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I n t r o d u c t i o n :

In most cost estimating applications at the NASA Langley Research Center (LaRC), it is desirable
to present predicted cost as a range of possible costs  rather than a single predicted cost.  A cost
risk analysis generates a range of cost for a project and assigns a probability level to each cost
value in the range.  Constructing a cost risk curve requires a good estimate of the expected cost
of a project .  It must also include a good estimate of expected variance of the cost.

Many cost risk analyses are based upon an expert's knowledge of the cost of similar projects in
the past.  In a common scenario, a manager or engineer, asked to estimate the cost of a project in
his area of expertise, will gather historical cost data from a similar completed project.  The
cost of the completed project is adjusted using the perceived technical and economic differences
between the two projects.  This allows errors from at least three sources.  The historical cost
data may be in error by some unknown amount.  The managers' evaluation of the new project and
its similarity to the old project may be in error.  The factors used to adjust the cost of the old
project may not correctly reflect the differences.

Some risk analyses are based on untested hypotheses about the form of the statistical
distribution that underlies the distribution of possible cost.  The usual problem is not just to
come up with an estimate of the cost of a project, but to predict the  range of values into which
the cost may fall and with what level of confidence the prediction is made.  Risk analysis
techniques that assume the shape of the underlying cost distribution and derive the  risk curve
from a single estimate plus and minus some amount usually fail to take into account the actual
magnitude of the uncertainty in cost due to technical factors in the project itself.

This paper addresses a cost risk method that is based on parametric estimates of the technical
factors involved in the project being costed.  The engineering process parameters are elicited
from the engineer/expert on the project and are based on that expert's technical knowledge.
These are converted by a parametric cost model into a cost estimate.  The method discussed
makes no assumptions about the distribution underlying the distribution of possible costs, and
is not tied to the analysis of previous projects, except through the expert calibrations
performed by the parametric cost analyst.
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The Cost Risk Methodology:

A detailed approximation of the probability distribution underlying the cost of a project can be
obtained by viewing the engineering process as a tree structure with each node in the tree being
an engineering decision which adjusts the final project cost.  Each possible limb of the tree
culminates in a final project cost and can be described by a specific parameter vector.  A Monte
Carlo process over this complete parameter space will provide and excellent approximation of
the cost risk distribution.  However this requires a PRICE run or parametric cost estimate for
each parameter vector.  Few organizations including LaRC can afford this precision.  Thus at
LaRC an alternate approach was chosen.

A possible project cost of the above cost tree can be generated by adding one of either the low,
the perceived, or the high values  from each item on the WBS.  If the cost for each item is
selected  randomly, the sum will lie between the minimum and maximum possible project cost.
Repeating this process a number of times produces an approximation of the distribution of
possible project costs.

The critical step in this method is generating a low,  a perceived, and a high cost for each
element on the Work Breakdown Structure (WBS)  for the project.  Each WBS element  cost
estimate is generated by querying the persons most familiar with that WBS  item to obtain
qualified estimates of the best-case, worst-case and perceived value for each of the engineering
process input parameters for that item.  In the examples presented in this paper, the RCA PRICE
parametric cost model is used.  Any other parametric cost model can be used in exactly the same
way under this methodology.

For each element of the WBS, low, high and perceived values are elicited for each box of the
appropriate PRICE Input Data Worksheet (IDW).  For a hardware part or assembly for
instance, a PRICE H Basic Modes sheet would be used.  For example, the expert would be asked to
give a best engineering estimate of the weight of the item to be produced based on item design,
materials, manufacturing methods, and so on.  Estimates of the lowest likely weight and highest
likely weight based on the same engineering factors would be elicited.  Three values for each
factor on the IDW would be elicited in the same way.  These values are used to generate a low
IDW, high IDW, and a most likely IDW, each containing either the low, high or perceived value
from each box.  When these input sheets are run through PRICE-H, they produce three
parametric estimates for the cost of that item. The low and high estimates define an unbiased
estimate of the cost range for the item.   The third cost is a perceived estimate of the item cost
based on the expert's knowledge of the engineering factors involved in the production of the item.

A cumulative distribution plot of the cost sums represents the risk curve for project costs with
the median at the 50% point.  Low and high limits of cost are derived respectively by selecting
the sum of the low WBS item costs and the sum of the high WBS item costs.
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Example 1.

For the purposes of example, a data file was created by selecting ten data items from several
real data files.  Each data row contains a low,  a perceived, and a high estimate for a single WBS
element of a project.  The data, shown in Figure 1 becomes the input file for the program
"Cost_Risk" developed at LaRC.

       Low        Perceived         High
3 7 6 6 6 6
4 6 5 0 5 6

 4 0 4 4 6 9
 1 1 1 3 1 7

5 3 6 5 8 0
 5 4 6 6 7 3
 4 0 6 8 9 7

2 2 2 7 3 3
 1 5 1 7 1 9
 2 9 4 2 6 0

Figure 1.  Data Input Tableau.

When the program "Cost_Risk" is run one data item is selected at random from the three data
items on each line.  The data items are summed over the WBS set, generating a possible project
cost.  This process is repeated n times.  The interval between the smallest and the largest cost
sum is divided into k intervals or bins and each of the n sums is tallied in the appropriate bin.
The distribution of sums within bins is plotted in Figure 2.  This plot can be interpreted as the
cost density distribution for the project.

Figure 2.  Project Cost Probability or Risk Density Function.
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A cumulative plot of the cost sums across cost bins produces the Cost Risk curve shown in
Figure 3.  The values on the Y axis, here marked "Risk" is the probability that the project cost
will be at or below the coresponding cost on the X axis.  The cost corresponding to the .5 risk
point is an estimate of risk balance point for which there is a 50/50 chance that the project can
be completed for that cost.  Another value of importance is the estimate of the distribution mean
which gives the expected delivered cost.  If the distribution is normal the median will equal the
mean.  This has not been found to true based upon estimates generated at LaRC.  In fact, the
expected delivered cost has generally been found to be considerably greater than the mean.  This
would indicate that the choice of the 50/50 cost would generally result in a cost overun.
Further, the ratio between the two compares favorably with NASA cost overun experience.

Figure 3.  Project Cost Probability or Risk Distribution Function.

Example 2.

The second example demonstrates the reduction of the range of uncertainty in the Cost Risk
curve when the final cost of some items in a system are known.  The cost estimates shown in
Figure 4. are for the same hypothetical project shown in Figure 1. but in this case, the
delivered cost of three of the items (lines 1, 4, and 6) are known.  This is typical of the later
stages of a project where some some parts of the project are complete and the actual cost is
known.  It also is typical of proposals where the purchase cost for some items are known, such
as fixed price quotes, or projects for which GFE is supplied.
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       Low          Perceived         High
5 4 5 4 5 4

 4 6 5 0 5 6
4 0 4 4 6 9

 1 5 1 5 1 5
5 3 6 5 8 0
6 6 6 6 6 6

 4 0 6 8 9 7
 2 2 2 7 3 3
 1 5 1 7 1 9
 2 9 4 2 6 0

Figure 4.  Reduced Variance Data Input Tableau

When this data is run through the Cost_Risk program, using the same run parameters as in
Example 1, the cost risk density and cost  risk distribution curves shown in Figures  5 and 6 is
produced.  The shape of these curves remain about the same but the range of costs on the X Axis
is reduced.  This is due to the reduction of uncertainty in the project cost.

Figure 5.  Reduced Variance Project Cost Probability or Risk Density Function.
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Figure 6.  Reduced Variance Project Cost Probability or Risk Distribution Function.

Conc lus ion

The initial challenge which led to the development of this technique was to devise a method which
used as much engineering definition and as few statistical assumptions as possible in order to
increase the credibility of cost estimates in the engineering and management environment at
LaRC.  The second challenge was to be able to afford the method.  The method discussed has
succeeded in  both challenges.

In practice it has been easy to obtain the additional sets of high and low parameters.  Since these
parameters are derived from the expertise of the engineers and managers, they feel the input to
the parametric models is credible.  When they disagree with the resulting costs, we review  the
engineering process parameters with them and change the input parameter set only if refined
engineering definition justifies a change.  Expectedly, we often disagree with the managers and
engineers on cost, but we do agree with them that we have described the engineering process
expectations as best we can.  This provides a substantial degree of credibility.

In practice the method takes only a small additional amount of time and two additional
parametric model runs.  The additional credibility is well worth the cost.
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The resulting cost analysis benefits greatly from the additional perspective of variance.  Cost
estimates at LaRC are performed at the very early stages of a project where one would expect
the estimating variance to be greatest.  Variances between the high and low cost estimates
experienced range from a factor of 2  to a  factor of 10.  These factors seem to be quite
consistent with the degree of engineering definition available.  The variances also are
considerably greater than the variances shown,  for example, in the output of the PRICE
program.  PRICE variances correspond to the variance of cost based upon the data to which the
PRICE equations are fit, not to the variance of the engineering process for a particular project.
The relatively large ratio between the variances obtained with this method and the PRICE
variances is consistent with expectations.  As explained to a manager recently, this indicates
that the estimating precision of the PRICE model is far better than our ability to provide
engineering definition at early stages.  That adds another measure of credibility to the estimate.

The only actual data point to date resulted in an expected delivered cost which was considerably
greater than the 50/50 cost projection,  but in the end was approximately ten percent less than
actual.  Incidentally, this project estimate had a very wide variance because of new processes
being used.  Both engineering process definition and cost estimating calibration uncertainties
were included in input data.


