variables x1  and x2 .  The vector ω−1  indicates the direction of

maximum variance σ 1
2.  The vector ω−2  indicates the direction of

minimum variance σ2
2.  Since the principal component vectors have

unit magnitude by definition, the standard deviations may be
represented as standard deviation vectors with origin translated to
sample mean.  Thus

σ−1 = σ1ω−1 and

σ−2 = σ2ω−2.

µ x2

x 2

x 1
µ x1

ω2σ2

σ1 ω1

Figure 1
Principal Component Axes and Standard Deviation Vectors

When the distributions of the xi are normal, the standard deviation
vectors multiplied by the same constant ß form the axes of an
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ellipse representing a ß standard deviation equal probability
contour.

Let λ ii = σ i
2 be the ith eigenvalue of Hx and ω− i be the eigenvector of Hx

associated with λ ii.  Then there exists a diagonal matrix Λ  with the

λ ii as diagonal components, a matrix Ω  with columns ω− i, and the
transpose ΩT of Ω such that

Hx Ω = Ω Λ and Ω ΩT = ΩT Ω = I.

Thus Hx may be expressed as

Hx = Ω Λ Ω T.

Form new random variables zi by the rule

z− = A x−.

The covariance matrix Hz of the zi has the form

Hz = A Hx A
T.

The square root matrix M1/2   is defined by the property

M1/2 M1/2 = M

with inverse M−1/2.

Letting

A = Λ−1/2 ΩT

then

Hz = Λ−1/2 ΩT Hx Ω Λ−1/2 = Λ−1/2 ΩT Ω Λ ΩT Ω Λ−1/2 = I.

The transform Ω T rotates the axes to coincide with the direction of
the principal components.  The transform Λ−1/2 divides the new basis
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vector magnitudes σ i by σ i to provide unit basis vector magnitudes
coinciding exactly with the principal components.

Note that the standard deviation vectors of Figure 1 have equal
magnitude when the variances are equal.  Thus for a normal joint
uncorrelated distribution the equal probability contours form a
circle.  This transformation is called a whitening transform since
the transformed variables are representative of white (totally
uncorrelated normal) noise.

The random variables zi resulting from the transform are not only
uncorrelated since the covariance matrix is diagonal, but are also
statistically independent if the xi are normally distributed.

The problem to be solved now is

minimize ∑
k

 εk
2

with respect to b − and the εk

subject to εk = yk - z
−

k
T b−  for k = 1 ... n.

The composite transformation provides random variables

z− = Λ−1/2 ΩT  x−

and restates the problem as

minimize ∑
k

 εk
2

with respect to b − and the εk

subject to: yk - (Λ−1/2 ΩT x−k)
T b− = εk  for k = 1 ... n,

By setting

a− = Ω Λ−1/2 b−
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we have a solution in terms of the untransformed data.

Noting that

Z = X Ω Λ−1/2

we have

a~ = Ω Λ−1/2 b~

   =  Ω Λ−1/2 (ZT Z)−1 ZT y−

   =  Ω Λ−1/2 ((Λ−1/2 ΩT XT) (X Ω Λ−1/2))−1 (Λ−1/2 ΩT XT) y−

a~ =  Ω Λ−1/2 (Λ1/2  ΩT (XT X)−1 Ω Λ1/2) Λ−1/2 ΩT XT y−

   =  Ω (Λ−1/2 Λ1/2 ) ΩT (XT X)−1 Ω (Λ1/2  Λ−1/2) ΩT XT y−

   =  (Ω ΩT) (XT X)−1 (Ω ΩT) XT y−

   =  (XTX)−1 XT y−.

Thus the parameter a − is a solution to the original problem.

A simple computer algorithm for implementing this method is as
follows.

Input the data vectors x−k.  Calculate the covariance matrix Hx.  Find
the eigenvalues and eigenvectors of Hx.  Generate the transform
matrix

A = Λ−1/2 ΩT.

Transform each data vector x−k by A to obtain z−k.  Apply conventional

linear least squares to the data (yk, z−k) to obtain the coefficients bi.
Use
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a~ = AT b~ = Ω Λ−1/2 b~

to transform the coefficients bi  by AT  to obtain the desired
coefficients ai.

Note that a~  is an unbiased estimate of a− since a~  is a linear

transform of b ~ which is an unbiased estimate of b −.

Wilkinson [9] demonstrates many methods for finding eigenvalues
and eigenvectors.  An efficient algorithm based on Hildebrand [10]
coded in Pascal may be found in Flanders [11].  Multivariate least
squares algorithms in Pascal may be found in Miller [12] which may
be combined with the eigenvalues/eigenvector procedures to
generate your own custom software for implementing this technique.

Conclusion

Assuming that the independent variables xi are random variables,
which is representative of most parametric cost applications, the
linear least squares coefficients ai obtained by the method in this
paper are free of the statistical distortion from a linear least
squares fit over the correlated independent variables xi.

The result is that the analyst can use this technique without concern
for colinearity or correlation of the independent variables.

Although, only one transformation has been discussed in this paper,
there exists a class of transformations which will yield the same
freedom from statistical colinearity distortion.

Finally the analyst should also note that they may perform any least
squares technique they normally use, such as stepwise regression,

to obtain the bi with the data (yk, z−k).  The ai are still found from the
transformation

a− = Ω Λ−1/2 b−.



10

References

[ 1 ] Camm, J. D., Gulledge, T. R., and Womer, N. K., "Production Rate and
Contractor Behavior," The Journal of Cost Analysis, Volume 5, Number 1,
Summer 1987.

[ 2 ] Womer, N. K., and Marcotte, R. C. J., "Airframe Cost Estimation Using and
Error Components Model", The Journal of Cost Analysis, Volume 3, Spring
1983.

[ 3 ] Wonnacott, R. J., and Wonnacott, T. H., Econometrics, John Wiley and Sons,
New York NY, 1970.

[ 4 ] Fukunaga, K., Introduction to Statistical Pattern Recognition, Academic
Press, New York NY, 1972.

[ 5 ] Dean, E. B., Wood, D. A., Moore, A. A., and Bogart, E. H., "Cost Risk Analysis
Based on Perception of the Engineering Process," presented at the Eighth
Annual Conference of the International Society of Parametric Analysts,
Kansas City MO, May 12-16, 1986.

[ 6 ] Mazzini, R. A., "The Evolutionary Theory of Cost Management," Transactions
of the 30th Annual Meeting of the American Association of Cost Engineers,
Chicago IL, 1986.

[ 7 ] Draper, N. R., and Smith, H., Applied Regression Analysis, 2nd Ed., John
Wiley and Sons, New York NY, 1981.

[ 8 ] Papoulis, A., Probability, Random Variables, and Stochastic Processes,
McGraw-Hill Book Company, New York NY, 1965.

[ 9 ] Wilkinson, J. H., The Algebraic Eigenvalue Problem, Clarendon Press,
Oxford, England, 1965.

[ 1 0 ] Hildebrand, F. B., Introduction to Numerical Analysis, McGraw-Hill Book
Company, 1956.

[ 1 1 ] Flanders, H., Scientific Pascal, Reston Publishing Company, Reston VA,
1984.

[ 1 2 ] Miller, A. R., Turbo Pascal Programs for Scientists & Engineers, SYBEX®,
San Francisco CA, 1987.


