
.

HADL: HUMS ARCHITECTURAL DESCRPTION LANGUAGE
R.Mukkamala Y. Admfi N Aganval S. Gullapalli P. &mar P. Sundaram

Department of Computer Science, Old Dominion University, Norfolk Virginia

Abstract
Specification of architectures is an important

prerequisite for evaluation of architectures. With
the increase m the growth of health usage and
monitoring systems (HUMS) m commercial and
military domains, the need far the design and
evaluation of HUMS architectures has also been on
the increase. In this paper, we describe HADL,
HUMS Architectural Description Language, that we
have designed for this purpose. In particular, we
describe the features of the language, illustrate them
with examples, and show how we use it in
designing domain-specific HUMS architectures. A
companion paper [15] contains details on our
design methodology of HUMS architectures.

Introduction
Architecture of a system specfies its

components as well as the intemctions among the
components. In particular, it deals with stnrctural
issues such as the organization, comjxmedfimction
distribution, and communications. Often,
architectural specifications include protocol
specifications describing the system behavior and
the details of component interactions.

Prior to implementing an architecture
(software or hardware), it is important that we study
its characteristics either through analysis and/or
simulation. In part~cular, with the quick turn-around
time expected in most of today's commercial
applications, the archikcbd simulation is even
more important [7].

The first step in the analysis or simulation of
an architecture is architectural specification. In fact,
when developing domain-specific architectures, it is
desirable to store the available architectures (i.e.,
their specifications) in a design library. Thus,
whenever an architecture needs to be developed for
a new application, the available architectures could

be analyzed for its suitability, and the new
architecture arrived at [q. Several architectmal
description languages (ADL) have been described
in literature to meet the specification needs of
applications in different environmenb.

In recent studies, monitoring the health of
certain aerospace structures has been shown to be a
key step in reducing the lifecycle costs for structural
maintenance and inspection [13,14]. Since the
health of the structures ultimately determines the
health of a vehicle, health monitoring is also an
important prerequisite for improved aviation safety.
The need for developing architectures for integrated
structural health monitoring has been discussed m
r131-

For the last few years, we have been
investigating some of the key characteristics of
architectures for health and usage monitoring
(HUMS) of aerospace structures. As part of this
research, we have been looking into domain-
specific architectures. For example, the HUMS
architectures for battleships are different fiom those
of HUMS for aircrafts. Similarly, HUMS for
aircrafts are different fiom HUMS for helicopters.
In order to maximiz the benefits of architectural
reuse, we have arrived at a design-expert system
that uses a database of existing architectures to
arrive at new architectures [15]. One of the major
challenges in this effort is the efficient storing,
retrieval, and evaluation of architectures in the
database.

Keeping this in mind, we have defined a new
architectural language called HADL or HUMS
Architectural Definition Language. It is a
customized version of xArch/ f lL [4]. It is based
on XML and, hence, is easily portable fiom domain
to domain, application to application, and machine
to machine. In addition, specifications written in
HADL can be easily read and parsed using the
currently available XML parsers. Thus, there is no

28

need to develop a plethm of software to support
HADL.

In this paper, we descrii HADL and illustrate
its use in specifjrlng architectures for the HUMS
domain. The paper is orgamzed as follows. In
section 2, we summarize existing work in the area
of architectural description languages. In section 3,
we provide a brief summary of HUMS architectures
including reference architedmt. Section 4
summarizes the fa- of HADL. section 5 briefly
summarizes the use of HADL based specifications
in our design effort. Finally, section 5 describes
fbture work

Related Work
As discussed in the intr-on, specification

of an architecture is an important prerequisite for
architectural design and evaluation. For this reason,
several architectmal description languages (ADLs)
exist in current literature. Wright [2], Rapide [SI,
Aesop [12], xArcWxADL [4], and VHDL [5,11] are
a few example ADLs. All these languages have
their own syntax and their own compilers. Although
all of these languages are concerned with
architectural design, each provides certain
distinctive capabilities. For example, Aesop
supports the use of architectural styles [12];
ADAGE (Avionics Domain Application Generation
Environment) supports the description of
architectural hmeworks for avionics navigation
and guidance [11; MetaH provides specific guidance
for designers of real-time avionics control software
[17]; C2 supports the description of user interface
systems using a message-based style [lo]; Rapide
allows architectural designs to be simulated, and
has tools for analyzing the results of those
simulations [SI. Some of these ADLs are d e s c r i i
below.

VHDL (Very High Speed Integrated Circuit
(VHSIC) Hardware Description Language) is a
high-level VLSI design language with which we
could draw designs of digital hardware that will
enable us to specifjl designs and simulate these
designs to produce mostly complete systems [3,5].
These systems incorporate sUacient details and
help testing hardware systems for correctness. One
of the main uses of VHDL is to describe the
structure of a system. It has been highly successful

in its domain due to its reusability and robustness.
Its main disadvantage is that it is too restrictive and
cannot be extended to other domains for similar
Purpose-

Acme is another architectund description
language developed at the Carnegie-Mellon
University [6]. Its main goal was to provide a
common language that could be used to support the
interchange of a r c h i n 1 descriptions betweem
varieties of archiktural design tools [q. One of the
main advantages of Acme is that it is simple to use.
It also provides the user with a representation for
describing, storing and manipulating the designs
produced. It also describes the architectures very
efficiently and elegantly by having its own set of
language constructs for describing architectmil
structure, types and styles. Its main disadvantage is
that it is not applicable to all applications.

Darwin is a language for describing
hierarchical architectures for systems [9]. Its
strengths include the ability to model hiea-iucbically
constructed systems and systems that are distriiuted
across many machines. Darwin also has limited
support for dynamism through the delinition of
structures that can be dynamically instantiated. It
has both a component based description and a
graphical representation.

XArch/sADL is a standard, extensible XML-
based representation for software architectures [4].
It is probably the first ADL that mtroduced the
notion of using XML to speclfl architectures.
According to [4], xArch specifically provides the
following features: (i) xArch is a standard,
extensible =-based representation for software
architectures; (ii) It provides a common core XML
notation for architectures that can serve: as a simple
stand-alone representation for architectures.
Specifically, xArch provides a common set of bare-
bone features that can be used to model an
architecture. In addition, it can be used as a starting
point for other, more advanced =-based
architectural notations. HADL draws its inspiration
fiom xArch.

HUMS Architectures
Typical HUMS architectures consist of sensors

at the lowest level. The sensors generate data

29

(analog or digital) representing the health of the
components that they are monitoring. The sensors
are cormected to transducers that convert the sensor
data to digital form. The digi t id data is now
storedprocessed by several high-level processors.
A reference architecture for HUMS is shown in
Figure 1 [13,14]. It is divided into three levels. The
lower layer deals with the sensors; the middle layer
handles the data starage and refried, and the upper
layer deals with data processing (applications) and
interaction with the users.

I User InterEdce 1
t

Processing and Control
High-level I t
HuMSkereelserviCes

T Low-level Interface

Low-level Sensor
Processing and Control

Figure 1. HUMS Reference Architecture

While figure 1 descrii the required services
in a hierarchical fashion, it does not provide
sufficient details for us to build a HUMS system.
For this purpose, we need an architectural
description with details of the system components
and the links that interconnect them. In other words,
we need a more detailed description with
implementation details for each layer along with
inter- and intra-level connections of the
components. Typically, the links are either point-to-
point connections or broadcast media such as buses
or rings. In this paper, we d e m i the use of

HADL for the purpose of spec@ing such low-level
architectural details.

Description of HADL
The core elements of HADL are component

instances, connector instances, and i n e e
instances. In addition, we define links and network
types, which are of connector type, to simplify the
specification of HUMS architectures. They are also
the basic elements of xArch [4]. All these elements
are necessary and sufficient to design HUMS
architectures.

As in xArch, XML and XSD are used to
describe an architecture in HADL. While the actual
representation of the architecture is done in XML,
XSD expresses the restrictions placed on the
architecture. According to W3C consortium, “XSD
(XML Schema Definition) specifies how to
formally describe the elements in an J3xtaiile
Markup Language (XMLJ document. This
description can be used to venfL that each item of
content in a document adheres to the description of
the element in which the content is to be placed.
[18]” In other words, it acts as a compiler for the
XML representation. In the XSD schema-file, all
the possible data types that are necessary are
considered. Through this schema, the manner in
which these data types are to be defined is stated.

Components
These are the building blocks for any

architecture. Every part of the architecture can be
represented using this data type. This element type
represents the sensors, transducers, and other
computational units. This can contain one or more
elements of type componmtInstance.
ComponentInstance has a provision for every
component to have an ID attribute by which the
component can be identified. It also has a name
element through which it is possible to assign a
specific name to the component. Every component
has an interface ID that facilitates connections to
other components in the architecture. Components
can be simple or complex. A simple component
(type: simple) in HUMS can be one of the
hdamental units like sensors, transducers, nodes,
etc. A complex component (type: arch) can be a
sub-architecture that is a combination of simple
components with connectors, intehces, and

30

associated links. consider the following example
component.
ComponenenttP

<componentlnstance id=" 1">
<description>

name="StXlSOrl"
properties{requestRate:float=l7.0;

sourceeode=Lib/SSe.c }
C/desCription>

</componentbitan-
</Components>

Here, a sensor component is being defined by its id
(l), name (sensorl), and its Propemes. The
properties include the maximum rate of requests
that the sensor can respond to and the location of
code that describes its functionality. The source
code is often helpful in detailed simulation or
analysis of an architecture.

Connectors
Connection instance provides users the

capability to establish an interconnection between
different components. This element type represents
coordination of activities or interactions between
components. This enables the user to define the
type of network (protocol and topology) to be used
like the Ring, Star, Bus or RPC (Remote Procedure
Call). Through the network element, it is possible to
define all the components that are being connected
and the order in which they are being connected.
For example, consider the example m figure 2. This
describes a connector instance with id=l. It is
configured as a "Star" configuration (A few basic
configuration types are defined a priori). In
addition, it specifies the components involved. In
this example, three components were involved.
Each component is also specified. For each
connector, and interface is also specified. In
summary, a COM~X~CX instance consists of network
type, components, and an interface definition.

Interfaces
In any architecture, a component is connected

to one or more components. Interhces specify the
behavior of a component (or a connector) with
respect to the external entities. It indicates the
correlation between the component and the external
environment. In Figure 2, the interface is simply
specified as "star." In this case, it is assumed that

the interface description of a star is known a priori
and hence it is not explicitly specified.

Links
Links are used for inmnnection between

various componen~. Right now in the case of
HUMS, three types of links are considered: RPC
lmk, bus link, and cluster link. RPC link is a one-to-
one link having one component connected to
another component. The bus link makes it possible
to have one-to-many connections. Cluster link
represents a cluster of components such as nodes.
Consider the example in Figure 2. The connector
has three components connected using three linlrs.
The link specifies the type of components being
connected. In this case, all three components are of
type "arch" reflecting the fact that they are sub-
architectures (and not simple components). The id
of each component that a link connects is also
specified (e.g., sl , s2, s3).

Network type
In HUMS architectures, it is common that the

star, ring, or bus topologies. These are universal
standards for network connections. Hence, we have
introduced the network type to spec* the topology
of a connection. This provision helps us reduce the
duplication due to repeated specification of these
topologies repeatedly in an architectmil
specification. Instead, just the type of network
needs to be defined. (In case a new topology is
introduced, it could be defined once using other
HADL constructs and repeatedly used later.)

various monitoring systems will be COLMecfed m

Apart from the above, there are other types such
as type of data medium, mobility (mobile or
stationary), sensor type, etc. by which the
components in an HUMS architecture may be
specified.

Example Architecture
In this section, we first illustrate how

different attributes of HUMS components may be
specified using HADL. We then use an example
system to further illustrate HADL features.

Consider the sensor attributes in Figure 3. Using a
set of predefined tags (e.g., medium, protocol,
mobility, weight, peak data rate, etc.), the attributes

31

~/Connectorlnstance>
<Connectorlnstance id="l+

<Network>
<Type>STAR<tType>
<Components-l nvolved >

canchorlnterface xlink:type="arch" xlink:href="#sl " />
eanchorlnterface xlink:type="arch" xlink:href="#s2" />
<anchorlnterFace xldinkAype="arch" xlink:href="#s3" I>

</Cornponents-lnvdved>

dsajptbn>name="staF<ldescription>

</Network>
<Interfacelnstance id=Y">

</lnteifacelnstance>
4Connectorlnstance

Figure 2. llhtmbo n of a Connector, link and interface constructs

<HUMS:Transducer>
~HuMs:Identity> </HuMS:Identity>

<HUMS:FunctiW -4HUMS:FunCtion>
<HUMS:Typex/HvMs:Type>
<HUMS:Aumacy-A-y>
~HuMs:Pow-Power>
-4IUMS:Weight></HUMS:WeighD
~ H U M S : A v g D a t a R a ~ S A v g D a t a R a W
<"MS:Pea lcDataRa~:PeakDataRaW
< H u M s : B u f f e r S p a c e S B & d p a c e >

<HUMS:ReceivingPowerXlHUhB:ReceivingPower>
owaWHUMS:TransmittingPower> . . <HUMS:T-

-4HUMS:TransdUcer>
Figure 4. Transducer attributes in HUMS

32

of available sensors can be completely specified
and stored in the design library. Similarly, the
attriiutes of transducers can be specified (as in
Figure 4) and stored m the component database or
design library. In addition, a user may specify
design constraints as input to designing an
architecture. For example, Figure 5 specdies the
constraints on networks that may be used in an
architecture. Such consmints may also be specified
for other components m links. €n this manner, the
user input i n f a - component specifications,
as well as other subsystem and systemarchitectures
maybe specified and storedin the designlibmy.

Now, let us look at a simple HUMS architecture
shown in Figure 6. It has three temperature sensors
(Sl-S3) connected through a ring and three fiber-
optic sensors (S4-S6) connected through a bus. The
ring and the bus are connected to another bus. Thus,
the data fiom all the six sensors is put out on a bus.
(For simplicity, we have not included any
transducers). A processor, also connected to the
bus, processes the data. A user's terminal accesses
the processed data. It is also connected to the bus
through which it accesses the processor data. The
HADL specification for this example architecture is
shown in Figure 7. The specification describes the
components, the processor, the ring, and the two
busses. It also specifies the order in which the
components are connected to the networks. The
specification for the components also includes
references to the code that describes their behavior.
This is useful in analysis or simulation of the
architectures. Similar references could be included
for any link or co~ector types.

Using HADL specification in Domain-
specific Architectures

Our primary objective in developing HADL
was to use it as a tool in designing domain-specific
architectures. In particular, in our project, we are
working on methods to develop domain-specific
architectures for HUMS. Our approach is as
follows.

For the particular domain under consideration,
several architectures may have been developed
a priori. In fact, for large systems (such as ships
and aircrafts) we assume that a variety of
architectures have been developed for several

sub-system (e.g., engine subassembly, fan and
cooling subsystem, etc.). Thm architectures
are specified using HADL and stored in a
design library.

The user specifies the system requirements such
as location of sensors, expected data rates,
expected performance metrics (e.g., response
time, availability, etc.), and constraints (e.g.,
weight limitations) using HADL.

The user also may spec* (if necessary)
constraints on components that may be used in
the architecture. For example, clue to electro-
magnetic interference, the user may only
suggest the use of fiber4ptic networks with
certain data rates. Such limitations are also
expressed in HADL and provided to the
designer.

The design explorer reads the user inputs (in
HADL), parses it, and then using its logic
searches the design li'brary for subsystem and
system specifications available. It then uses the
evaluator module to evaluate the suitability of
the retrieved architectures in meeting system
reqllir-ts.

Since most architectures may only be available
in skeleton forms, the design explorer needs to
derive detailed architectures fiom the chosen
skeletal architectures. Details of this step are
explained in 1151.

'

Future work
The HADL development is currently in its

early stages. So far we have used it to express only
simple HUMS systems. As we experiment with
more complex architectures, we may identify more
attributes and features needed in HADL to make the
architectural specification simple and complete.
However, h m our current experience, as well as
the experience of other ADL developers, we are
confident that the XML-based approach to
specification is far more flexible than other
approaches to specification. We are also developing
graphic-intdaces through which user can provide
input which is then converted to HADL finm.

In summary, the work reported in this
paper is work-in-progress. Each module of our

33

<constraints>
<Type>BUS<IType>
<Category> device net </category>
<data r a t e -05 4data raw
<bittime>2 *ittime>
~maxlul~1oo</nmxlength>
<max no of nodes%44max no of nodes>
<ma~r data s i n 9 47184max data size>
<minmsg size47 4minmsg size>

4constraints>
<constraints>

<TWBUS<CTW
<Category> Etbernet<category>
aatarateP10 4dataraw
<bit time.01 *it time >
<max lmgth>25OWmax length>
<max no of nodes>1ooo<hnax no of nodes>
<max data size> 15Wmax data s k t 9
<min msg s W 7 2 </min msg size>

</conStrainw
<constrainW

(Type>BUS(rType>
<Category> control neWcategory>
<dataraw5 </dataraw-
<bit w . 0 2 </bit time >

<max no of nodesWWmax no of nodes>
<max data size> 5044max data size>

~ m a x l e n g t h > 1 o o o < / m a x l ~ ~

<min msg Size>74min msg size>
4constraiIlw

Figure 5. Examples of specifying network constraints in HUMS architectures

s1

Figure 6. Example HUMS architecture

34

Figure 7. HADL specification for the Example HUMS architectwe

<?xml version="l.O" encoding="UTF-8" ?>
CHumsArch xmlns="http://www.odu.edu/~sgullapa/instance2.xsd"

xmlns: instance="http://www.odu.edu/~sgullapa/instance2.xsd"
xmlns:xlink="http://www.w3.0rg/1999/xlinkn
xmlns:xsi="http://www.w3.org/2O0O/ lO/XMLSchema-instance">
<ArchInstance id="O">

< ArchType>Simple</ArchType>
<description>SampleDesign</description >
< Num~Components>8</Num~Components~

<componentI nstance id ="in >
<Corn ponents>

<deScription>name='*sensorl" Properties < requestRate : float =
17.000; sourcecode : string = "CODE-
UB/tempsensor.c") </description >

</componentInstance >
<componentInstance id ="2" >

<description>name="sensor2" Properties < requestRate : float =
17.000; sourcecode : string = "CODE-
UB/tempsensor.c")</description>

</componentInstance>
- - <componentInstance id="3">

<description>name="sensor3" Properties < requestRate : float =
17.000; sourcecode : string = "CODE-
UB/tempsensor.c")</description>

</componentInstance>
- - <componentInstance id="4">

<description>name="sensor4" Properties < requestRate : float =
500.000; sourceCode : string = "CODE-
UB/fibersensor.c")</description >

</componentInstance >
- - <componentInstance id = "5">

~description~name="sensor5" Properties < requestRate : float =
500.000; sourceCode : string = "CODE-
UB/fibersensor.c") </description >

</componentInstance>
- - <componentInstance id="6">

<description>name="snsor6" Properties < requestRate : float =
500.000; sourcecode : string = "CODE-
UB/fibersensor.c")</description >

</componentInstance>
- - <componentInstance id ="7" >

<description>name="collectingNode" Properties { collectRate :
float = 1000.000; sourcecode : string = "CODE-
UB/CollectNode.c") </description >

</componentInstance>
- - <corn ponentInsta nce id = "8" >

<description>name="UserInput" Properties {InputRate : float =
34.000; sourcecode : string = "CODE-
UB/UserInput.c")</description>

35

</componentI nstance>
</Components>

- - <ConnectorInstance id="9">
- - <Connections>

- - <Network>
<Type>Ring</Type>

- - <Components-Involved>
<anchorInterface xlink:type="simple" xlink: href="#l" />
<anchorInterface xlink:type="simple" xlink:href="#2" />
<anchorInterface xlink: type="simple" xlink: href= "83" />

</Components-Involved >

- - <InterfaceInstance id="lO">
</Network>

<description>name ="Out"</description>
</InterfaceInstance>

</ConnectorInstance>

- - <Network> .
- <Con nectorInsta nce id ='I 11 " >

<Type > Bus</Type >

-

- - <Components-Involved>
CanchorInterface xlink:type="simple" xlink: href="#4 />
<anchorInterface xlink:type="simple" xlink: href="#S" />
CanchorInterface xlink:type="simple" xlink: href="#6" />

</Components-Involved >

- - <InterfaceInstance id="12">
</Network>

<description >name ="Out" </descri ption >
< /InterfaceInstance >

</ConnectorInstance>

- - <Network>
- - <ConnectorInstance id="13">

<Type>Bus</Type>
- - <Components-Involved>

CanchorInterface xlink:type="simple" xlink: href="#7" />
<anchorinterface xlink:type="simple" xlink: href="#8" />
xanchorInterface xlink:type="simple" xlink: href="#lO" />
<anchorInterface xlink:type="simple" xlink: href="#lZ" />

</Corn ponents-Involved >
</Network>

</Con nections>
c/ConnectorInstance>

</ArchInstance>
c/HumsArch >

36

architectural design system is posing a number
of interesting design and implementation
issues. We should have the complete system in
operation within the next one year.

References
[11 A Rapide-1.0 Definition of the ADAGE Avionics
System, November 1994,82-page technical report.

[2] Allen, R J., A formal approach to software
architecture, PhD. Thesis, Chrnegie Mellon
University, CMU Technical Report CMU-CS-

[3] Christen, E., Bakalar, K., Dewey, A.M., and
Moser, E., Analog and Mixed-signal modeling
using the VHDL-AMs language, 36"k Design
Automation Conference, New Orleans, June 1999.

97-144, May 199%

[4] Dashofy, EM., Hoek, A.v.d., and Taylor, RN.,
A Highly-Extensiile, =-Based Architecture
Description Language, Proceedings of the Working
LEEEHFIP Confmence on &jiware Architecture
(K7CSA 2001), Amsterdam, The Netherlands,
August 28-3 1,200 1

[5] IEEE Standard VHDL Language Reference
Manual, 2002.

[6] Garlan, D., Monroe, R T., and Wile, D., Acme:
An Architecture Description Interchange Language,
Proceedings of CASCON '97, November 1997.

[7] Kathail, V., Aditya, S., Schreiber, E,
Ramaktisha Rau, B., Cronquist, D., and Si-
M., PIC0 (program In, Chip Out):
Automatically Designing Custom Computers,
Computer, vol. 35, no. 9, pp. 3947, September
2002.

[8] Luckham D. C. and Vera, J., An Evmt-Based
Architecture Definition Language, IEELT
Transactions on Sojiware Engineering, Vol. 2 1, No.
9, pp.717-734. S v . 1995.

[9] Magee, J., Dulay, N., Eisenbach, S., and
Krammer, J., Specrfymg distributed software
architectures, 5& ESEC'95, Sitges, Spain, pp. 137-
153, September 1995.

[lo] Medvidovic, N. and Taylor, RN., A
Framework for Classifjmg and Comparing

htlD://www.ics.uci.edu/
-neno/dsVdsl97.ht~nl##Med97.

Architecture Description LaQWge%

[ll] Medvidovic, N., et al., Using Objec t~ented
Typing to Support Architectural Design in the C2
Style, Proceedings of the ACM SGSOFT '96
Fourth Symposium on the Foundations of &@ware
Engineering. pp. 24-32, ACM SIGSOFT. San
Francisco, CA, October 1996

[121 Monroe, R. T. and Garlan, D., Style Based
Reuse for Software Architectures, Proceedings of
the 1996 International Conference on software
Reuse, April 1996.

[13] Mukkamala, R., Distributed scalable
architectures for health monitoring of aerospace
structures, I Digital Avionics System Conference
(DASC'OO), Philadelphia, PA, October 7-13,2OOO,
pp. 6.C.4.1-6.C.4.8.

[14] Mukkamala, R., Bhoopalam, K., and
Dammalapati, S., Design and analysis of a scalable
kernel for health management of aerospace
structures, 2dik Digital Avionics System Confieme
(DASC'OI), day to^ Beach, FL, 15-19 Oct. 2001,
pp. 3.D.2.1-3.D.2.10,2001.

[15] Mukkamala, R., Adavi, V., Agarwal, N.,
Gullapalli, S., Kumar, P., and Sundaram, P.,
Designing Domain-specific HUMS Archi-=:
An Automated Approach, 22"1 Digital Avionics
System Confwence (DASC'O3), Indianapolis, IN,
Oct. 2003 (to appear).

[16] Robbins, J.E., et al., Integrating Architecture
Description Languages with a Standard Design
Method, Proceedings of the 1998 International
Conference on &$ware Engineering. pp. 209-2 18,
ACM Press. Kyoto, Japan, April 1998

[171 Vestal, S., M e w Avionics Architecture
Description Language, Honeywell, MN,
http://www .htc.honemell .codmetah

[181 W3C XML Schema (XSD), www.w3.ord
XMUSchema.html

37

