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Abstract '

Various artificial compressibility methods for calculating the three-dimensional
incompressible Navier-Stokes equations are compared. Each method is de-
scribed and numerical solutions to test problems are conducted. A compari-
son based on convergence behavior, accuracy, and robustness is given.

1 Introduction

The difficulty in computing solutions to the incompressible Navier-Stokes sys-
tem of PDEs lies in satisfying the divergence-free velocity condition. Artificial
compressibility methods, developed by A. Chorin [1], provide a mechanism
to march in pseudo-time towards the divergence-free velocity field such that
mass and momentum are conserved in the pseudo steady-state.

The classical artificial compressibility method transforms the mixed ellip-
tic/parabolic type equations into a system of hyperbolic or parabolic equa-
tions in pseude-time, which can be numerically integrated. The method has
been generalized to curvilinear coordinates and used for various applications,
Kiris et. al. [3].

Since the publication of Chorin’s original paper many alternative forms
of artificial compressibility have been developed. These methods include a
generalized preconditioning matrix to equalize the wave speeds and the use of
differential preconditioning, Turkel and Radespiel [7], as well as the addition
of artificial viscosity such as an artificial Laplacian of pressure term in the
continuity equation, Shen [6]. We present a direct comparison of four different
versions of the artificial compressibility method on a series of test problems.

2 Incompressible Equations and
Artificial Compressibility
The governing equations for incompressible, constant density and constant

viscosity flow written in conservative form in generalized coordinates with
the density absorbed by the non-dimensionalization of the pressure term are
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Classical and Generalized Artificial Compressibility

The classical artificial compressibility formulation is  derived by introduc-
ing an artificial compressibility relation in the continuity equation. This is
achieved by adding a preconditioned pseudo-time derivative of the primitive
variables @ to equation 1. The generalization of this approach is to begin
with the conserved variables W = (p, pu, pv, pw)T and use the chain rule to
derive the generalized preconditioned pseudo-time derivative. The classical
preconditioning matrix, I, and the generalized preconditioning matrix, I,
are
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where 8 > 0 is the artificial compressibility parameter.
Artificial Dissipation

To assist in the dissipation of spurious pressure waves we add an artificial
Laplacian of pressure term to the right-hand side of the classical artificial
compressibility continuity equation. This term is scaled by a parameter ¢
and has the affect of adding a second difference artificial dissipation term to

the continuity equation.
Differential Preconditioning

The artificial dissipation described above manipulates the physical dissipation
properties of the PDE system. Alternatively we can manipulate the convective
properties of the system. Following Turkel and Radespiel [7] a pseudo-time
derivative of the Laplacian of pressure can be added to the continuity equation
along with the standard pseudo-time derivative of pressure. This term is
also scaled by ¢ and will have an effect of propagating the low-frequency
components of error more quickly than the high-frequency components which
will be dissipated by the discretization scheme.
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3 Numerical Results

The INS3D code [4],[5],[3] has been adapted to include each of the artificial
compressibility methods described. An implicit line symmetric Gauss-Seidel
relaxation scheme is used with fully-implicit boundary conditions. Iterations
are performed until the residual of the nonlinear system has been reduced nine
orders of magnitude in the {2 norm. Results for 3 =1,10,100 and CFL =1
and CFL = 1000 are provided. For the artificial dissipation method € values
of 1.0-2,1.071,1.0%° are used to scale the Laplacian term. The differential
preconditioned method uses values of € = 1.0~1,1.07°,1.0%. For each test-
case the inlet velocity is specified and a constant pressure is enforced at
the outlet. P = 1,2,3,4 denotes the version of the artificial compressibility
method.

Test 1: Inviscid Flow in a Square Duct

Each method is used to calculate the inviscid flow in a square duct with
dimensions 10 x 1 x 1 non-dimensional units. The exact solution is Q@ =
(0,1,0,0)7. A grid of dimension 33x9x 9 is used. Table 1 displays the number
of iterations required. Each of the methods computed the correct solution up
to double precision. For 3 = 1 the generalized preconditioned method has the
best convergence. For 8 > 1, the classical has the best convergence rate with
the exception of CFL = 1000 where the differential preconditioning scheme
is slightly better. :

Table 1. Inviscid square duct: Number of iterations for residual reduction of 9
orders of magnitude in the discrete L% norm.

P=1{P=2 P=3 P=4
CFL| B €=0.010.10 {1.00 |0.10}1.00/10.0
1} 1220 1209 325 {1876{>9000{269 (875 [6992
10|151 {160 158 |266 |1874 |165 {309 {2290
100(242 |261 243 {250 (328 1246 |291 {1093
1000] 1212 {202 314 |1867|>9000|212 {213 {219
10{137 {137 145 (255 (1863 (137 |137 {131
100{238 1255 239 1242 {304 238 (238 {238

Test 2: Viscous Flow in a Circular Pipe

A simple viscous flow in a circular pipe of radius one and length ten is com-
puted. A Reynolds number of 1000 is used for which an exact solution is
derived. Grids of dimension 17x 0x 0, 223 x17x 17, and 65 x 32 x 33 are used,
Each method is verified to produce second order accurate results for 7 = 10.
Figure 1 plots the normalized {2 residual for varying 8 and CFL = 1000.
Table 2 displays the number of iterations required to converge on the finest
mesh. The third and fourth methods fail to converge for low CF L numbers
and the artificial dissipation scheme is especially sensitive to the € parameter.
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For high CFL and high 3 the differential preconditioning becomes effective,
but a moderate 3 must be used for accuracy purposes.
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Fig. 1. Viscous Straight Pipe (Grid 65 x 33 x 33, Re = 1000, CFL = 1000):
Comparison of the convergence between preconditioning methods for 8 = 1(left)
and 8 =10 (right). o P=1;0 P=2x P=3,e=10"% + P=3,e=10"";
* P=3,e=10%"0 P=4,e=10"" A P=4,e=10""%x P=4,e=10%"

Table 2. Viscous Straight Pipe: Number of iterations for residual reduction of 9
orders of magnitude in the discrete L? norm.

P=1|P=2 P=3 P=4

CFL| B €=|0.01{0.10 {1.00 |[0.101.00 {10.0

1| 11352 |363 518 |>2500{>2500(399 |1233|>2500
10(290 |301 364 |500 {>2500|374 {1577|>2500

100|734 |743 753 (1044 {1242 [922 [1130]|>2500

1000 1(343 |355 509 |>2500{>2500{343 |343 (345-
10{281 |286 362 |503 |>2500(281 (283 (295

100|744 754 748 {1030 {1210 |[743 |736 (688

Test 3: Viscous Flow in an L-shaped Duct

A more complicated viscous flow in a square duct with a 90° bend is used for
the final test. The geometry used is described in Humphrey [2], where exper-
imental results were obtained for Reynolds number 790. A grid of dimension
65 x 33 x 33 is used. Figure 2 plot the residual for varying 8 and CF'L = 1000.
Table 3 displays the number of iterations required. The symbol * * x* denotes

\
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the method failed to converge.Figure 3 displays a comparison of the different
computed solutions with the experimental data for 8 = 1,10, 100 at 8 = 90°
plane of the curved duct. Robustness is an issue for the third and fourth
schemes. Comparing the experimental data with the computed solutions we
observe that using 8 > 10 leads to poor solution accuracy and 8 = 1 is the
most accurate.

Log, (IR"IVIR®()
tog o (ItR"IIR)

Fig. 2. Viscous Square Duct with 90° bend (Grid 65 x 33 x 33, Re = 790, CFL =
1000): Comparison of the convergence between preconditioning methods for 8 =1
(left) and 8 = 10 (right). 0 P=1;,00 P=2;x P=3,e=10"%+ P =
3,e=10"1* P=3e=10"0 P=4e=101 A P =4e=10%
* P=4e=10".

4 Conclusion

Four variations of the artificial compressibility method have been imple-
mented and compared on a series of test problems. The classical and gen-
eralized artificial compressibility methods have almost identical convergence
rates on each test case for every combination of the CFL and  parameters.
The artificial dissipation and differential preconditioning methods were not
able to converge for all parameters on certain problems showing a lack of
robustuness for these methods. High values of 8 lead to poor accuracy for all
the methods considered. For moderate values of 1 < 8 < 10 the classical and
generalized versions appear to be the most accurate. These two versions will
be evaluated for more complicated engineering applications.
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Table 3. Viscous Square Duct with 90° bend: Number of iterations for residual
reduction of 9 orders of magnitude in the discrete L? norm.

P=1]P=2] [P=3 P=4
CFL| B € =|0.01]0.10 [1.00[0.10[1.00 |10.0
1| 1]697 |655 27641548119999]114] **¥¥ ik
10 341 365 K ofok [ ok ok | ok kok Xk 388 ke { K Kk kK
i— 100 524 594 vk ook | eokokook | ke ok de [k eokok | ok | kadkok ok
1000| 1}693 |653 2760|548319999|693 (699 750
104338 (361 RARR ROk | A% 1338 (339 (344
100(534 kKKK ¢k ook | Kok koK | okokokk 534 1535 [543
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Fig. 3. Comparison of the solution at # = 90° and 8 = 1 (left), 8 = 10 (center),

! and 8 =100 (right). o Exzper; 0 P=1; A P=2;x P=3;e¢ P=4.
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Abstract

Various artificial compressibility methods for
calculating the three-dimensional incompress-
ible Navier-Stokes equations are compared. Each

‘method is described and numerical solutions

to test problems are conducted. A comparison
based on convergence behavior, accuracy, and
robustness is given.
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Introduction

The difficulty in computing solutions to the
incompressible Navier-Stokes system of PDEs
lies in satisfying the divergence-free velocity
condition. Artificial compressibility methods,
developed by A. Chorin [1], provide a mech-
anism to march in pseudo-time towards the
divergence-free velocity field such that Mass
and momentum are conserved in the pseudo

steady-state.

T he classical artificial compressibility method
transforms the mixed elliptic/parabolic type equé—
tions into a system of hyperbolic or parabolic
equations in pseudo-time, which can be nu-
merically integrated. The method has been
generalized to curvilinear coordinates and used
for various applications, Kiris et. al. [2].




Since the publication of Chorin’s original paper
many alternative forms of artificial compress-
ibility have been developed. These methods in-
clude a generalized preconditioning matrix to
equalize the wave speeds and the use of dif-
ferential preconditioning, Turkel and Radespiel
[3], as well as the addition of artificial viscos-
ity such as an artificial Laplacian of pressure
term in the continuity equation, Shen [4]. We
present a direct comparison of four different
versions of the artificial compressibility method

on a series of test problems. These problems

inClude inviscid flow in a square duct, viscous
flow in a circular pipe, and viscous fiow in a

square duct with strong curvature.




Governing Equations

The governing equations for incompressible,
constant density and constant viscosity flow
written in conservative form in generalized co-
ordinates with the density absorbed by the nondi-
mensionalization of the pressure term are

0Q , 0(FE1 — EY) | 0(E>—EY) | 0(Es— EY)
Im -+ -+ + =0, (1
ot 0&1 062 0&3 (1)
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Artificial Compressiblity Methods

The artificial compressibility formulation is de-
rived by introducing an artificial compressibility
relation, |
« D

=g . (2)
where p is the pressure and 8 > 0 is the artificial
sound speed. Using this relation we may add
a preconditioned pseudo-time derivative of the
primitive variables Q to equation 1. Four forms
of artificial compressiblity will be discussed.

e Classical Artificial Compressiblity
e Generalized Artificial Compressibility
e Artificial Dissipation

e Differential Preconditioning




Classical Artificial Compressiblity

The classical artificial compressibility method
uses equation 2 only in the continuity equation.

This leads to the following preconditioned sys-
tem of equations,

aQ O(E; — EY) .
+ m—— at + OE; = 0. (3)

The classical preconditioning matrix is given
by,

_1
@)
[
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Generalized Artificial Compressiblity

To generalize the above approach we start with
the conserved variables W = (p, pu, pv, pw)T.
Using the chain rule and equation 2 we obtain,
oW _ oWoQ _ _ 8Q
or  8Qor  For’

where
I
'p= §01o (5)
_% O O lJ

Substituting ', for ' we obtain the general-
ized precondition system of equations,
oQ 0Q  O(E;—E?) 0

rp‘é? + I 5 —+ 9€, . (6)




Artificial Dissipation

Introducing a finite sound speed into the in-
compressible equations creates artificial pres-
sure waves which must be propagated out of
the solution domain in pseudo-time.

Alternatively the artificial pressure waves can
be dissipated by adding an artificial Laplacian
of pressure to the modified continuity equation

In equation 3. Where the viscous fluxes E’U are
replaced by,

5 ((VE - VENPe, + (V€ - VED)pe, + (VE - VEd)pe,)

7z (V€ - VEug, + (VE - VEDug, + (VE - VEHuy,)

YT 5 ((VE Ve + (VE - VE) g, + (VE - VED )
72 (V€ VEDwe, + (VE - VeR wg, + (VE - VEDwe,)

To obtain,
8@ (L, — E”)

57‘ +dm 8t + o&; =0 (7)

-
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Differential Preconditioning

The classical artificial compressibility method
uses a standard pseudo-time derivative to con-
vect the artificial pressure waves out of the
domain. So both high and low frequency er-
rors are convected at constant wave speeds.
Alternatively, the time derivative of the Lapla-
cian of pressure term can be added to the first
equation in the system. This forces the low
frequecy errors to travel at faster speeds then
there high frequency counterparts. The high
frequency errors will be damped by the dis-
cretization and relaxation schemes.

This produces a system of the form,

0 8@ 8(E¢——E?’)
¢ I -1 Im— 2 =0,
87'[ € ]Q+ m + 852 9
whnere
¢ 0 O O] , R ,
O 00O o 1, %,
I = A = + - X
O 00O | 52 §2 85%
O 0 O O
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Numerical Examples

The INS3D code has been adapted to include each of the artifi-
cial compressibility methods described. An implicit line symmetric
Gauss-Seidel relaxation scheme is used with fully-implicit boundary
conditions. Iterations are performed until the residual has been
reduced nine orders of magnitude in the [° norm. Results for
68 = 1,10,10d and CFL = 1 and CFL = 1000 are provided. For
the artificial dissipation method v€ values of 1.072 and 1.07! are
used to scale the Laplacian term. The differential preconditioned
method uses values of e = 1.0"" and 1.0%1. For each test-case the
inlet velocity is specified and a constant pressure is enforced at the

outlet,
e Inviscid Square Duct
e Viscous Circuiar Pipe

e \Viscous Square Duct with Strong Curva-
ture

12




Inviscid Square Duct

Each method is used to calculate the inviscid
flow in a square duct with dimensions 10x1x1

non-dimensional units. The exact solution is
Q = (0,1,0,0)T. A grid of dimension 33x9x9
is used. The table below displays the num-
ber of iterations required. Each of the meth-
ods computed the correct solution up to dou-
ble precision. For g = 1 the generalized pre-
conditioned method has the best convergence.
For 8 > 1, the classical has the best conver-
gence rate with the exception of CFL = 1000
where the differential preconditioner scheme is
slightly better. P = 1,2,3,4 denotes the ver-
sion of the artificial compressibility method.

CFL | B/e e= | 0.01 0.10 | 0.10 10.0
1 1| 220 209 325 1876 | 269 6992
10 | 151 160 158 266 165 2290
100 | 242 261 243 250 246 1093

1000 1| 212 202 314 1867 | 212 219
10 | 137 137 145 255 137 131

100 | 238 255 239 242 238 238

13




Log, ,(IIR"INIR||)

10 ! i t | I
0 50 100 150 200 250 300
[terations

Grid 33 x9x 9, Re = 1000, CFL = 1000: Plot
of normalized 2 norm residual 8 =1
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Grid 33 x9x 9, Re = 1000, CFL = 1000: Plot
of normalized {2 norm residual 8= 10
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Grid 33 x 9 x 9, Re = 1000, CFL = 1000: Plot
of normalized [2 norm residual 8 = 100
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Viscous Circular Pipe

Viscous flow in a circular pipe of radius one
and length ten is computed. A Reynolds num-

ber of 1000 is used for which an exact solution
is derived. A Grid of dimension 65 x 33 x 33
is used. T he table below displays the number

of iterations required to converge on the finest

mesh. The third and fourth methods fail to
converge for low CFL numbers and the artifi-

cial dissipation scheme is especially sensitive to
the € parameter. For high CFL and high g the
differential preconditioning becomes effective,
but a moderate 8 must be used for accuracy
purposes.

CFL 5 e= | 0.01 | 0.10 0.10 | 10.0
1 1 | 352 363 518 >2500 | 399 >2500
10 | 290 301 364 500 374 >2500
100 | 734 743 753 1044 922 >2500
1000 1| 343 355 509 >2500 | 343 345
' 10 | 281 286 362 503 281 295
100 | 744 754 748 1030 743 688

17
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Viscous Square Duct with Strong
Curvature

Viscous flow in a square duct with a 90° bend
Is used for the final test. The geometry used is
described in Humphrey [5], where experimen-
tal results were obtained for Reynolds number
790. A grid of dimension 65 x 33 x 33 is used.
The table below displays the number of itera-
tions required to converge. The symbol * * xx
denotes the method failed to converge. Ro-

bustness is an issue for the third and fourth
schemes. Comparing the experimental data

with the computed solutions we observe that
using # > 10 leads to poor solution accuracy
and 8 =1 is the most accurate.

P=1 [ P=2 P=3 P=4

CFL Jé] e= | 0.01 0.10 0.10 10.0
1 1| 697 655 2764 | 5481 | 1141 | ®¥x¥
100 524 504 EEF F3 EFEEI EF 3 EFFF3

1000 1| 693 653 2760 | 5483 | 693 750

10 | 338 361 Frokx ] oREkXxE 1 338 344

100 534 EEF 3 EF T I F F P S 534 543
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Grid 65 x 33 x 33, Re = 1000, CFL = 1000:
Plot of normalized 12 norm residual 8 = 10
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Conculsion

Four variations of the artificial compressibility
method have been implemented and compared
on a series of test problems. The classical
and generalized artificial compressibility meth-
ods have almost identical convergence rates
on each test case for every combination of the
CFL and (8 parameters. The artificial dissipa-
tion and differential preconditioning methods
were not able to converge for all parameters on
certain problems showing a lack of robustness
for these methods. High values of 3 lead to

'poor accuracy for all the methods considered.

For moderate values of 1 < 3 < 10 the classical
and generalized versions appear to be the most
accurate. These two versions will be evaluated
for more complicated engineering applications.
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