Workshop on Software Defined Multi-function Multi-mode Avionics

James Budinger, NASA GRC
Marty Pozesky, MTP Associates
Co-Session Chairs

Software Defined Avionics Issues

- Market-driven
- Equipage
- Implementation
- Cost
- Certification

Market-driven Issues

- What are the most desirable/marketable combinations of legacy and/or emerging CNS functions and/or modes?
 - For those combinations, what are the application(s), flight domains and aircraft categories?
 - Multi-mode avionics more marketable than multi-function avionics (easier certification; esp for integration of communication modes and integration of navigation modes; market: international air traffic, international business jet operators)
 - Desirability of software reconfiguration as opposed to multiple hardware implementations
 - Easier international standardization
 - How do we capture the best of open architectures vs proprietary innovations?
 - The market size just isn't that large; hard to obtain enough market share when market isn't large to begin with.
 - Other
 - Potential for reduction of legacy ground infrastructure once a certain percentage of the (military) fleet is equipped (UHF, TACAN)
 - Potential for implementation of SDA in ground infrastructure for future-proofing (next generation air-ground com) and cost reduction

Market-driven Issues - Cont'd

- What are the most desirable/marketable combinations of legacy and/or emerging CNS functions and/or modes?
 - For those combinations, what are the application(s), flight domains and aircraft categories?
 - Synergistic integration and fusion of existing and emerging functions may enable higher total system performance reliability and therefore operation in more desirable airspace and airports, preferential routing, etc.
 - May require policy & procedure changes
 - Self-separation at high altitudes
 - Reduced spacing for oceanic routes
 - Human machine interface (managing/reducing workload, novel or more intuitive ways of presenting information)
 - Other benefits:
 - Reduced training needs
 - Reduced costs of equipage, maintenance, spare parts
 - Added capabilities for greater reach into other markets (increase revenues)
 - Reduced downtime for re-equipage via software download (raises significant certification issues)

Market-driven Issues - Cont'd

- What are the most desirable/marketable combinations of legacy and/or emerging CNS functions and/or modes?
 - For those combinations, what are the application(s), flight domains and aircraft categories?
 - Drawbacks
 - Complexity issues
 - Human machine interface (too complex??)

Equipage Issues

- What equipage/sparing strategies are enabled by software defined avionics to reduce cost?
 - For broad suite of integrated functions (e.g. VHF/UHF/L-Band)
 - For narrow suite of functions (e.g. VHF/UHF and L-band)
 - Box level reconfiguration of functionality as opposed to board level replacements
 - Issues of open (built to a standard performance and interface specification) vs proprietary architecture
 - The level of functional integration may be offset by single point of failure
 - Graceful degradation to minimal functionality
 - Certification of the suite of components at the functional level is responsibility of avionics integrator
 - Reduced box count, reduced physical size of box, reduced spare parts (helps with cost, reliability, maintainability)
 - Need to address safety and robustness aspects of reduced equipage (A failsafe capability? A safe restart mode? Graceful degradation to minimum capabilities for safe flight?)

Implementation Issues

- What implementation considerations are most critical for success?
 - E.g. open SDA architecture; integration level of hardware and software; performance degradation from integration; security concerns
 - Consider a tailored subset of the SCA as a viable alternative for civil aviation (as opposed to JTRS subset of SCA)
 - Partitioning DO178b software certification specifications
 - Aspects of certifying multiple modes in the same function may be different from certifying multiple functions in an SDA
 - Antennae issues (location, interference) caused by multi-function avionics
 - Need to consider the human-machine interface
 - Should be intuitive
 - Opportunity to take advantage of background/experience of rising generation of users
 - Should leverage the fusion of ...
 - Minimize downtime for MRO (maintenance, repair, operations)/Upgrades
 - Sparing philosophy and equipage issues may force novel implementation backups

Implementation Issues - Cont'd

- What implementation considerations are most critical for success?
 - E.g. open SDA architecture; integration level of hardware and software; performance degradation from integration; security concerns
 - Security & Safety: multiple channels for varying security levels (e.g. red/black portions of JTRS architecture)
 - Must still maintain safety and security standards of today
 - Authentication, verification and validation aspects of SDA

Cost Issues

- How will initial cost, annual operating costs and life cycle cost of SDA have to compare with that of conventional avionics to be attractive in the next 5 years?
 - What are the best ways to improve those cost perceptions?
 - Pricing strategies of initial investment
 - Who should pay for initial equipage costs?
 - Benefit to FAA and NAS?
 - Benefit to user of NAS?
 - Leveraged development of ground and airborne components that perform the same function (hardware and software components)
 - International operability to increase market size
 - International harmonization of standards to increase market size
 - RTCA & EUROCAE

Certification Issues

- What are specific concerns facing certification of SDA?
 - What recommendations will reduce cost and time of certification and life-cycle recertification of SDA?
 - The nature of the software architecture for the SDA greatly affects its certifiability
 - Certify at the performance level as opposed to the internal implementation level
 - Aircraft location at time of upgrade (reconfigurations on ground or in flight would have different security, safety and certification issues to consider)
 - Is the FAA certification methodology equipped to address certification of SDA? Does it impress another policy decision by the FAA concerning how certification is accomplished?
 - Can software development tools aid the certification process with certifiable process steps/tools?
 - Lessons learned from prior experience from SDA:
 - Avidyne avionics radio for NEXCOM
 - Honeywell EPIC radio
 - Scalability, flexibility, adaptability

Attendees

Attendee	Company/Organization	Contact Info/E-Mail
J. Rardin	DCS Corp/NAVAIR-PMA209	240-237-4987 JRARDIN@DCSCORP.COM
R.Raghavan	Analex	Rajesh.Raghavan@grc.nasa.g ov
Wayne Buhrman	JHU/APL	240-228-7195 wayne.burham@jhuapl.edu
Herman A. Rediess	FAA JPDO	herm.rediess@faa.gov
Carlo Mamone Capria	CIRA (Italian Aerospace Research Center)	capria@cira.it 39-0823-62.33.15 (ph) 39-0823-62.33.35 (fax)
Gary Skillicorn	Optimus Corp	gary.skillcorn@optimuscorp.c om 202-484-2491 ext 108
Minh Nguyen	Mitre	mnguyen@mitre.org
Bob Jacobsen	NASA	Robert.A.Jacobsen@nasa.gov

Attendees - Cont'd

Attendee	Company/Organization	Contact Info/E-Mail
Dave Somers	CNS	David.Somers@cnsw.com
Chuck LaBerge	Honeywell CST/COE	Chuck.laberge@honeywell.co m
Marty Pozesky	MTPA	Mpozesky@mtpassociates.co m
James Budinger	NASA	James.m.budinger@nasa.gov 216-433-3496
Ann Tedford	FAA/ATO	Ann.tedford@faa.gov 202-385-7250