
The Infeasibility of Quantifying the Reliability of Life-Critical
Real-Time Software

Ricky W. Butler
George B. Finelli

NASA Langley Research Center
Mail Stop 130

Hampton, VA 23665–5225
(804)864-6198

Arpanet address: rwb@air12.larc.nasa.gov

Abstract

This paper affirms that the quantification of life-critical software reliability is infeasible
using statistical methods whether applied to standard software or fault-tolerant software. The
classical methods of estimating reliability are shown to lead to exhorbitant amounts of testing
when applied to life-critical software. Reliability growth models are examined and also shown
to be incapable of overcoming the need for excessive amounts of testing. The key assumption
of software fault tolerance—separately programmed versions fail independently—is shown to
be problematic. This assumption cannot be justified by experimentation in the ultrareliability
region and subjective arguments in its favor are not sufficiently strong to justify it as an axiom.
Also, the implications of the recent multiversion software experiments support this affirmation.

Index Terms—Life-Critical, Validation, Software Reliability, Design Error, Ultrareliability, Soft-
ware Fault-Tolerance

1 Introduction

The potential of enhanced flexibility and functionality has led to an ever increasing use of digital
computer systems in control applications. At first, the digital systems were designed to perform
the same functions as their analog counterparts. However, the availability of enormous computing
power at a low cost has led to expanded use of digital computers in current applications and
their introduction into many new applications. Thus, larger and more complex systems are being
designed. The result has been, as promised, increased performance at a minimal hardware cost;
however, it has also resulted in software systems which contain more errors. Sometimes, the impact
of a software bug is nothing more than an inconvenience. At other times a software bug leads to
costly downtime. But what will be the impact of design flaws in software systems used in life-critical
applications such as industrial-plant control, aircraft control, nuclear-reactor control, or nuclear-
warhead arming? What will be the price of software failure as digital computers are applied more
and more frequently to these and other life-critical functions? Already, the symptoms of using
insufficiently reliable software for life-critical applications are appearing [1, 2, 3].

For many years, much research has focused on the quantification of software reliability. Research
efforts started with reliability growth models in the early 1970’s. In recent years, an emphasis on
developing methods which enable reliability quantification of software used for life-critical functions
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has emerged. The common approach which is offered is the combination of software fault-tolerance
and statistical models.

In this paper, we will investigate the software reliability problem from two perspectives. We
will first explore the problems which arise when you test software as a black box, i.e. subject it to
inputs and check the outputs without examination of internal structure. Then, we will examine the
problems which arise when software is not treated as a black box, i.e. some internal structure is
modeled. In either case, we argue that the associated problems are intractable—i.e., they inevitably
lead to a need for testing beyond what is practical.

2 Software Reliability

For life-critical applications, the validation process must establish that system reliability is ex-
tremely high. Historically, this ultrahigh reliability requirement has been translated into a prob-
ability of failure on the order of 10−7 to 10−9 for 1 to 10 hour missions. Unfortunately, such
probabilities create enormous problems for validation. For convenience, we will use the following
terminology:

name failure rate (per hour)
ultrareliability < 10−7

moderate reliability 10−3 to 10−7

low reliability > 10−3

Software does not physically fail as hardware does. Physical failures (as opposed to hardware design
flaws) occur when hardware wears out, breaks, or is adversely affected by environmental phenomena
such as electromagnetic fields or alpha particles. Software is not subject to these problems. Software
faults are present at the beginning of and throughout a system’s lifetime. To such an extent, software
reliability is meaningless—software is either correct or incorrect with respect to its specification.
Nevertheless, software systems are embedded in stochastic environments. These environments
subject the software program to a sequence of inputs over time. For each input, the program
produces either a correct or an incorrect answer. Thus, in a systems context, the software system
produces errors in a stochastic manner; the sequence of errors behaves like a stochastic point
process.

In this paper, the inherent difficulty of accurately modeling software reliability will be explored.
To facilitate the discussion, we will construct a simple model of the software failure process. The
driver of the failure process is the external system that supplies inputs to the program. As a
function of its inputs and internal state, the program produces an output. If the software were
perfect, the internal state would be correct and the outputs produced would be correct. However,
if there is a design flaw in the program, it can manifest itself either by production of an erroneous
output or by corruption of the internal state (which may affect subsequent outputs).

In a real-time system, the software is periodically scheduled, i.e. the same program is repeatedly
executed in response to inputs. It is not unusual to find “iteration rates” of 10 to 100 cycles per
second. If the probability of software failure per input is constant, say p, we have a binomial
process. The number of failures Sn after n inputs is given by the binomial distribution:

P (Sn = k) =

(
n
k

)
pk(1− p)n−k
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We wish to compute the probability of system failure for n inputs. System failure occurs for all
Sn > 0. Thus,

Psys(n) = P (Sn > 0) = 1− P (Sn = 0) = 1− (1− p)n

This can be converted to a function of time with the transformation n = Kt where K = the number
of inputs per unit time. The system failure probability at time t, Psys(t), is thus:

Psys(t) = 1− (1− p)Kt (1)

Of course, this calculation assumes that the probability of failure per input is constant over time.1

This binomial process can be accurately approximated by an exponential distribution since p is
small and n is large:

Psys(t) = 1− e−Ktp (2)

This is easily derived using the Poisson approximation to the binomial. The discrete binomial
process can thus be accurately modeled by a continuous exponential process. In the following
discussion, we will frequently use the exponential process rather than the binomial process to
simplify the discussion.

3 Analyzing Software as a Black Box

The traditional method of validating reliability is life testing. In life testing, a set of test specimens
are operated under actual operating conditions for a predetermined amount of time. Over this
period, failure times are recorded and subsequently used in reliability computation. The internal
structure of the test specimens is not examined. The only observable is whether a specimen has
failed or not.

For systems that are designed to attain a probability of failure on the order of 10−7 to 10−9 for 1
hour missions or longer, life testing is prohibitively impractical. This can be shown by an illustrative
example. For simplicity, we will assume that the time to failure distribution is exponential.2 Using
standard statistical methods [4], the time on test can be estimated for a specified system reliability.
There are two basic approaches: (1) testing with replacement and (2) testing without replacement.
In either case, one places n items on test. The test is finished when r failures have been observed.
In the first case, when a device fails a new device is put on test in its place. In the second case, a
failed device is not replaced. The tester chooses values of n and r to obtain the desired levels of the
α and β errors (i.e., the probability of rejecting a good system and the probability of accepting a
bad system respectively.) In general, the larger r and n are, the smaller the statistical estimation
errors are. The expected time on test can be calculated as a function of r and n. The expected
time on test, Dt, for the replacement case is:

Dt = µo
r

n
(3)

1If the probability of failure per input were not constant, then the reliability analysis problem is even harder.
One would have to estimate p(t) rather than just p. A time-variant system would require even more testing than a
time-invariant one, since the rate must be determined as a function of mission time. The system would have to be
placed in a random state corresponding to a specific mission time and subjected to random inputs. This would have
to be done for each time point of interest within the mission time. Thus, if the reliability analysis is intractable for
systems with constant p, it is unrealistic to expect it to be tractable for systems with non-constant p(t).

2In the previous section the exponential process was shown to be an accurate approximation to the discrete
binomial software failure process.
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no. of replicates (n) Expected Test Duration Dt

1 1010 hours = 1141550 years
10 109 hours = 114155 years
100 108 hours = 11415 years

10000 106 hours = 114 years

Table 1: Expected Test Duration For r=1

where µo is the mean failure time of the test specimen [4]. The expected time on test for the
non-replacement case is:

Dt = µo

r∑
j=1

1
n− j + 1

(4)

Even without specifying an α or β error, a good indication of the testing time can be determined.
Clearly, the number of observed failures r must be greater than 0 and the total number of test
specimens n must be greater than or equal to r. For example, suppose the system has a probability
of failure of 10−9 for a 10 hour mission. Then the mean time to failure of the system (assuming
exponentially distributed) µo is:

µo =
10

−ln[1− 10−9]
≈ 1010

Table 1 shows the expected test duration for this system as a function of the number of test
replicates n for r = 1.3 It should be noted that a value of r equal to 1 produces the shortest test
time possible but at the price of extremely large α and β errors. To get satisfactory statistical
significance, larger values of r are needed and consequently even more testing. Therefore, given
that the economics of testing fault-tolerant systems (which are very expensive) rarely allow n to be
greater than 10, life-testing is clearly out of the question for ultrareliable systems. The technique
of statistical life-testing is discussed in more detail in the appendix.

4 Reliability Growth Models

The software design process involves a repetitive cycle of testing and repairing a program. A
program is subjected to inputs until it fails. The cause of failure is determined; the program is
repaired and is then subjected to a new sequence of inputs. The result is a sequence of programs
p1, p2, ..., pn and a sequence of inter-failure times T1, T2, ..., Tn (usually measured in number of
inputs). The goal is to construct a mathematical technique (i.e. model) to predict the reliability of
the final program pn based on the observed interfailure data. Such a model enables one to estimate
the probability of failure of the final “corrected” program without subjecting it to a sequence of
inputs. This process is a form of prediction or extrapolation and has been studied in detail [5, 6, 7].
These models are called “Reliability Growth Models”. If one resists the temptation to correct the
program based on the last failure, the method is equivalent to black-box testing the final version.
If one corrects the final version and estimates the reliability of the corrected version based on a
reliability growth model, one hopefully has increased the efficiency of the testing process in doing
so. The question we would like to examine is how much efficiency is gained by use of a reliability

3The expected time with or without replacement is almost the same in this case.
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growth model and is it enough to get us into the ultrareliable region. Unfortunately, the answer is
that the gain in efficiency is not anywhere near enough to get us into the ultrareliable region. This
has been pointed out by several authors. Keiller and Miller write [8]:

The reliability growth scenario would start with faulty software. Through execution
of the software, bugs are discovered. The software is then modified to correct for the
design flaws represented by the bugs. Gradually the software evolves into a state of
higher reliability. There are at least two general reasons why this is an unreasonable
approach to highly-reliable safety-critical software. The time required for reliability
to grow to acceptable levels will tend to be extremely long. Extremely high levels of
reliability cannot be guaranteed a priori.

Littlewood writes [9]:

Clearly, the reliability growth techniques of §2 [a survey of the leading reliability growth
models] are useless in the face of such ultra-high reliability requirements. It is easy to
see that, even in the unlikely event that the system had achieved such a reliability, we
could not assure ourselves of that achievement in an acceptable time.

The problem alluded to by these authors can be seen clearly by applying a reliability growth model
to experimental data. The data of table 2 was taken from an experiment performed by Nagel and
Skrivan [10]. The data in this table was obtained for program A1, one of six programs investigated.

Number of Bugs Removed failure probability per input
1 0.9803
2 0.1068
3 0.002602
4 0.002104
5 0.001176
6 0.0007659

Table 2: Nagel Data From Program A1

The versions represent the successive stages of the program as bugs were removed. A log-linear
growth model was postulated and found to fit all 6 programs analyzed in the report. A simple
regression on the data of table 2 yields a slope and y-intercept of: −1.415 and 0.2358, respectively.
The line is fitted to the log of the raw data as shown in figure 1. The correlation coefficient is
-0.913. It is important to note that in the context of reliability growth models the failure rates are
usually reported as failure rates per input, whereas the system requirements are given as failure
rates per hour or as a probability of failure for a specified mission duration (e.g. 10 hours). However,
equation 2 can be rearranged into a form which can be used to convert the system requirements
into a required failure rate per input.

p =
−ln(1− Psys)

Kt
(5)

If the system requirement is a probability of failure of 10−9 for a 10-hour mission and the sample
rate of the system (i.e., K) is 10/sec, then the required failure rate per input p can be calculated
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Figure 1: Loglinear Fit To Program A1 Failure Data

as follows:
p = −ln(1−Psys)

Kt

= −ln(1−10−9)
(10/sec)(3600 secs/hour)(10 hours)

= 2.78× 10−15

The purpose of a reliability growth model is to estimate the failure rate of a program after the
removal of the last discovered bug. The loglinear growth model plotted in figure 1 can be used to
predict that the arrival rate of the next bug will be 6.34×10−5. The key question, of course, is how
long will it take before enough bugs are removed so that the reliability growth model will predict
a failure rate per input of 2.78 × 10−15 or less. Using the loglinear model we can find the place
where the probability drops below 2.78 × 10−15 as illustrated in figure 2. Based upon the model,
the 24th bug will arrive at a rate of 2.28 × 10−15, which is less than the goal. Thus, according to
the loglinear growth model, 23 bugs will have to removed before the model will yield an acceptable
failure rate. But how long will it take to remove these 23 bugs? The growth model predicts that
bug 23 will have a failure rate of about 9.38 × 10−15. The expected number of test cases until
observing a binomial event of probability 9.38 × 10−15 is 1.07 × 1014. If the test time is the same
as the real time execution time, then each test case would require 0.10 secs. Thus, the expected
time to discover bug 23 alone would be 1.07 × 1013 secs or 3.4 × 105 years. In table 3, the above
calculations are given for all of the programs in reference [10].4 These examples illustrate why the
use of a reliability growth model does not alleviate the testing problem even if one assumes that
the model applies universally to the ultrareliable region.

4Table 5 assumes a perfect fit with the log-linear model in the ultrareliable region.
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Figure 2: Extrapolation To Predict When Ultrareliability Will Be Reached

program slope y-intercept last bug test time
A1 -1.415 0.2358 23 3.4× 105 years
B1 -1.3358 1.1049 25 3.3× 105 years
A2 -1.998 2.4572 17 1.5× 105 years
B2 -3.623 2.3296 9 4.5× 104 years
A3 -.54526 -1.3735 58 6.8× 105 years
B3 -1.3138 0.0912 25 5.3× 105 years

Table 3: Test Time To Remove the Last Bug to Obtain Ultrareliability
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4.1 Low Sample Rate Systems and Accelerated Testing

In this section, the feasibility of quantifying low-sample rate systems (i.e. systems where the time
between inputs is long) in the ultrareliable region will be briefly explored. Also, the potential of
accelerated testing will be discussed.

Suppose that the testing rate is faster than real time and let R = test time per input. Since
each test is an independent trial, the time to the appearance of the next bug is given by the
geometric distribution. Thus, the expected number of inputs until the next bug appears is 1/p and
the expected test time, Dt, is given by:

Dt = R/p

Using equation 5, Dt becomes:

Dt =
RKt

−ln(1− Psys)
≈ RKt

Psys
(6)

From equation 6 it can be seen that a low sample rate system (i.e. a system with small K) requires
less test time than a high sample rate system (assuming that R remains constant). Suppose that the
system requirement is a probability of failure of 10−9 for a 10 hour mission (i.e. Psys = 109 , t = 10).
If the system has a fast sample rate (e.g. K = 10 inputs/sec) and the time required to test an
input is the same as the real-time execution time (i.e. R = 0.10 secs), then the expected test time
is 1010 hours = 1.14 × 106 years. Now suppose that R remains constant but K is reduced. (Note
that this usually implies an accelerated testing process. The execution time per input is usually
greater for slow systems than fast systems. Since R is not increased as K is decreased the net result
is equivalent to an accelerated test process.) The impact of decreasing K while holding R constant
can be seen in table 4 which reports the expected test time as a function of K. Thus, theoretically, a

K Expected Test Time, Dt

10/sec 1.14× 106 years
1/sec 1.14× 105 years
1/minute 1.9× 103 years
1/hour 31.7 years
1/day 1.32 years
1/month 16 days

Table 4: Expected Test Time as a function of K for R = 0.1 secs

very slow system that can be tested very quickly (i.e. much faster than real-time) can be quantified
in the ultrareliable region. However, this is not as promising as it may look at first. The value
of K is fixed for a given system and the experimenter has no control over it. For example, the
sample rate for a digital flight control system is on the order of 10 inputs per second or faster and
little can be done to slow it down. Thus, the above theoretical result does nothing to alleviate the
testing problem here. Furthermore, real time systems typically are developed to exploit the full
capability of a computing system. Consequently, although a slower system’s sample rate is less,
its execution time per input is usually higher and so R is much greater than the 0.10 secs used in
table 4. In fact one would expect to see R grow in proportion to 1/K. Thus, the results in table
4 are optimistic. Also, it should be noted that during the testing process, one must also determine
whether the program’s answer is correct or incorrect. Consequently, the test time per input is often
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much greater than the real-time execution time rather than being shorter. In conclusion, if one is
fortunate enough to have a very slow system that can exploit an accelerated testing process, one
can obtain ultra-reliable estimates of reliability with feasible amounts of test times. However, such
systems are usually not classified as real-time systems and thus, are out of the scope of this paper.

4.2 Reliability Growth Models and Accelerated Testing

Now lets revisit the reliability growth model in the context of a slow system which can be quickly
tested. Suppose the system under test is a slow real-time system with a sample rate of 1 input per
minute. Then, the failure rate per input must be less than 10−9/60 = 1.67 × 10−11 in order for
the program to have a failure rate of 10−9/hour. Using the regression results, it can be seen that
approximately 17 bugs must be removed:

bug failure rate per input
16 1.87332× 10−10

17 4.55249× 10−11

18 1.10633× 10−11

Thus one could test until 17 bugs have been removed, remove the last bug and use the reliability
growth model to predict a failure rate per input of 1.106× 10−11. But, how long would it take to
remove the 17 bugs? Well, the removal of the last bug alone would on average require approximately
2.2× 1010 test cases. Even if the testing process were 1000 times faster than the operational time
per input (i.e. R = 60/1000 secs), this would require 42 years of testing. Thus, we see why
Littlewood, Keiller and Miller see little hope of using reliability growth models for ultrareliable
software. This problem is not restricted to the program above but is universal. Table 5 repeats
the above calculations for the rest of the programs in reference [10]. At even the most optimistic

program slope y-intercept last bug test time
A1 -1.415 0.2358 17 42 years
B1 -1.3358 1.1049 19 66 years
A2 -1.998 2.4572 13 31 years
B2 -3.623 2.3296 7 19 years
A3 -.54526 -1.3735 42 66 years
B3 -1.3138 0.0912 19 32 years

Table 5: Test Time To Remove the Last Bug to Obtain Ultrareliability

improvement rates, it is obvious that reliability growth models are impractical for ultrareliable
software.

5 Software Fault Tolerance

Since fault tolerance has been successfully used to protect against hardware physical failures, it
seems natural to apply the same strategy against software bugs. It is easy to construct a reliability
model of a system designed to mask physical failures using redundant hardware and voting. The
key assumption which enables both the design of ultrareliable systems from less reliable components
and the estimation of 10−9 probabilities of failure is that the separate redundant components fail
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independently or nearly so. The independence assumption has been used in hardware fault tolerance
modelling for many years. If the redundant components are located in separate chassis, powered
by separate power supplies, electrically isolated from each other and sufficiently shielded from the
environment it is not unreasonable to assume failure independence of physical hardware faults.

The basic strategy of the software fault-tolerance approach is to design several versions of a
program from the same specification and to employ a voter of some kind to protect the system from
bugs. The voter can be an acceptance test (i.e., recovery blocks) or a comparator (i.e., N-version
programming). Each version is programmed by a separate programming team.5 Since the versions
are developed by separate programming teams, it is hoped that the redundant programs will fail
independently or nearly so [11, 12]. From the version reliability estimates and the independence
assumption, system reliability estimates could be calculated. However, unlike hardware physical
failures which are governed by the laws of physics, programming errors are the products of human
reasoning (i.e., actually improper reasoning). The question thus becomes one of the reasonableness
of assuming independence based on little or no practical or theoretical foundations. Subjective
arguments have been offered on both sides of this question. Unfortunately, the subjective arguments
for multiple versions being independent are not compelling enough to qualify it as an axiom.
The reasons why experimental justification of independence is infeasible and why ultrareliable
quantification is infeasible despite software fault tolerance are discussed in the next section.

5.1 Models of Software Fault Tolerance

Many reliability models of fault-tolerant software have been developed based on the independence
assumption. To accept such a model, this assumption must be accepted. In this section, it will
be shown how the independence assumption enables quantification in the ultrareliable region, why
quantification of fault-tolerant software reliability is unlikely without the independence assumption,
and why this assumption cannot be experimentally justified for the ultrareliable region.

5.1.1 INdependence Enables Quantification Of Ultrareliability

The following example will show how independence enables ultrareliability quantification. Suppose
three different versions of a program control a life-critical system using some software fault tolerance
scheme. Let Ei,k be the event that the ith version fails on its kth execution. Suppose the probability
that version i fails during the kth execution is pi,k. As discussed in section 2, we will assume that
the failure rate is constant. Since the versions are voted, the system does not fail unless there is
a coincident error, i.e., two or more versions produce erroneous outputs in response to the same
input. The probability that two or more versions fail on the kth execution causing system failure
is:

Psys,k = P ( (E1,k ∧ E2,k) or (E1,k ∧ E3,k) or (E2,k ∧ E3,k) or (E1,k ∧ E2,k ∧ E3,k) ) (7)

Using the additive law of probability, this can be written as:

Psys,k = P (E1,k ∧ E2,k) + P (E1,k ∧ E3,k) + P (E2,k ∧ E3,k)− 2P (E1,k ∧ E2,k ∧ E3,k) (8)

If independence of the versions is assumed, this can be rewritten as:

Psys,k = P (E1,k)P (E2,k) + P (E1,k)P (E3,k) + P (E2,k)P (E3,k)− 2P (E1,k)P (E2,k)P (E3,k) (9)

5Often these separate programming teams are called “independent programming” teams. The phrase “independent
programming” does not mean the same thing as “independent manifestation of errors.”
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The reason why independence is usually assumed is obvious from the above formula—if each P (Ei,k)
can be estimated to be approximately 10−6, then the probability of system failure due to two or
more coincident failures is approximately 3× 10−12.

Equation (9) can be used to calculate the probability of failure for a T hour mission. Suppose
P (Ei,k) = p for all i and k. Then

Psys,k = 3p2 − 2p3 ≈ 3p2

and the probability that the system fails during a mission of T hours can be calculated using
equation (1):

Psys(T ) = 1− (1− Psys,k)KT ≈ 1− (1− 3p2)KT

where K = the number of executions of the program in an hour. For small pi the following
approximation is accurate:

Psys(T ) ≈ 1− e(−3p2KT ) ≈ 3p2KT

For the following typical values of T = 1 and K = 3600 (i.e., 1 execution per second), we have

Psys(T ) ≈ 3p2KT = 3(10−6)(10−6)(3600) = 1.08× 10−8

Thus, an ultrareliability quantification has been made. But, this depended critically on the inde-
pendence assumption. If the different versions do not fail independently, then equation (7) must
be used to compute failure probabilities and the above calculation is meaningless. In fact, the
probability of failure could be anywhere from 0 to about 10−2 (i.e., 0 to 3pKT 6 ).

5.1.2 Ultrareliable Quantification Is Infeasible Without Independence

Now consider the impact of not being able to assume independence. The following argument was
adapted from Miller [13]. To simplify the notation, the last subscript will be dropped when referring
to the kth execution only. Thus,

Psys = P (E1 ∧ E2) + P (E1 ∧ E3) + P (E2 ∧ E3)− 2P (E1 ∧ E2 ∧ E3) (10)

Using the identity P (A ∧B) = P (A)P (B) + [P (A ∧B)− P (A)P (B)], this can be rewritten as:

Psys = P (E1)P (E2) + P (E1)P (E3) + P (E2)P (E3)− 2P (E1)P (E2)P (E3)
+[P (E2 ∧ E1)− P (E1)P (E2)]
+[P (E3 ∧ E1)− P (E3)P (E1)]
+[P (E3 ∧ E2)− P (E3)P (E2)]
−2[P (E1 ∧ E2 ∧ E3)− P (E1)P (E2)P (E3)]

(11)

This rewrite of the formula reveals two components of the system failure probability: (1) the first
line of equation 11 and (2) the last 4 lines of equation 11. If the multiple versions manifest errors
independently, then the last four lines (i.e. the second component) will be equal to zero. Conse-
quently, to establish independence experimentally, these terms must be shown to be 0. Realistically,
to establish “adequate” independence, these terms must be shown to have negligible effect on the
probability of system failure. Thus, the first component represents the “non-correlated” contribu-
tion to Psys and the second component represents the “correlated” contribution to Psys. Note that
the terms in the first component of Psys are all products of the individual version probabilities.

63pKT is a first-order approximation to the probability that the system fails whenever any one of the 3 versions
fail.
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If we cannot assume independence, we are back to the original equation (10). Since P (E1 ∧
E2 ∧ E3) ≤ P (Ei ∧ Ej) for all i and j, we have

P (Ei ∧ Ej) ≤ Psys for all i, j.

Clearly, if Psys < 10−9 then P (Ei ∧ Ej) < 10−9. In other words, in order for Psys to be in the
ultrareliable region, the interaction terms (i.e. P (Ei ∧Ej)) must also be in the ultrareliable region.
To establish that the system is ultrareliable, the validation must either demonstrate that these
terms are very small or establish that Psys is small by some other means (from which we could
indirectly deduce that these terms are small.) Thus, we are back to the original life-testing problem
again.

From the above discussion, it is tempting to conclude that it is necessary to demonstrate that
each of the interaction terms is very small in order to establish that Psys is very small. However,
this is not a legitimate argument. Although the interaction terms will always be small when Psys is
small, one cannot argue that the only way of establishing that Psys is small is by showing that the
interaction terms are small. However, the likelihood of establishing that Psys is very small without
directly establishing that all of the interaction terms are small appears to be extremely remote.
This follows from the observation that without further assumptions, there is little more that can be
done with equation (10). It seems inescapable that no matter how (10) is manipulated, the terms
P (Ei ∧ Ej) will enter in linearly. Unless, a form can be found where these terms are eliminated
altogether or appear in a non-linear form where they become negligible (e.g. all multiplied by
other parameters), the need to estimate them directly will remain. Furthermore, the information
contained in these terms must appear somewhere. The dependency of Psys on some formulation of
interaction cannot be eliminated.

Although the possibility that a method may be discovered for the validation of software fault-
tolerance remains, it is prudent to recognize where this opportunity lies. It does not lie in the
realm of controlled experimentation. The only hope is that a reformulation of equation (10) can be
discovered that enables the estimation of Psys from a set of parameters which can be estimated using
moderate amounts of testing. The efficacy of such a reformulation could be assessed analytically
before any experimentation.

5.1.3 Danger Of Extrapolation to the Ultrareliability Region

To see the danger in extrapolating from a feasible amount of testing that the different versions are
independent, we will consider some possible scenarios for coincident failure processes. Suppose that
the probability of failure of a single version during a 1 hour interval is 10−5. If the versions fail
independently, then the probability of a coincident error is on the order of 10−10. However, suppose
in actuality the arrival rate of a coincident error is 10−7/hour. One could test for 100 years and
most likely not see a coincident error. From such experiments it would be tempting to conclude
that the different versions are independent. After all, we have tested the system for 100 years and
not seen even one coincident error! If we make the independence assumption, the system reliability
is (1 − 3 × 10−10). But actually the system reliability is approximately (1 − 10−7). Likewise, if
the failure rate for a single version were 10−4/hour and the arrival rate of coincident errors were
10−5/hour, testing for one year would most likely result in no coincident errors. The erroneous
assumption of independence would allow the assignment of a 3× 10−8 probability of failure to the
system when in reality the system is no better than 10−5.

In conclusion, if independence cannot be assumed, it seems inescapable that the intersection
of the events E1, E2, and E3 (i.e. P (Ei ∧ Ej)) must be directly measured. As shown above, these
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occur in the system failure formula not as products, but alone, and thus must be less than 10−12 per
input in order for the system probability of failure to be less than 10−9 at 1 hour. Unfortunately,
testing to this level is infeasible and extrapolation from feasible amounts of testing is dangerous.

Since ultrareliability has been established as a requirement for many systems, there is great
incentive to create models which enable an estimate in the ultrareliable region. Thus, there are many
examples of software reliability models for operational ultrareliable systems. Given the ramifications
of independence on fault-tolerant software reliability quantification, unjustifiable assumptions must
not be overlooked.

5.2 Feasibility of a General Model For Coincident Errors

Given the limitations imposed by non-independence, one possible approach to the ultrareliability
quantification problem is to develop a general fault-tolerant software reliability model that accounts
for coincident errors. Two possibilities exist:

1. The model includes terms which cannot be measured within feasible amounts of time.

2. The model includes only parameters which can be measured within feasible amounts of time.

It is possible to construct elaborate probability models which fall into the first class. Unfor-
tunately since they depend upon unmeasurable parameters, they are useless for the quantification
of ultrareliability. The second case is the only realistic approach.7 The independence model is
an example of the second case. Models belonging to the second case must explicitly or implicitly
express the interaction terms in equation (10) as “known” functions of parameters which can be
measured in feasible amounts of time:

PI = f(p1, p2, p3, ..., pn)

The known function f in the independence model is the zero function, i.e., the interaction terms
PI are zero identically irrespective of any other measurable parameters.

A more general model must provide a mechanism that makes these interaction terms negligibly
small in order to produce a number in the ultrareliable region. These known functions must be
applicable to all cases of multi-version software for which the model is intended. Clearly, any
estimation based on such a model would be strongly dependent upon correct knowledge of these
functions. But how can these functions be determined? There is little hope of deriving them from
fundamental laws, since the error process occurs in the human mind. The only possibility is to derive
them from experimentation, but experimentation can only derive functions appropriate for low or
moderate reliability software. Therefore, the correctness of these functions in the ultrareliable
region can not be established experimentally. Justifying the correctness of the known functions
requires far more testing than quantifying the reliability of a single ultrareliable system. The
model must be shown to be applicable to a specified sample space of multi-version programs. Thus,
there must be extensive sampling from the space of multi-version programs, each of which must
undergo life-testing for over 100,000 years in order to demonstrate the universal applicability of the
functions. Thus, in either case, the situation appears to be hopeless—the development of a credible
coincident error model which can be used to estimate system reliability within feasible amounts of
time is not possible.

7The first case is included for completeness and because such models have been proposed in the past.
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5.3 The Coincident-Error Experiments

Experiments have been performed by several researchers to investigate the coincident error process.
The first and perhaps most famous experiment was performed by Knight and Leveson [14]. In this
experiment 27 versions of a program were produced and subjected to 1,000,000 input cases. The
observed average failure rate per input was 0.0007. The major conclusion of the experiment was
that the independence model was rejected at the 99% confidence level. The quantity of coincident
errors was much greater than that predicted by the independence model. Experiments produced
by other researchers have confirmed the Knight-Leveson conclusion [12, 15]. A excellent discussion
of the experimental results is given in [16].

Some debate [16] has occurred over the credibility of these experiments. Rather than describe
the details of this debate, we would prefer to make a few general observations about the scope
and limitations of such experiments. First, the N-version systems used in these experiments must
have reliabilities in the low to moderate reliability region. Otherwise, no data would be obtained
which would be relevant to the independence question.8 It is not sufficient (to get data) that the
individual versions are in this reliability region. The coincident error rate must be observable, so
the reliability of “voted” outputs must be in the low to moderate reliability region. To see this
consider the following. Suppose that we have a 3-version system where each replicate’s failure rate
is 10−4/hour. If they fail independently, the coincident error rate should be 3 × 10−8/hour. The
versions are in the moderate reliability region, but the system is potentially (i.e. if independent) in
the ultrareliable region. In order to test for independence, “coincident” errors must be observed.
If the experiment is performed for one year and no coincident errors are observed, then one can
be confident that the coincident error rate (and consequently the system failure rate) is less than
1.14×10−4. If coincident errors are observed then the coincident error rate is probably even higher.
If the coincident error rate is actually 10−7/hour, then the independence assumption is invalid, but
one would have to test for over 1000 years in order to have a reasonable chance to observe them!
Thus, future experiments will have one of the following results depending on the actual reliability
of the test specimens:

1. demonstration that the independence assumption does not hold for the low reliability system.

2. demonstration that the independence assumption does hold for systems for the low reliability
system.

3. no coincident errors were seen but the test time was insufficient to demonstrate independence
for the potentially ultrareliable system.

If the system under test is a low reliability system, the independence assumption may be contra-
dicted or vindicated. Either way, the results will not apply to ultrareliable systems except by way
of extrapolation. If the system under test were actually ultrareliable, the third conclusion would
result. Thus, experiments can reveal problems with a model such as the independence model when
the inaccuracies are so severe that they manifest themselves in the low or moderate reliability re-
gion. However, software reliability experiments can only demonstrate that an interaction model
is inaccurate, never that a model is accurate for ultrareliable software. Thus, negative results are
possible, but never positive results.

The experiments performed by Knight and Leveson and others have been useful to alerting
the world to a formerly unnoticed critical assumption. However, it is important to realize that

8that is, unless one was willing to carry out a “Smithsonian” experiment, i.e. one which requires centuries to
complete.
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these experiments cannot accomplish what is really needed—namely, to establish with scientific
rigor that a particular design is ultrareliable or that a particular design methodology produces
ultrareliable systems. This leaves us in a terrible bind. We want to use digital processors in life-
critical applications, but we have no feasible way of establishing that they meet their ultrareliability
requirements. We must either change the reliability requirements to a level which is in the low to
moderate reliability region or give up the notion of experimental quantification. Neither option is
very appealing.

6 Conclusions

In recent years, computer systems have been introduced into life-critical situations where previously
caution had precluded their use. Despite alarming incidents of disaster already occurring with
increasing frequency, industry in the United States and abroad continues to expand the use of
digital computers to monitor and control complex real-time physical processes and mechanical
devices. The potential performance advantages of using computers over their analog predecessors
have created an atmosphere where serious safety concerns about digital hardware and software are
not adequately addressed. Although fault-tolerance research has discovered effective techniques to
protect systems from physical component failure, practical methods to prevent design errors have
not been found. Without a major change in the design and verification methods used for life-critical
systems, major disasters are almost certain to occur with increasing frequency.

Since life-testing of ultrareliable software is infeasible (i.e., to quantify 10−8/hour failure rate
requires more than 108 hours of testing), reliability models of fault-tolerant software have been
developed from which ultrareliable-system estimates can be obtained. The key assumption which
enables an ultrareliability prediction for hardware failures is that the electrically isolated processors
fail independently. This assumption is reasonable for hardware component failures, but not provable
or testable. This assumption is not reasonable for software or hardware design flaws. Furthermore,
any model which tries to include some level of non-independent interaction between the multiple
versions can not be justified experimentally. It would take more than 108 hours of testing to make
sure there are not coincident errors in two or more versions which appear rarely but frequently
enough to degrade the system reliability below (1− 10−8).

Some significant conclusions can be drawn from the observations of this paper. Since digital
computers will inevitably be used in life-critical applications, it is necessary that “credible” methods
be developed for generating reliable software. Nevertheless, what constitutes a “credible” method
must be carefully reconsidered. A pervasive view is that software validation must be accomplished
by probabilistic and statistical methods. The shortcomings and pitfalls of this view have been
expounded in this paper. Based on intuitive merits, it is likely that software fault tolerance will be
used in life-critical applications. Nevertheless, the ability of this approach to generate ultrareliable
software cannot be demonstrated by research experiments. The question of whether software fault
tolerance is more effective than other design methodologies such as formal verification or vice versa
can only be answered for low or moderate reliability systems, not for ultrareliable applications.
The choice between software fault tolerance and formal verification must necessarily be based on
either extrapolation or nonexperimental reasoning.

Similarly, experiments designed to compare the accuracy of different types of software reliability
models can only be accomplished in the low to moderate reliability regions. There is little reason
to believe that a model which is accurate in the moderate region is accurate in the ultrareliable
region. It is possible that models which are inferior to other models in the moderate region are
superior in the ultrareliable region—again, this cannot be demonstrated.
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Appendix

In this section, the statistics of life testing will be briefly reviewed. A more detailed presentation
can be found in a standard statistics text book such as Mann-Schafer-Singpurwalla [4]. This section
presents a statistical test based on the maximum likelihood ratio9 and was produced using reference
[4] extensively. The mathematical relationship between the number of test specimens, specimen
reliability, and expected time on test is explored.

Let n = the number of test
specimens

r = observed number of
specimen failures

X1 < X2 < ... < Xr = the ordered failure times

A hypothesis test is constructed to test the reliability of the system against an alternative.

Ho : Reliability = R0

H1 : Reliability < R0

The null hypothesis covers the case where the system is ultrareliable. The alternative covers the
case where the system fails to meet the reliability requirement. The α error is the probability of
rejecting the null hypothesis when it is true (i.e. producer’s risk). The β error is the probability of
accepting the null hypothesis when it is false (i.e. consumer’s risk).

There are two basic experimental approaches—(1) testing with replacement and (2) testing
without replacement. In either case, one places n items on test. The test is finished when r failures
have been observed. In the first case, when a device fails a new device is put on test in its place. In
the second case, a failed device is not replaced. The tester chooses values of n and r to obtain the
desired levels of the α and β errors. In general, the larger r and n are, the smaller the statistical
testing errors are.

It is necessary to assume some distribution for the time-to-failure of the test specimen. For
simplicity, we will assume that the distribution is exponential.10 The test then can be reduced to
a test on exponential means, using the transformation:

µ =
t

−ln[R(t)]

The expected time on test can then be calculated as a function of r and n. The expected time on
test, Dt, for the replacement case is:

Dt = µo
r

n
(12)

where µo is the mean time to failure of the test specimen. The expected time on test for the
non-replacement case is:

Dt = µo

r∑
j=1

1
n− j + 1

(13)

In order to calculate the α and β errors, a specific value of the alternative mean must be selected.
Thus, the hypothesis test becomes:

Ho : µ = µo

H1 : µ = µa

9The maximum likelihood ratio test is the test which provides the “best” critical region for a given α error.
10If the failure times follow a Weibull distribution with known shape parameter, the data can be transformed into

variables having exponential distributions before the test is applied.
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A reasonable alternative hypothesis is that the reliability at 10 hours is 1− 10−8 or that µa = 109.
The test statistic Tr is given by

Tr = (n− r)Xr +
r∑

i=1

Xi

for the non-replacement case and
Tr = nXr

for the “replacement case”. The critical value Tc (for which the null hypothesis should be rejected
whenever Tr ≤ Tc) can be determined as a function of α and r:

Tc = µo

χ2
2r,α

2

where χ2
ν,α is the α percentile of the chi-square distribution with ν degrees of freedom. Given a

choice of r and α the value of the “best” critical region is determined by this formula. The β error
can be calculated from

Tc = µ1

χ2
2r,1−β

2
Neither of the above equations can be solved until r is determined. However, the following formula
can be derived from them:

χ2
2r,α

χ2
2r,1−β

=
µa

µo
(14)

Given the desired α and β errors, one chooses the smallest r which satisfies this equation.

Example 1

Suppose that we wish to test:
Ho : µo = 1010

H1 : µa = 109

For α = 0.05 and β = 0.01, the smallest r satisfying equation (14) is 3 (using a chi-square table).

Thus, the critical region is µo
χ2

2r,α

2 = 1010(1.635)/2 = 8.18 × 109. The experimenter can choose
any value of n greater than r. The larger n is, the shorter the expected time on test is. For the
replacement case, the expected time on test is µo

r
n = 3×1010

n :

no. of replicates (n) Expected Test Duration Dt

10 3× 109 hours
100 3× 108 hours

10000 3× 106 hours

Even with 10000 test specimens, the expected test time is 342 years.

Example 2

Suppose that we wish to test:
Ho : µo = 1010

H1 : µa = 109

Given α = 0.05 and r = 1, the β error can be calculated. First the critical region is µo
χ2

2r,α

2 =
1010[0.1026]/2 = 5.13 × 108. From a chi-square table, the β error can be seen to be greater than
0.50.
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Illustrative Table

For µo = 1010 and µa = 109,
µa

µo
≈ 10−9

10−8
= 0.1

The following relationship exists between α, r, and β:

α r β

.01 5 ≈ .005

.01 3 ≈ .20

.01 2 ≈ .50

.05 3 ≈ .02

.05 2 ≈ .10

.05 1 ≈ .50

.10 3 ≈ .005

.10 2 ≈ .03

.10 1 ≈ .25

The power of the test 1− β changes drastically with changes in r. Clearly r must be at least 2 to
have a reasonable value for the beta error.
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