

Strategic Research to Enable NASA's Exploration Missions Conference Cleveland, 22-24 June, 2004

Human Support Technology Research, Development & Demonstration

Jitendra Joshi Eugene Trinh NASA Headquarters

A Journey to Inspire, Innovate, and Discover

- The Human Support Technology research, development, and demonstration program addresses the following areas at TRL 1 through 6:
 - Advanced Power and Propulsion
 - Cryogenic fluid management
 - Closed-loop life support and Habitability
 - Extravehicular activity systems
 - Scientific data collection and analysis
 - Planetary in-situ resource utilization

NASA/CP-2004-213205/VOL1

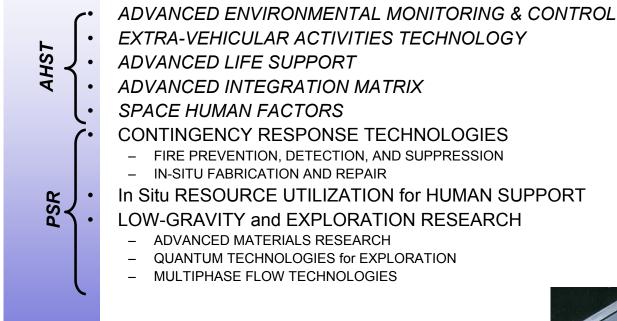
Human Support Technology Program Overview

Program Goal

- Our single purpose is to reduce the human support systems development risks to an acceptable level
 - The risks we address are documented in the Bioastronautics Critical Path Roadmap and fall into three categories:
 - Risks to the safety and health of the crew and mission success due to the hazardous environment, autonomy, and isolation

- Risks to the affordability of the missions by requiring excessive logistical support for the humans in terms of buffers, critical system resources, and non-regenerative supplies
- Risks to the human support systems in terms of the 'ilities' (operability, reliability, maintainability, etc.)
- Each risk is further characterized by research enabling questions (Bioastronautics Critical Path Roadmap - BCPR)
- Acceptable mitigation through development of products that answer the enabling questions is required for all of the types of risks

Human Support Technology Program BCPR Risks relevant to HST


	AHST Risk Rating Criteria for System Performance Risks			
Rating				
R	Considerable potential for improvement in efficiency in many areas, or proposed missions may be infeasible without improvements.			
Y	Considerable potential for improvement in efficiency in a few areas			
G	Minimum or limited potential for improvement in efficiency.			

RISK NUMBER	Theme	Discipline	Risk Category	ISS (1yr)	Moon (30d)	Mars (30m)
7	HHC	Env Health	Define Acceptable Limits for Trace Contaminants in Air and Water			
29	BH&P	SHFE	Mismatch between Crew Cognitive Capabilities and Task Demands			
36	AHST	AEMC	Monitor Air Quality	Y	R	R
37	AHST	AEMC	Monitor External Environment	Y	R	R
38	AHST	AEMC	Monitor Water Quality	Y	R	R
39	AHST	AEMC	Monitor Surfaces Food and Soil	Y	R	R
40	AHST	AEMC	Provide Integrated Autonomous Control of Life Support Systems	G	Y	R
41	AHST	AEVA	Provide Space Suits and Portable Life Support Systems	G	Y	R
42	AHST	AFT	Maintain Food Quantity and Quality	Y	G	R
43	AHST	ALS	Maintain Acceptable Atmosphere	G	Y	R
44	AHST	ALS	Maintain Thermal Balance in Habitable Areas	G	Y	R
45	AHST	ALS	Manage Waste	G	Y	R
46	AHST	ALS	Provide and Maintain Bioregenerative Life Support Systems	G	Y	R
47	AHST	ALS	Provide and Recover Potable Water	G	Y	R
48	AHST	AHST	Inadequate Mission Resources for the Human System	Y	R	R
49	AHST	SHFE	Mismatch between Crew Physical Capabilities and Task Demands G Y R			
50	AHST	SHFE	Mis-assignment of Responsibilities within Multi-agent Systems	Y	Y	R

Human Support Technology Program

Research and Development Content

HST-Cleveland 22 June 2004 ET/RC

IN-SITU FABRICATION AND REPAIR

ADVANCED MATERIALS RESEARCH

MULTIPHASE FLOW TECHNOLOGIES

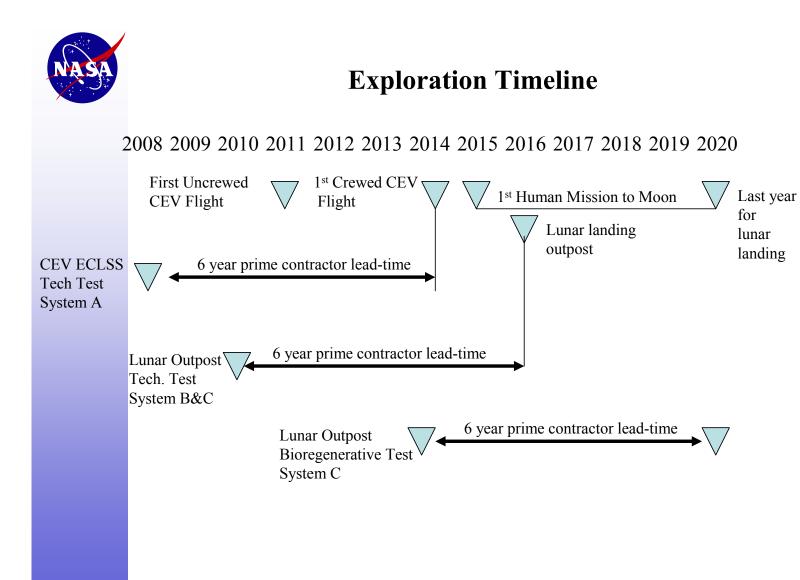
Advanced Life Support

- Duplicate the functions of the Earth in terms of human life support
- Without the benefit of the Earth's large buffers --- oceans, atmosphere, and land masses

- Question is one of how small can the requisite buffers be and yet maintain extremely high reliability over long periods of time in a hostile environment
- Space-based systems must be small, therefore must exercise high degree of control
- Long-duration missions dictate regenerative systems ---minimize re-supply

	Lunar Transit Vehicle (LTV)	Lunar Landing Vehicle (LLV)	Lunar Outpost (LO)	Mars Transit Vehicle (MTV)	Mars Landing Vehicle (MLV)	Mars Habitat (MH)	Pressurized Rover (PR)
Duration (Human Tended)	7 – 14 days (Roundtrip)	1 – 5 days	1 – 18 months	12 – 24 months (Roundtrip)	1 – 45 days	17 – 20 months	1 – 7 days
Air Revitalization	Open	Open	Closed	Closed Open		Closed ISRU	Open
Water Recovery	Collection and Storage	Collection and Storage	Closed ISRU	Closed	Collection and Storage	Closed ISRU	Collection and Storage
Waste Management				Volume Reduction Stabilization	Volume Reduction Mineralization Stabilization Resource Recovery	Stored	
Food Systems	Conventional Stored	Conventional Stored	Conventional Stored with Fresh Food Augmentation	Extended Shelf Life with Fresh Food Augmentation	Extended Shelf Life	Extended Shelf Life with Fresh Food Augmentation	Extended Shelf Life
Thermal Systems			HP-DR	LP-BR	HP-DR	LP-BR	
System Configuration			System B	System A	System C	System A	

Parameters for Human Life Support Across Mission Scenarios


Closed Air is 75% by Mass Closed Water is 90% by Mass LP – Low Power HP – High Power

BR – Body Mounted Radiator

System A: Short-duration, micro-g System B: Long-duration, micro-g

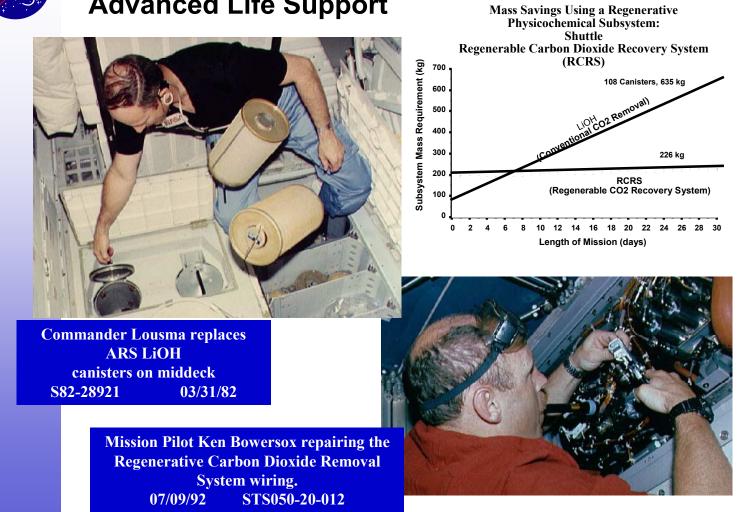
System C: Long-duration, planetary surface, partial-g

ISRU –Investigate and utilize as appropriate DR – Deployable Radiator Regenerative Systems will be selected over consumable systems

Life Support Requirements Mass Breakdown (Per Person-Day)

DAILY INPUTS - NOMINAL						
	kg					
Oxygen	0.84					
Food Solids	0.62					
Water in Food	1.15					
Food Prep Water	0.79					
Drink	1.62					
Hand/Face Wash Water 1.82						
Shower Water	5.45					
Clothes Wash Water	12.50					
Dish Wash Water	5.45					
Flush Water	0.50					
TOTAL	30.74					

5.02 - 30.74 kg per person-day


11.3 Metric Tons Per Person-Year

DAILY OUTPUTS - NOMINAL

	kg
Carbon Dioxide	1.00
Respiration and	2.28
Perspiration Water	
Urine	1.50
Feces Water	0.09
Sweat Solids	0.02
Urine Solids	0.06
Feces Solids	0.03
Hygiene Water	6.68
Clothes Wash Water	11.90
Clothes Wash	0.60
Latent Water	
Other Latent Water	0.65
Dish Wash Water	5.43
Flush Water	0.50
TOTAL	30.74

Advanced Life Support

Drivers for Water Purification Technologies:

<u>Closure</u>

• Recovery projected to be 80 % of the recycled water. Water recovery from brine essential.

<u>Power</u>

• Current baseline is power consuming.

Expendables

• ISS system will require ~ 400 kg filters/year

Variable Gravity Compatibility

• Fluids management issues pertinent to system performance in variable gravity

422

Advanced Environmental Monitoring & Control (AEMC)

Goals and Objectives

- Intelligent Monitoring and Control of Life Support Systems through focused system analysis, simulation and transport modeling
- TRL 6 Sensor Technologies for human health and process control:
 - Internal (I), for micro and/or reduced gravity environments :
 - Sample Acquisition and Handling optimized for multiphase (i.e., gas, liquid, solid) behavior
 - Monitoring Air, Water, Surface, Food and Soil Quality
 - Monitoring Air, Water, Surface, Food and Soil Microbial Safety
 - External (E) EVA and/or on Planetary Surfaces environment hazards monitoring (e.g., reactive chemicals, erosive dust)
 - I/E Hardware/Software Diagnostic Signatures (leakage, acoustic signals) for Replacement or Repair
 - I/E Particulates and Leak detection
- **Tools for establishing Exploration Chemical/Microbial requirements**
 - Contamination acceptability limits and monitoring requirements
- Miniaturization to reduce mission resource requirements
 - Maintain high capabilities and sensitivities, while simplifying for robust design

423

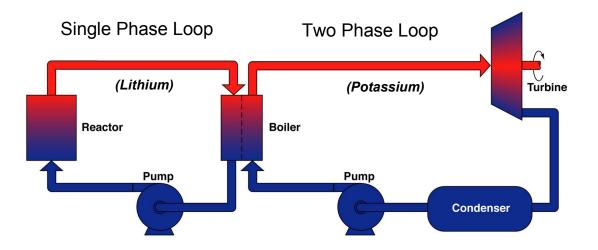
NASA/CP-2004-213205/VOL1

Advanced Extravehicular Activity

•EVA is required for all phases/spirals of the Vision, both in-space and planetary

•Supporting the human outside the protective environment of the vehicle or habitat requires an integrated EVA System

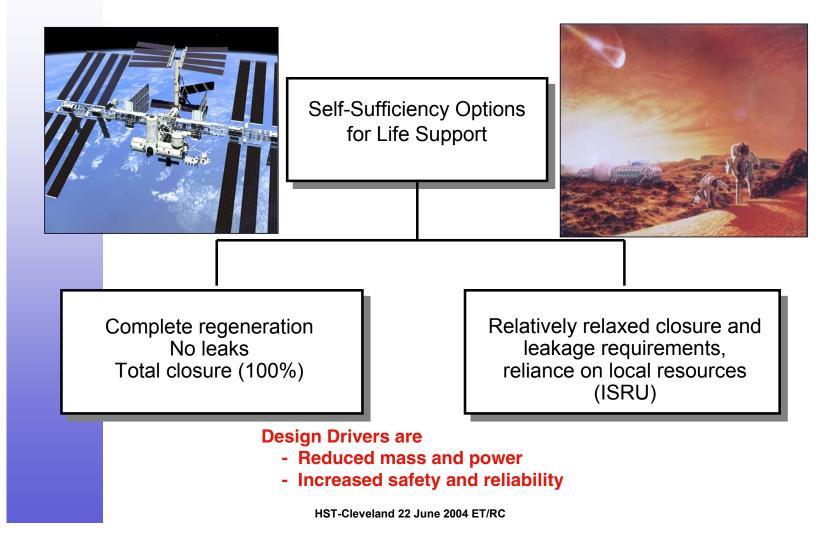
•A new EVA suit/system will be required to support this new initiative


-The current EVA suit is over 25 years old and is facing significant obsolescence issues

-The current EVA suit is <u>not compatible with the planetary</u> environments of either the Moon or Mars and <u>does not support the</u> logistical requirements of long term missions

•Development of a new EVA suit/system requires technology advancements similar to those required in the development of a new space vehicle

Strategic Research for Space Exploration Two Phase Flow Facility - ΤΦFFy

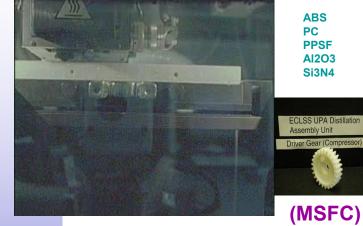


Schematic Diagram of Two-Fluid, Liquid Metal Rankine Power Conversion System

The T Φ FFy Project will conduct a robust research program to address microgravity fluid physics issues associated with Flow Boiling, Condensation, Phase Separation, and System Stability of the liquid metal-based Rankine Power Conversion Systems. The project will include concept development and normal gravity testing, reduced gravity aircraft flight campaigns and flight experiment definition and development.

In-Situ Resource Utilization Technologies for Mars Life Support

Fire Prevention, Detection, and Suppression


- Prevention is the first line of defense against fires in any vehicle design
 - Crew Exploration Vehicle, Habitat, EVA systems
- Acceptance criteria for material flammability in reduced gravity is generally unknown
 - Current methods are *thought* to be conservative but ...
 - Margin of safety is unknown and varies with gravity level
 - Over-design based on presumed material flammability increases system mass
- Material flammability risks must be considered in the selection of atmospheres for exploration vehicles and habitats
- False positive (nuisance) alarms on ISS require crew action and reduce confidence in fire detection and suppression (FDS) system
- Spacecraft fire suppression and response based
 on terrestrial experience and techniques
 - Limited incorporation of fire characteristics in reduced gravity
- Suppressant effectiveness for reduced gravity fire scenarios hasn't been quantified

- Material flammability assessment requirements are written into vehicle specifications
- Performance of advanced detection and suppression systems is insufficient for down-select/design using relevant lowand partial-gravity data

In Situ Freeform Fabrication Technologies

Fused Deposition Modeling

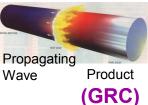
ABS PC PPSF AI2O3 Si3N4 **ECLSS UPA Distillation** Assembly Unit Gear (Compresso

Electron Beam Freeform Fab

Self-Propagating High-Temp Synthesis

Aluminum Titanium Alloys

Ti-6AI-4V (LaRC/JSC)


In Situ SFF Deliverables

roject Plan Summary	Collaborators	<u>FY '05</u>	<u>FY '06</u>	<u>FY '07</u>	<u>FY '08</u>	<u>FY '09</u>	<u>FY '1</u>
abrication echnologies							
A. Combustion	GRC, Purdue	T	\diamond	\diamond	\diamond	\diamond	T
Synthesis Parts	Univ, Col		Optimize	Ceram/	Prototype	KC-135	
and Tools for	School of	TRL 4	Design	Glass		Demo	TRL
B. Electron beam	LaRC, JSC	V	\diamond	\diamond	\diamond	V	
reeform			KC-135	Portability	Lrg Struc	:	
abrication		TRL 3	Demo		Repair	TRL 5	

Refractory carbides, borides, silicides, inter-metallics, composites, FG mat'ls

Initial Mixture

NASA/CP-2004-213205/VOL1

How will we conduct our Business?

- Low TRL work through competitive NRAs
 - Long lead time items
- Rapid Technology Development Teams
 - Multi-disciplinary teams with clear objectives and deliverables
 - Mature technology to TRL 6
- Directed Research
 - Focused problems

There will be a healthy balance between intramural and extramural work.

 S: Separator D: Data System K: Chemistry C: Collaboration 					Proje Proje Proje Miles Resp	ct nmbr. ct Rapid Development of ISS Water Quality Sensors ct code ct manager toneplan name Milestone Plan onsible Supervisor oved by			
Planned	s	D	к	с	Code	Milestone			
6/1/04				\bigcirc		Funding Received			
8/31/04				, Č		Kick-off Mtg and Req Review Completed			
12/31/04	(S1)					Air-Water Separators Development Completed			
12/31/04	T	r®1~				PC-based data system Development Completed			
12/31/04			~®#			Reagentless Calibration Development Completed			
12/31/04			~@J			Reagent Packaging Subsystem Completed			
4/30/05						SubsystemTesting and Refinement Completed			
6/30/05	-	(3)				KC-135 Subsystem Testing Completed			
8/31/05				r Å		Subsystem Evaluation Review Completed			
12/31/05	3 - / -					Bubble Mitigation Tech Refined & Selected			
12/31/05	T	<u>г@</u>	/			PDA Data System Development Completed			
12/31/05		$\left \right $	~®•[CSPE Methods Selected			
12/31/05						Reagent Shelf-life Tests Completed			
3/31/06	(Saple	<	-			Integrated Prototype Design Completed			
5/31/06	—		>>	r ©5		Prototype Design Review Completed			
9/30/06	(S5)e-		/	_		Fabricate Integrated Prototype Fabricated			
9/30/06	T	,- ⊡•∕	1			Barcode Scheme Development			
12/31/06	لين ال	,	- 1			Integrated Prototype Ground Testing Completed			
12/31/06	-				Draft QA & Operating Procedures Prepared				
3/31/07				\$ 66		KC-135 Prototype Testing Completed			
5/31/07				ð		Final Report and Prototype Delivered			

Milestoneplan