Gas-Liquid Flows and Phase Separation by John McQuillen

Strategic Research to Enable NASA's Exploration Missions

June 22 - 23, 2004 Cleveland, Ohio

Microgravity Fluid Physics Branch

Common Issues for Space System Designers

- Ability to Verify Performance in Normal Gravity prior to Deployment.
- System Stability*
- Phase Accumulation & Shedding
- Phase Separation*
- Flow Distribution through Tees & Manifolds
- Boiling Crisis*
- Heat Transfer Coefficient
- Pressure Drop

* Two Phase Flow Facility

Microgravity Fluid Physics Branch

NASA

Space-Based Technologies Using Two Phase Flow

Technology Development

Exploration Vision

ADVANCED LIFE SUPPORT SYSTEMS

- Condensing heat exchanger
- Wastewater processing
 - Distillation systems
 - Evaporation systems
- · Storage transport systems
- Two-phase tolerant pumps
- · Low pressure liquid drainage

Output

- THERMAL CONTROL SYSTEMS • Working fluids for internal/
 - external systems
 Heat pump
 - Two-phase tolerant pump
 - Thermal bus
 - Multiple heat source
 - Multiple temperatures
 - Systems
 - -EVA, ECLSS, Power

NUCLEAR POWER CONVERSION SYSTEMS

- Two-phase distribution problems in condenser manifold
- · Gas bubbles in pump
- · Interaction between components
- Liquid droplet carry over into turbine inlet
- Thermal transients affecting fatigue of the boiler

Design Tools • Engineering Handbooks • Models

Applied Research Boiling • Condensation • Ph

Boiling • Condensation • Phase Separation • Two-Phase Stability

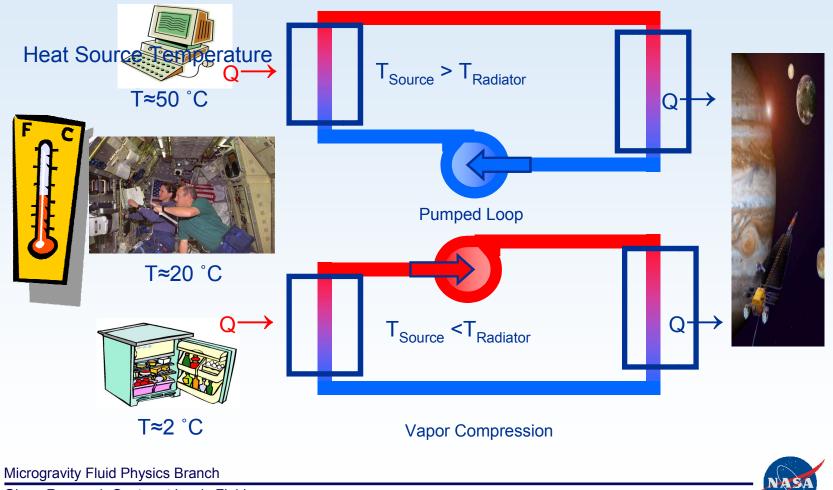
Microgravity Fluid Physics Branch

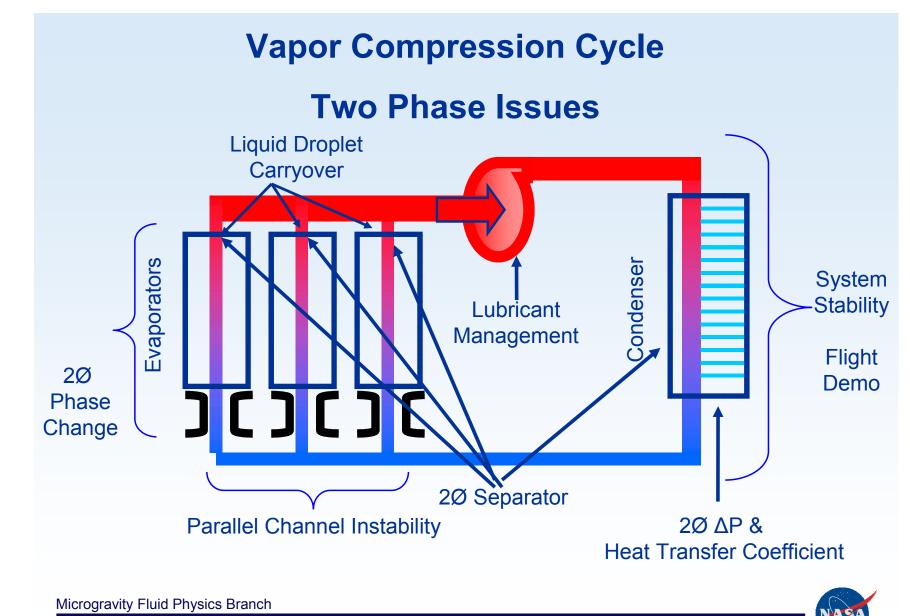
Partial Listing of Where Gas-Liquid Flows are in Life Support Systems

Stream Type	Air Revitalization	Water Reclamation	Thermal Management	Solid Waste Management
Cabin Humidity Condensate	\checkmark		\checkmark	
Urine		\checkmark		
Spills		\checkmark		\checkmark
Dish Washing		\checkmark		
Laundry		\checkmark		
Sabatier CO ₂ Reaction	\checkmark			
Waste Solids Drying				\checkmark
Food Processing		\checkmark		\checkmark

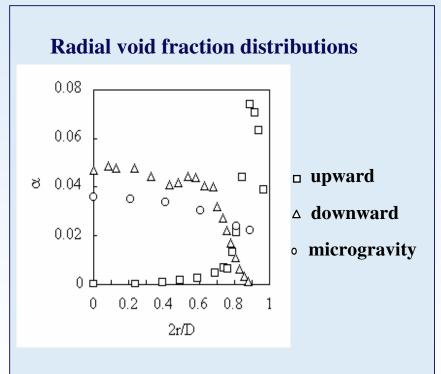
Microgravity Fluid Physics Branch

NASA


Life Support Systems


- Commonality of Source Stream
 - Aqueous-based Working Fluid (Water)
 - Into Waste Water Tank
 - Low Pressure Inlet
 - Gas Phase Present
 - Particulate Matter may be Present
- Differences
 - Dissolved Matter → Fluid Property Effects
 - Batch vs. Continuous Input
 - Flow Rates
 - Void Fraction

Microgravity Fluid Physics Branch


Thermal Management Systems

The Effect of Reduced Gravity on Gas-Liquid Flows Negating the Effect of Buoyancy

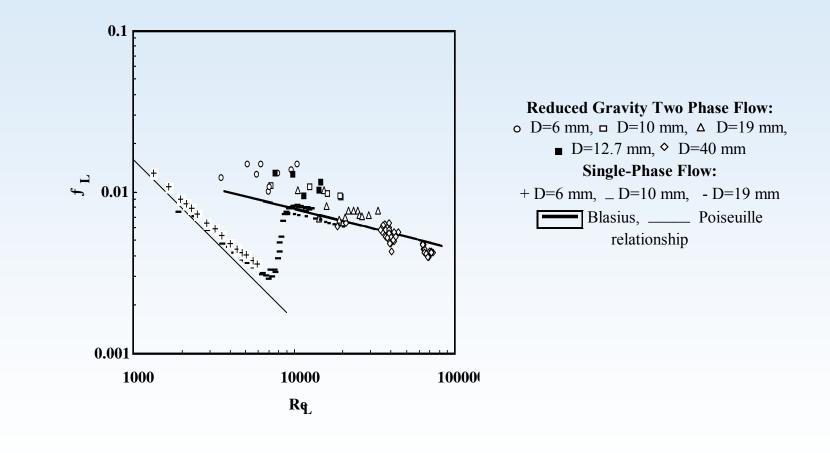
- Axisymmetric flows
- Reduced Hydrostatic
 Pressure
- Spherical Bubbles vs. Ellipsoid
- No Gravity-Induced Shearing:
 - Gas Phase Rising relative to Liquid Falling
- Co-flow of Gas and Liquid Phases.

Microgravity Fluid Physics Branch

What Do We Know? Flow Regimes

- 3 (¹/₂) Flow Regimes: Bubble, Slug, Annular (Transitional Slug Annular)
- Multiple Models that work well
 - Constant Void Fraction
 - Weber Number Model
 - Suratman Number Criteria

Microgravity Fluid Physics Branch

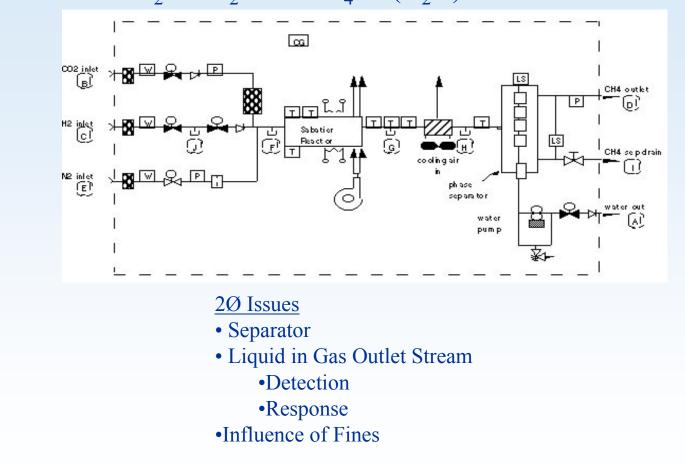


What Do We Know? Pressure Drop

- Modified Homogenous Equilibrium Model works well
 - Mixture Density
 - Mixture Velocity
 - Liquid Viscosity

Wall Friction Factors f_L in Bubbly Flow:

Concerns


Phase Accumulation and Shedding

• Liquid Film Rupture and Dryout

Microgravity Fluid Physics Branch

NASA

Example: Sabatier Reactor $CO_2 + 4H_2 4 \rightarrow CH_4 + 2(H_2O) + heat$



Microgravity Fluid Physics Branch

NASA

Crew Exploration Vehicle Thermal Management System

- Capsule-type vehicle
- Functional during Orbital, Re-entry, and Post-Landing Phases
- Closed Loop System Desire No Flash Evaporators
- Heat Load Estimate
 - Fuel Cells: 7 kW at 50 $^\circ\text{C}$
 - Electronics: 3 kW at 40 °C
 - Cabin: 0.5 kW at 7 $^\circ\text{C}$
- Limit Total Radiator Area < 200 ft²
- Body Mounted Radiator
- Working Fluid
 - Non-Toxic
 - Non-Corrosive
 - Low Freezing Point

Microgravity Fluid Physics Branch

Why Separate?

- Critical Process or Component that is intolerant of one Phase
 - Centrifugal pumps with gas bubbles
 - Phase Specific Sensors, i.e., hot wires
 - Biological media negatively impacted by gas
- Better System Performance
 - Condensors Work Better if no liquid present at inlet.
 - Control of Phase Distribution into a manifold

Requirements to Consider

- Available Power
 - Mars Transfer Vehicle has MW but for propulsion
 - CEV has up to 10 kW
- Vibration
 - Wear & tear
 - Noise
- System Life
 - Most will be Life of Mission or Vehicle
 - Some systems may have cleanliness/sterile concerns
- Separator Life
- Flow Rate range
 - ml/min to l/min

Requirements to Consider

- Acceleration Environments
 - Pre Launch 1 G
 - Launch hi-G's
 - Transit microgravity
 - De-Orbit hi-G's
 - Moon (1/6 G) or Mars (3/8 G)
 - Post Landing 1 G
- Degree of Separation Desired
- Contamination Sensitivity
 - Separation process negatively impacted by solids or immiscible 2nd liquid phase
- Tolerance of "Slugging" or "flooding" Events
 - System capacitance
- Startup & Shutdown

Microgravity Fluid Physics Branch

NASA

Range of Separator Requirements

Stream Type	Near Continous or Batch	Inlet Void Fraction
Cabin Humidity Condensate	Continuous	?
Urine	Batch	Low
Dish Washing	Batch	Low- Initially
Laundry	Batch	Low - Initially
Sabatier CO ₂ Reaction	Continuous	High
Waste Solids Drying	Continuous	High
Food Processing	Batch	High
Bioreactor	Continuous	Low

Microgravity Fluid Physics Branch

Mechanical Phase Separation

- Centrifuge Very high G's
 - Spin outside housing
 - Spin internal float
- Use rotational acceleration to also develop "hydrostatic" pressure rise to pump liquid
 - Rotary Fluid Management Device (Sundstrand)
 - Two Phase Pump (Foster-Miller)
 - MOBI

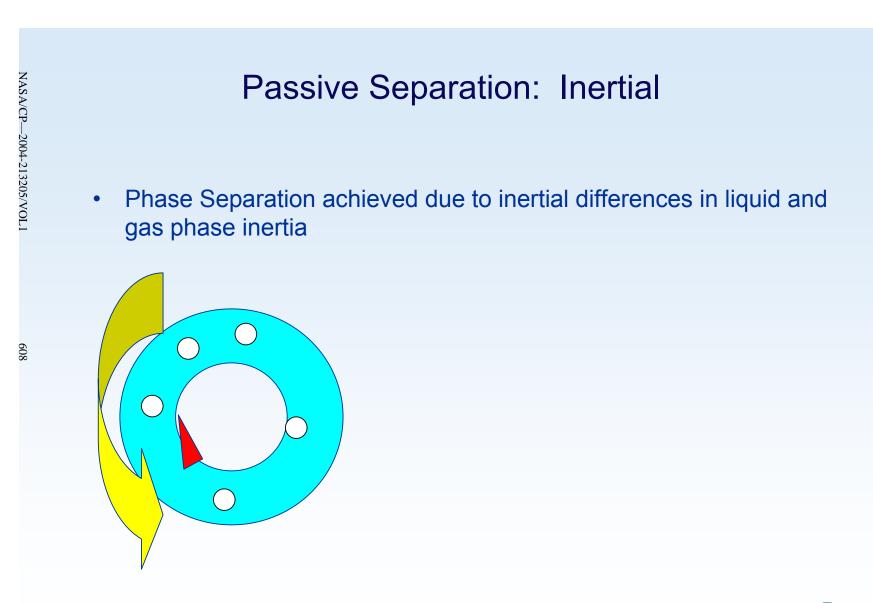
Microgravity Fluid Physics Branch

Passive Separation: Membranes

- Use of Hydrophilic Membranes and Surfaces to position liquid interface and withdraw liquid.
- Liquid Acquisition Devices (LAD's) are used in upper stage propellant tanks to ensure start of rocket motor.
- Gas Phase Breakthrough based on bubble point or LaPlace Eqn using membrane pore size.
- Prone to contamination.

Microgravity Fluid Physics Branch

Passive Separation: Inertial


Phase Separation achieved due to inertial differences in liquid and gas phase inertia

Bubble Flow through Tee

Microgravity Fluid Physics Branch

Microgravity Fluid Physics Branch

Passive Separation: Cyclonic

- Two Phase Flow Injected Tangentially into Cylinder.
- Separation driven by Flow
- Cyclones designed for microgravity will work well in multiple gravity levels

Microgravity Fluid Physics Branch

Summary

- Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow "¹ is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation.
- While there is still much to learn about two-phase flow in reduced gravity, we have a good start.
- Focus now needs to be directed more towards system level problems.

¹ Graf, J., Finger, B., Daues, K., "Life Support Systems for the Space Environment: Basic Tenets for Designers Rev. A," <u>http://advlifesupport.jsc.nasa.gov/documents/lsstenets.doc</u>, 2003.

Microgravity Fluid Physics Branch

References

- Viskanta, R. et al, "Microgravity Research in Support of Technologies for the Human Exploration and Development of Space and Planetary Bodies," Topical Report of the National Research Council Space Studies Board, 2000.
- Motil, B., "Workshop on Research Needs In Fluids Management for the Human Exploration of Space" http://www.ncmr.org/events/fluidsmgmt/multiphase.html, 2000
- McQuillen, J., Rame, E., Kassemi, M., Singh, B., and Motil, B., "Results of the Workshop on Two-Phase Flow, Fluid Stability and Dynamics: Issues in Power, Propulsion, and Advanced Life Support Systems," NASA TM-2003-212598, http://gltrs.grc.nasa.gov/reports/2003/TM-2003-212598.pdf, 2003
- Chiaramonte, F. P. and Joshi, J. A. "Workshop on Critical Issues in Microgravity Fluids, Transport and Reaction Processes in Advanced Human Support Technology Final Report, "NASA/TM—2004-212940, <u>http://gltrs.grc.nasa.gov/reports/2004/TM-2004-212940.pdf</u>, 2004
- Lahey, R. T. Jr. and Dhir, V. "Research In Support Of The Use Of Rankine Cycle Energy Conversion Systems For Space Power And Propulsion," NASA SWG Report 2004
- Low Gravity Two Phase Flow Movies
 http://microgravity.grc.nasa.gov/6712/2phase_flow/2phase.html

Microgravity Fluid Physics Branch

7/19/2004