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Abstract. The plasma dispersion function is computed for a homogeneous
isotropic plasma in which the particle velocities are distributed according
to a Kappa distribution. An ordinary differential equation is derived for
the plasma dispersion function and it is shown that the solution can be
written in terms of Gauss’ hypergeometric function in the form Zκ(ξ) =
iκ−3/2(κ−1/2)F (1, 2κ, κ+1, t), where t = (1+iξ/

√
κ)/2. Using the extensive

theory of the hypergeometric function, various mathematical properties of the
plasma dispersion function are derived including symmetry relations, series
expansions, integral representations, and closed form expressions for integer
and half-integer values of κ.

1 Introduction

Particle distribution functions with power law tails are frequently ob-
served in space plasmas throughout the solar system. In practice, they are
often modeled using Kappa distributions (defined below). The existence of
such nonthermal, non-Maxwellian distribution functions can have profound
effects on wave propagation and transport processes in these plasmas; effects
that are of significant interest in space physics. The kinetic theory of such
processes depends in an essential way on the plasma dielectric function and,
therefore, on the plasma dispersion function.

The purpose of this paper is to derive the plasma dispersion function
for the Kappa distribution in a new way and to investigate its mathemat-
ical properties. This function was derived independently by Summers and
Thorne1 and by Chateau and Meyer-Vernet2 for the special case where κ =
1, 2, 3, . . . It was later derived in the more general case κ > 0 by Mace and
Hellberg.3 These authors all used the technique of contour integration. The
approach taken here is different, being based instead on differential equations.

In order to be as consistent as possible with the formulation of the classical
plasma dispersion function, the definition given here is slightly different from
that of Summers and Thorne1 and Mace and Hellberg.3 To clarify the rea-
sons for doing this, the definition of the plasma dispersion function is briefly
derived from first principles. The resulting dispersion relation for plasma
waves, equation (29), is somewhat simplified in the present formulation.
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Section 2 gives a concise list of the main results of this paper. The
definition of the Kappa distribution is given in Section 3, and the definition
of the plasma dispersion function is given in Section 4. In Section 5, the
differential equation for the plasma dispersion function is derived and the
solution is expressed in terms of Gauss’ hypergeometric function. Symmetry
relations and series expansions are derived in Sections 6 and 7. Integral
representations are derived in Sections 8 and 9. Closed form expressions
for integer and half-integer values of κ are derived in Sections 9 and 10,
respectively.

2 Summary of Results

The important properties of the plasma dispersion function are listed here
for easy reference. These properties are investigated in detail in the sections
that follow. Throughout this paper the power function zα, α ∈ R, is defined
by its principal branch, that is, zα = rα exp(iαθ), where z = r exp(iθ), r ≥ 0,
and −π < θ ≤ π.

Plasma Dispersion Function

Zκ(ξ) =
i(κ− 1

2
)

κ3/2
F

[
1, 2κ, κ + 1,

1

2

(
1 +

iξ√
κ

)]
, κ > 0. (1)

If κ = n is an integer, this function has a single pole of order n at the point
ξ = −i

√
κ. Otherwise, it is analytic with a branch cut from ξ = −i

√
κ to

−i∞ along the negative imaginary axis.

Behavior Near ξ = −i
√

κ

Zκ(ξ) ∼
iπ1/2

2κ−1
√

κ

Γ(κ)

Γ(κ− 1
2
)

(
1− iξ√

κ

)−κ

as ξ → −i
√

κ. (2)

Symmetry Relations

Zκ(−ξ∗) = −
[
Zκ(ξ)

]∗
. (3)

Zκ(ξ) + Zκ(−ξ) =
2i
√

π

κ1/2

Γ(κ)

Γ(κ− 1/2)

(
1 +

ξ2

κ

)−κ

. (4)
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Integral Representations

Zκ(ξ) =
1√
πκ

Γ(κ)

Γ(κ− 1
2
)

∫ ∞

−∞

1

(1 + x2)κ
· 1

(x− z)
dx, Im(z) > 0, (5)

where z = ξ/
√

κ,

Zκ(ξ) = −2κ− 1

κ1/2

(
1 + z2

)−κ
∫ z

i

(
1 + t2

)κ−1
dt, z 6= −i. (6)

Differential Equation

(ξ2 + κ)Z ′′
κ + 2(κ + 1)ξZ ′

κ + 2κZκ = 0, (7)

Zκ(i
√

κ) = i
κ− 1/2

κ3/2
, Z ′

κ(i
√

κ) = − κ− 1/2

κ(κ + 1)
. (8)

Differentiation Formula

dZκ

dξ
= −2κ− 1

κ

[
1 +

(
κ + 1

κ

)1/2

ξZκ+1(ξ)

]
. (9)

Closed Form Expression for κ = n = 1,2,3 . . .

Zn(ξ) = i
(n− 1

2
)

n1/2

Γ(n)

Γ(2n)

n−1∑
m=0

Γ(m + n)

m!

(
1− iz

2

)m−n

, (10)

where z = ξ/
√

n.

Closed Form Expression for κ = n + 1
2

Zκ(ξ) =
1

(n + 1
2
)1/2

Γ(n + 1
2
)

Γ(n)

{
n∑

m=1

Γ(n + 1−m)

Γ(n + 3
2
−m)

z(1 + z2)−m

− 2√
π

(1 + z2)−n−1/2

[
log

(
z +

√
z2 + 1

)
− πi

2

]}
, (11)
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where z = ξ/
√

κ and n = 1, 2, 3, . . .

Series Expansion for |z| < 1

Zκ(ξ) = i

√
π

κ1/2

Γ(κ)

Γ(κ− 1
2
)
(1 + z2)−κ

− 2κ− 1

κ1/2
z

{
1−

(
2κ + 1

3

)
z2 +

(
2κ + 1

3

) (
2κ + 3

5

)
z4 − · · ·

}
, (12)

where z = ξ/
√

κ.

Series Expansion for |z| > 1

Zκ(ξ) =
i
√

π√
κ

Γ(κ)

Γ(κ− 1
2
)

{
1 + i tan(πκ)sgn[Re(z)]

}
(z2)−κ

(
1 +

1

z2

)−κ

− 1√
κ

1

z

{
1 +

(
1

2κ− 3

)
1

z2
+

(
1

2κ− 3

) (
3

2κ− 5

)
1

z4
+ · · ·

}
, (13)

where z = ξ/
√

κ, κ 6= 1
2
, 3

2
, 5

2
, . . ., and the function sgn[Re(z)] is defined by

equation (81).

3 Kappa Distribution

In the astrophysics and space physics literature, the isotropic Kappa dis-
tribution in three dimensions is defined by

fκ(v) = Aκ

(
1 +

v2

κv2
0

)−(κ+1)

, κ > 1/2, (14)

where v = (vx, vy, vz) is the velocity vector, v = |v|, and v0 is some charac-
teristic velocity. The normalization constant is

Aκ =
1

(πκv2
0)

3/2
· Γ(κ + 1)

Γ(κ− 1/2)
=

1

(πv2
0)

3/2
√

κ
· Γ(κ)

Γ(κ− 1/2)
(15)

and is chosen such that

4π

∫ ∞

0

fκ(v)v2 dv = 1. (16)
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The condition κ > 1/2 is necessary for this integral to converge. The Kappa
distribution is closely related to the Beta distribution. In fact, the Beta func-
tion arises when computing the normalization factor Aκ and the statistical
moments. In the limit as κ → ∞, the Kappa distribution approaches the
well known Maxwell distribution e−v2/v2

0 .

The velocity moments of the Kappa distribution are given by

〈vn〉 = 4π

∫ ∞

0

fκ(v)vn+2 dv =
2√
π

(κv2
0)

n/2 Γ(n+3
2

)Γ(κ− n+1
2

)

Γ(κ− 1
2
)

, (17)

where n is an integer and 0 ≤ n ≤ 2(κ − 1). For an arbitrary real power
n ≥ 0, this integral is finite if and only if n < 2κ − 1. In applications, the
equivalent temperature of an isotropic Kappa distribution is defined by the
relation

1

2
m

〈
v2

〉
=

3

2
kBT (18)

which implies

kBT =
1

2
mv2

0

(
κ

κ− 3/2

)
, (19)

where kB is Boltzmann’s constant. The second moment 〈v2〉 is finite if and
only if κ > 3/2.

4 Plasma Dispersion Function

In the Vlasov theory of plasma waves4 the propagation of electrostatic
waves (having E ‖ k) in a homogeneous isotropic plasma is governed by the
dispersion relation εL(k, s) = 0, where

εL(k, s) = 1−
∑

α

ω2
pα

k2

∫ ∞

−∞

∂Fα0/∂u

u− is/|k|
du (20)

is the longitudinal dielectric function and SI units are used throughout. The
index α denotes the different particle species, ωpα is the plasma frequency
for species α, k is the Fourier wavevector with magnitude k = |k|, s is the
Laplace transform variable, and Fα0 is related to the particle distribution
function fα0 by

Fα0(u) =

∫
fα0(v)δ

(
u− k · v

|k|

)
dv. (21)
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The distribution function fα0(v) is normalized to unity.

Spatial isotropy implies f0(v) = f0(v
2), where v = |v|. After a rotation of

coordinates which aligns the vz direction with k, the last equation becomes

Fα0(u) =

∫ ∫
fα0(v

2
x + v2

y + u2) dvxdvy (22)

= 2π

∫ ∞

|u|
fα0(v

2)v dv (23)

and, therefore,
∂Fα0

∂u
= −2πufα0(u

2). (24)

It is usually the case that fα0 has the functional form fα0(v/vα0), where vα0

is some characteristic velocity; consequently, Fα0 = Fα0(u/vα0). Changing to
normalized velocity variables:

u′ =
u

vα0

, F̃ (u′) = vα0F (u′),
∂F

∂u
=

1

v2
α0

∂F̃

∂u′
, (25)

the dispersion relation (20) can be written

1−
∑

α

ω2
pα

k2v2
α0

Z ′
(
α,

is

|k|vα0

)
= 0, (26)

where, after dropping the primes on u,

Z ′(α, ξ) =

∫ ∞

−∞

∂F̃α0/∂u

u− ξ
du =

∫ ∞

−∞

F̃α0(u)

(u− ξ)2
du =

d

dξ

∫ ∞

−∞

F̃α0(u)

u− ξ
du (27)

and, by definition,

Z(α, ξ) =

∫ ∞

−∞

F̃α0(u)

u− ξ
du, Im(ξ) > 0, (28)

is the plasma dispersion function. It is defined for Im(ξ) ≤ 0 by analytic
continuation. Introducing the complex frequency ω = is which is consistent
with Fourier modes of the form ei(k·x−ωt), the plasma dispersion relation takes
the standard form5

1−
∑

α

ω2
pα

k2v2
α0

Z ′
( ω

|k|vα0

)
= 0. (29)
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If fα0 is a Maxwell distribution

fα0(v) =
1

(πv2
0)

3/2
e−v2/v2

0 , (30)

then the evaluation of (23) and (28) yields the well known plasma dispersion
function6

Z(ξ) =
1√
π

∫ ∞

−∞

e−u2

u− ξ
du, Im(ξ) > 0. (31)

If fα0 is a Kappa distribution (14), then the evaluation of (23) and (28) yields

Fα0(u) =
1√

πκv0

· Γ(κ)

Γ(κ− 1
2
)
· 1

(1 + u2/κv2
0)

κ (32)

and

Zκ(ξ) =
1√
πκ

· Γ(κ)

Γ(κ− 1
2
)

∫ ∞

−∞

1

(u− ξ) (1 + u2/κ)κ du. (33)

This is the dispersion function for the isotropic Kappa distribution. It gen-
eralizes the well known result (31) for the isotropic Maxwell distribution.
It is different from the definition of Summers and Thorne1 which was also
adopted by Mace and Hellberg.3 These authors employ an exponent κ + 1
rather than κ in the integrand. Consequently, the function Zκ(ξ) of Summers
and Thorne is more closely related to the derivative Z ′

κ(ξ) of the function
defined here.

5 Representation by Gauss’ Hypergeometric

Function

For purposes of mathematical manipulation, it is convenient to let x =
u/
√

κ in equation (33) and write

Zκ(ξ) =
1√
πκ

Γ(κ)

Γ(κ− 1
2
)

∫ ∞

−∞

1

(1 + x2)κ
· 1

(x− z)
dx, Im(z) > 0, (34)

where z = ξ/
√

κ. Therefore, the calculation of the plasma dispersion function
reduces to the evaluation of the integral

I =

∫ ∞

−∞

1

(1 + x2)κ
· 1

(x− z)
dx, Im(z) > 0. (35)
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It easy to see that this integral converges for all κ > 0. There are two cases
to consider: the case where κ > 0 is an integer, and the case when κ > 0 is
not an integer. The solution in the first case was derived independently by
Chateau and Meyer-Vernet2 and by Summers and Thorne.1 The solution in
the second case was derived by Mace and Hellberg.3 As will now be shown, the
solution for arbitrary κ > 0 is easily obtained by first finding the differential
equation for I(z). This method of approach is an alternative to the method
of contour integration used by the above authors.

Differentiating equation (35) with respect to z yields

I ′(z) =

∫ ∞

−∞

1

(1 + x2)κ
· 1

(x− z)2
dx. (36)

Multiplying this by z and then using the identity

1 +
z

x− z
=

x

x− z
, (37)

it follows that

zI ′ + I =

∫ ∞

−∞

1

(1 + x2)κ
· x

(x− z)2
dx. (38)

Differentiating this equation with respect to z, multiplying the result by z,
and then using the identity (37) yields

z2I ′′ + 4zI ′ + 2I =

∫ ∞

−∞

1

(1 + x2)κ
· 2x2

(x− z)3
dx. (39)

Now differentiate (36) and add the result to the last equation to obtain

(1 + z2)I ′′ + 4zI ′ + 2I =

∫ ∞

−∞

1

(1 + x2)κ−1
· 2

(x− z)3
dx. (40)

Integrating the remaining integral by parts and comparing the result with
equation (38), the right hand side of (40) equals

−2(κ− 1)

∫ ∞

−∞

1

(1 + x2)κ
· x

(x− z)2
dx = −2(κ− 1)(zI ′ + I). (41)

Thus, the differential equation for I(z) is

(1 + z2)I ′′ + 2(κ + 1)zI ′ + 2κI = 0. (42)
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To obtain a unique solution, it is necessary to impose the initial conditions

I(z = i) = I0, (43)

I ′(z = i) =
2κ

κ + 1

iI0

2
, (44)

where I0 is evaluated in Appendix A with the result

I0 = i
√

π
Γ(κ + 1

2
)

Γ(κ + 1)
. (45)

Making the transformation

t =
1 + iz

2
(46)

the differential equation (42) takes the form

t(1− t)I ′′ + (κ + 1)(1− 2t)I ′ − 2κI = 0, (47)

where

I(t = 0) = I0, (48)

I ′(t = 0) =
2κ

κ + 1
I0. (49)

Equation (47) is now in the standard form of the well known hypergeometric
equation.

Recall that the solution of the hypergeometric equation

z(1− z)F ′′ + [c− (a + b + 1)z]F ′ − abF = 0 (50)

with initial conditions

F (0) = 1, (51)

F ′(0) =
ab

c
(52)

is given by Gauss’ hypergeometric function F (a, b, c, z) = 2F1(a, b, c, z). This
is a single valued analytic function of z in the complex plane with a branch
cut from 1 to ∞ along the positive real axis. For fixed z it is analytic in a,
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b, and c separately with the exception of simple poles at c = 0,−1,−2, . . . In
the unit disk it has the series representation

F (a, b, c, z) = 1 +
ab

c

z

1!
+

a(a + 1)b(b + 1)

c(c + 1)

z2

2!
+ · · · , |z| < 1, (53)

which also shows that it is symmetric in a and b. The series terminates if a
or b ∈ {0,−1,−2, . . . }, in which case F (a, b, c, z) is entire because it reduces
to a polynomial in z. The properties of the function F have been thoroughly
studied and documented. Therefore, for all intents and purposes it can be
considered to be a closed form function in the same way that sin(z) and
cos(z) are.

Choosing
a = 1, b = 2κ, c = κ + 1, (54)

equation (47) is equivalent to the hypergeometric equation (50); hence, the
unique solution of (47) is given by

I(t) = i
√

π
Γ(κ + 1

2
)

Γ(κ + 1)
F (1, 2κ, κ + 1, t). (55)

Using (46), a closed form expression for the integral (35) is

I(z) = i
√

π
Γ(κ + 1

2
)

Γ(κ + 1)
F

(
1, 2κ, κ + 1,

1 + iz

2

)
, (56)

which is valid for all κ > 0, in fact, for Re(κ) > 0. Substituting this into
(34), the plasma dispersion function is found to be

Zκ(ξ) =
i(κ− 1

2
)

κ3/2
F (1, 2κ, κ + 1, t), (57)

where

t =
1 + iz

2
=

1

2

(
1 +

iξ√
κ

)
. (58)

It is important to note that the function Zκ(ξ) inherits all the properties of
F (a, b, c, z). Because F (a, b, c, z) has a branch cut from 1 to ∞, the function
Zκ(ξ) is single valued analytic with a branch cut from ξ = −i

√
κ to ξ = −i∞

along the negative imaginary axis. Here, the ξ-plane is the complex frequency
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plane, ξ = is/|k|v0, and the lower half plane consists of all the damped modes.

The behavior in the neighborhood of the singularity ξ = −i
√

κ can be
obtained from the identity7

F (a, b, c, z) = (1− z)c−a−bF (c− a, c− b, c, z). (59)

This yields

F
(
1, 2κ, κ + 1,

1 + iz

2

)
=

(1− iz

2

)−κ

F
(
κ, 1− κ, κ + 1,

1 + iz

2

)
. (60)

Using the formula7

F (a, b, c, 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, c > a + b, (61)

it follows that

lim
z→−i

(1− iz

2

)κ

F
(
1, 2κ, κ + 1,

1 + iz

2

)
=

Γ(κ + 1)Γ(κ)

Γ(1)Γ(2κ)
=

π1/2Γ(κ + 1)

22κ−1Γ(κ + 1
2
)
.

(62)
Therefore, one obtains the asymptotic relation

Zκ(ξ) ∼
iπ1/2

2κ−1
√

κ

Γ(κ)

Γ(κ− 1
2
)

(
1− iξ√

κ

)−κ

as ξ → −i
√

κ. (63)

6 Symmetry Relations and Taylor Expansion

Using the well established theory of the hypergeometric function, the
properties of Zκ(ξ) may be derived with little effort. From the series (53), it
is obvious that for a, b, and c real,

F (a, b, c, z∗) =
[
F (a, b, c, z)

]∗
. (64)

Therefore, replacing ξ with −ξ∗ in equations (57) and (58), it follows that

Zκ(−ξ∗) = −
[
Zκ(ξ)

]∗
. (65)



J.J. Podesta—Plasma Dispersion Function for the Kappa Distribution 12

This relates the values of Zκ(ξ) in the left half-plane to those in the right
half-plane. The classical dispersion function for the Maxwell distribution has
the same property.

From the identity8,9

F
(
2a, 2b, a + b + 1

2
,
1 + z

2

)
=

Γ(a + b + 1
2
)Γ(1

2
)

Γ(a + 1
2
)Γ(b + 1

2
)
F

(
a, b, 1

2
, z2

)
− z

Γ(a + b + 1
2
)Γ(−1

2
)

Γ(a)Γ(b)
F

(
a + 1

2
, b + 1

2
, 3

2
, z2

)
(66)

one has

F
(
1, 2κ, κ + 1,

1 + iz

2

)
=
√

π
Γ(κ + 1)

Γ(κ + 1
2
)
F

(
1
2
, κ, 1

2
,−z2

)
+ 2κizF

(
1, κ + 1

2
, 3

2
,−z2

)
. (67)

Substituting the closed form expression7

F (a, b, b, z) = F (b, a, b, z) = (1− z)−a, (68)

equation (67) takes the form

F
(
1, 2κ, κ + 1,

1 + iz

2

)
=
√

π
Γ(κ + 1)

Γ(κ + 1
2
)
(1 + z2)−κ + 2κizF

(
1, κ + 1

2
, 3

2
,−z2

)
.

(69)
Multiplying this equation by the leading coefficient in equation (57) yields

Zκ(ξ) =
i
√

π

κ1/2

Γ(κ)

Γ(κ− 1
2
)
(1 + z2)−κ − 2κ− 1

κ1/2
zF

(
1, κ + 1

2
, 3

2
,−z2

)
, (70)

where z = ξ/
√

κ. Changing ξ to −ξ (or z to −z) and adding the result to
the last equation yields the symmetry relation

Zκ(ξ) + Zκ(−ξ) =
2i
√

π

κ1/2

Γ(κ)

Γ(κ− 1
2
)

(
1 +

ξ2

κ

)−κ

. (71)

This relates the values of Zκ(ξ) in the upper half-plane to those in the lower
half-plane. In the limit as κ →∞ one recovers the symmetry relation

Z(ξ) + Z(−ξ) = 2i
√

πe−ξ2

(72)
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for the Maxwellian dispersion function.

Using the series expansion (53) for F (a, b, c, z), equation (70) immediately
yields the following series expansion valid for |z| < 1:

Zκ(ξ) = i

√
π

κ1/2

Γ(κ)

Γ(κ− 1
2
)
(1 + z2)−κ

− 2κ− 1

κ1/2
z

{
1 +

(
2κ + 1

3

)
(−z2) +

(
2κ + 1

3

) (
2κ + 3

5

)
(−z2)2 + · · ·

}
.

(73)

Here, the even powers are neatly summed into the first term. If necessary, the
first term can be expanded using the binomial theorem. The series expansion
can also be written in the more compact form

Zκ(ξ) = i

√
π

κ1/2

Γ(κ)

Γ(κ− 1
2
)
(1 + z2)−κ

−
√

π

κ1/2

z

Γ(κ− 1
2
)

∞∑
n=0

Γ(κ + n + 1/2)

Γ(n + 3/2)
(−z2)n, |z| < 1, (74)

however, the coefficients in (73) are much more explicit.

7 Series Expansion for Large z

Begin with the identity7

F (a, b, c, z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−aF

(
a, a− c + 1, a− b + 1,

1

z

)
+

Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(−z)−bF

(
b, b− c + 1, b− a + 1,

1

z

)
. (75)

Applying this to the last term in equation (69) yields

F
(
1, 2κ, κ + 1,

1 + iz

2

)
=

√
π

Γ(κ + 1)

Γ(κ + 1
2
)
(1 + z2)−κ +

iκ

(κ− 1
2
)
z−1F

(
1, 1

2
, 3

2
− κ,− 1

z2

)
+ i

√
πκ

Γ(1
2
− κ)

Γ(1− κ)
z(z2)−(κ+1/2)F

(
κ + 1

2
, κ, κ + 1

2
,− 1

z2

)
. (76)
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In addition, using the identity (68), this simplifies to

F
(
1, 2κ, κ + 1,

1 + iz

2

)
=
√

π
Γ(κ + 1)

Γ(κ + 1
2
)
(1 + z2)−κ

+
iκ

(κ− 1
2
)
z−1F

(
1, 1

2
, 3

2
− κ,− 1

z2

)
+ i

√
πκ

Γ(1
2
− κ)

Γ(1− κ)
z(z2)−(κ+1/2)

(
1 +

1

z2

)−κ

. (77)

Using the reflection formula

Γ(z)Γ(1− z) =
π

sin(πz)
, (78)

the last equation takes the form

F
(
1, 2κ, κ + 1,

1 + iz

2

)
=
√

π
Γ(κ + 1)

Γ(κ + 1
2
)
(1 + z2)−κ

+
iκ

(κ− 1
2
)
z−1F

(
1, 1

2
, 3

2
− κ,− 1

z2

)
+
√

πi tan(πκ)
Γ(κ + 1)

Γ(κ + 1
2
)
z(z2)−(κ+1/2)

(
1 +

1

z2

)−κ

. (79)

In order to get the phases right special care must be taken when combining
the different power functions. This is because, for the principal branch of
the power function, it is not always true that (zα)β = zαβ or zα

1 zα
2 = (z1z2)

α.
However, using the identities

zα+β = zαzβ, (1 + z)α = zα
(
1 +

1

z

)α

, (80)

and

z(z2)−1/2 = sgn[Re(z)] ≡

{
+1 if Re(z) ≥ 0 and arg(z) 6= −π/2

−1 if Re(z) ≤ 0 and arg(z) 6= +π/2,

(81)
which are valid for all z 6= 0, equation (79) can be written

F
(
1, 2κ, κ + 1,

1 + iz

2

)
=

iκ

(κ− 1
2
)
z−1F

(
1, 1

2
, 3

2
− κ,− 1

z2

)
+
√

π
Γ(κ + 1)

Γ(κ + 1
2
)

{
1 + i tan(πκ)sgn[Re(z)]

}
(z2)−κ

(
1 +

1

z2

)−κ

. (82)
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It should be noted that for half-integer values of κ the right-hand side is
undefined. Otherwise, this equation holds for all z 6= 0 in the complex plane
with a branch cut from −i to −i∞ along the negative imaginary axis. For
|z| > 1, the hypergeometric function on the right-hand side of (82) can be
expanded using the series (53) to obtain the expansion

F
(
1, 2κ, κ + 1,

1 + iz

2

)
=

√
π

Γ(κ + 1)

Γ(κ + 1
2
)

{
1 + i tan(πκ)sgn[Re(z)]

}
(z2)−κ

(
1 +

1

z2

)−κ

+
iκ

(κ− 1
2
)

1

z

{
1 +

1
2

3
2
− κ

(
− 1

z2

)
+

1
2
· 3

2

(3
2
− κ)(5

2
− κ)

(
− 1

z2

)2

+ · · ·

}
, (83)

|z| > 1. The factor sgn[Re(z)] ensures that the right-hand side is continuous
throughout the upper half plane. This expansion can be arrived at inde-
pendently using the theory of Laplace transforms as shown in Appendix B.
Substituting (83) into (57) yields

Zκ(ξ) =
i
√

π√
κ

Γ(κ)

Γ(κ− 1
2
)

{
1 + i tan(πκ)sgn[Re(z)]

}
(z2)−κ

(
1 +

1

z2

)−κ

− 1√
κ

1

z

{
1 +

1
2

3
2
− κ

(
− 1

z2

)
+

1
2
· 3

2

(3
2
− κ)(5

2
− κ)

(
− 1

z2

)2

+ · · ·

}
, (84)

which is valid for |z| > 1 and κ 6= 1
2
, 3

2
, 5

2
, . . . It is important to note that this

expansion is exact, not just asymptotic.

8 Integration of the Differential Equation

The differential equation (42) can be written in the symmetric form

d

dz

{(
1 + z2

)1−κ d

dz

[(
1 + z2

)κ
I(z)

]}
= 0. (85)

This has the first integral(
1 + z2

)1−κ d

dz

[(
1 + z2

)κ
I(z)

]
= Cκ, (86)



J.J. Podesta—Plasma Dispersion Function for the Kappa Distribution 16

where

Cκ = −2κ

∫ ∞

−∞

1

(1 + x2)κ+1
dx = −2

√
π

Γ(κ + 1
2
)

Γ(κ)
. (87)

Equations (86) and (87) can be verified by substituting (35) into (86), car-
rying out the differentiation, and then using integration by parts and the
identity (37). Therefore, the solution can be written

I(z) = Cκ

(
1 + z2

)−κ
∫ z

i

(
1 + t2

)κ−1
dt, (88)

where the lower limit of integration is chosen such that

lim
z→i

I(z) = i
√

π
Γ(κ + 1

2
)

Γ(κ + 1)
. (89)

If κ = 1/2, the integral (88) has the closed form solution

I(z) = −2
(
1 + z2

)−1/2
[
sinh−1(z)− πi

2

]
, (90)

where

sinh−1(z) =

∫ z

0

1

(1 + t2)1/2
dt. (91)

Equivalently, this can be written

sinh−1(z) = log
(
z +

√
z2 + 1

)
, (92)

where log(z) is the principal branch of the logarithm. Substituting the result
(88) into (34), the plasma dispersion function can be written

Zκ(ξ) = −2κ− 1

κ1/2

(
1 + z2

)−κ
∫ z

i

(
1 + t2

)κ−1
dt, (93)

where z = ξ/
√

κ. This holds in both the upper and lower half planes and
therefore represents the analytic continuation of Zκ.
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9 Solutions for Half-Integer Values: κ = n+1
2

Setting κ = n + 1
2

in equation (69) yields

F
(
1, 2κ, κ + 1,

1 + iz

2

)
=
√

π
Γ(n + 3

2
)

Γ(n + 1)
(1 + z2)−n−1/2

+ (2n + 1)izF
(
1, n + 1, 3

2
,−z2

)
. (94)

By repeated application of the identity7

(b−a)(1−z)F (a, b, c, z) = (c−a)F (a−1, b, c, z)−(c−b)F (a, b−1, c, z) (95)

one may prove the formula

F (1, n + 1, 3
2
,−z2) =

1

2

n∑
m=1

Γ(n + 1−m)

Γ(n + 1)

Γ(n + 1
2
)

Γ(n + 3
2
−m)

(1 + z2)−m

+
1

2

Γ(1)

Γ(n + 1)

Γ(n + 1
2
)

Γ(3
2
)

(1 + z2)−nF (1, 1, 3
2
,−z2), (96)

where n = 1, 2, 3, . . . Inserting this formula into (94) and using the closed
form expression7

F (1, 1, 3
2
,−z2) =

1

iz
(1 + z2)−1/2 sin−1(iz) (97)

one finds

F
(
1, 2κ, κ + 1,

1 + iz

2

)
=
√

π
Γ(n + 3

2
)

Γ(n + 1)
(1 + z2)−n−1/2

[
1 +

2

π
sin−1(iz)

]
+

Γ(n + 3
2
)

Γ(n + 1)

n∑
m=1

Γ(n + 1−m)

Γ(n + 3
2
−m)

iz(1 + z2)−m, (98)

where κ = n + 1
2
. Thus, from (56) one obtains the closed form solutions

I(z) = −2(1 + z2)−n−1/2

[
sinh−1(z)− πi

2

]
−
√

π

n∑
m=1

Γ(n + 1−m)

Γ(n + 3
2
−m)

z(1 + z2)−m, (99)
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n = 1, 2, 3, . . . The first few solutions are as follows; for κ = 3
2
:

I(z) = −2(1 + z2)−3/2

[
sinh−1(z)− πi

2

]
− 2z(1 + z2)−1, (100)

for κ = 5
2
:

I(z) = −2(1+z2)−5/2

[
sinh−1(z)− πi

2

]
− 4

3
z(1+z2)−1−2z(1+z2)−2, (101)

and for κ = 7
2
:

I(z) = −2(1 + z2)−7/2

[
sinh−1(z)− πi

2

]
− 16

15
z(1 + z2)−1 − 4

3
z(1 + z2)−2 − 2z(1 + z2)−3. (102)

Multiplying equation (99) by the leading coefficient in equation (34), the
plasma dispersion function is given by

Zκ(ξ) =
1

(n + 1
2
)1/2

Γ(n + 1
2
)

Γ(n)

{
n∑

m=1

Γ(n + 1−m)

Γ(n + 3
2
−m)

z(1 + z2)−m

− 2√
π

(1 + z2)−n−1/2

[
sinh−1(z)− πi

2

]}
, (103)

where z = ξ/
√

κ and n = 1, 2, 3, . . . A more explicit form is obtained by
making the substitution given by equation (92). Similar expressions were
first obtained by Summers and Thorne10 using different methods.

10 Solutions for Integer Values: κ = n

If κ = n is a positive integer, a closed form solution can be derived using
the identity (61) to obtain a hypergeometric series which terminates; how-
ever, this solution lacks mathematical symmetry. It is preferable to proceed
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as follows. The hypergeometric series (53) can be written

F (1, 2n, n + 1, t) =
∞∑

m=0

Γ(1 + m)

Γ(1)

Γ(2n + m)

Γ(2n)

Γ(n + 1)

Γ(n + 1 + m)

tm

m!
(104)

=
Γ(n + 1)

Γ(2n)

∞∑
m=0

Γ(2n + m)

Γ(n + 1 + m)
tm (105)

=
Γ(n + 1)

Γ(2n)

∞∑
m=n

Γ(m + n)

Γ(m + 1)
tm−n. (106)

Splitting the sum into two parts

F (1, 2n, n + 1, t) =
Γ(n + 1)

Γ(2n)

{
∞∑

m=0

Γ(m + n)

m!
tm−n −

n−1∑
m=0

Γ(m + n)

m!
tm−n

}
(107)

the first part can be summed by the binomial theorem
∞∑

m=0

Γ(m + α)

Γ(α)

zm

m!
= (1− z)−α, α 6= 0,−1,−2, . . . , (108)

to obtain

F (1, 2n, n + 1, t) =
Γ(n + 1)

Γ(2n)

{
Γ(n)t−n(1− t)−n −

n−1∑
m=0

Γ(m + n)

m!
tm−n

}
.

(109)
Substituting t = (1 + iz)/2 this yields

F
(
1, 2n, n + 1,

1 + iz

2

)
=

Γ(n + 1)Γ(n)

Γ(2n)

{(
1 + z2

4

)−n

−
n−1∑
m=0

Γ(m + n)

Γ(n)m!

(
1 + iz

2

)m−n
}

. (110)

Using the duplication formula (B6) found in Appendix B to evaluate the
coefficient on the right hand side, one obtains

F
(
1, 2n, n + 1,

1 + iz

2

)
= 2π1/2 Γ(n + 1)

Γ(n + 1
2
)

{
(1 + z2)−n

− 1

4n

n−1∑
m=0

Γ(m + n)

Γ(n)m!

(
1 + iz

2

)m−n
}

. (111)
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Comparing this equation term by term with the symmetry relation [see equa-
tion (69)]

F
(
1, 2κ, κ + 1,

1 + iz

2

)
+ F

(
1, 2κ, κ + 1,

1− iz

2

)
= 2

√
π

Γ(κ + 1)

Γ(κ + 1
2
)
(1 + z2)−κ

(112)
it follows that

F
(
1, 2n, n + 1,

1− iz

2

)
= 2π1/2 Γ(n + 1)

Γ(n + 1
2
)

1

4n

n−1∑
m=0

Γ(m + n)

Γ(n)m!

(
1 + iz

2

)m−n

(113)
or, equivalently,

F
(
1, 2n, n + 1,

1 + iz

2

)
=

π1/2

22n−1
· n

Γ(n + 1
2
)

n−1∑
m=0

Γ(m + n)

m!

(
1− iz

2

)m−n

.

(114)
Substituting this into equation (56) yields

I(z) =
iπ

22n−1

n−1∑
m=0

(
n + m− 1

m

) (
1− iz

2

)m−n

, (115)

n = 1, 2, 3, . . . This same result is obtained by using the theory of residues
to evaluate the integral (35) along a large semicircle in the lower half plane.2

Because (115) is a rational function of z, it immediately gives the analytic
continuation of I(z) throughout the complex plane.

Using equation (110) to rewrite (113) in the form

F
(
1, 2n, n+1,

1 + iz

2

)
=

Γ(n + 1)Γ(n)

Γ(2n)

n−1∑
m=0

Γ(m + n)

Γ(n)m!

(
1− iz

2

)m−n

, (116)

it follows from equation (57) that the plasma dispersion function is given by

Zn(ξ) = i
(n− 1

2
)

n1/2

Γ(n)

Γ(2n)

n−1∑
m=0

Γ(m + n)

m!

(
1− iz

2

)m−n

, (117)

where z = ξ/
√

n and n = 1, 2, 3 . . .
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11 Equivalent Integral Representations

Consider the integral defined for Im(z) > 0 by

I(z) =

∫ ∞

−∞

1

(1 + x2)κ
· 1

(x− z)
dx (118)

and by analytic continuation for Im(z) ≤ 0. By means of some elementary
changes of variables, one may derive the following equivalent representations:

I(z) =

∫ ∞

−∞

1

(1 + x2)κ
· z

(x2 − z2)
dx, (119)

I(z) =

∫ ∞

−∞

1

(cosh x)2κ−1
· 1

[sinh(x)− z]
dx, (120)

I(z) =

∫ ∞

−∞

1

(cosh x)2κ−1
· z

[sinh2(x)− z2]
dx, (121)

I(z) =

∫ ∞

−∞

(
x2

1 + x2

)κ
z

1− z2x2
dx, (122)

I(z) =

∫ ∞

−∞
(tanh x)2κ z cosh x

1− z2 sinh2 x
dx, (123)

I(z) = z

∫ ∞

0

tκ−1/2(1 + t)−κ(1− z2t)−1 dt, (124)

Thus, by equation (55), all of these integrals are equal to

I(z) = i
√

π
Γ(κ + 1/2)

Γ(κ + 1)
F

(
1, 2κ, κ + 1,

1 + iz

2

)
. (125)

In addition, I(z) can be represented as a Laplace transform. If z = is
and Re(s) > 0, then one has the identity

1

x− z
=

i

s + ix
= i

∫ ∞

0

e−(s+ix)t dt. (126)

Substituting this into (118) and changing the order of integration yields

I(is) = i

∫ ∞

0

f(t)e−st dt, (127)

where

f(t) = 2

∫ ∞

0

cos(xt)

(1 + x2)κ
dx. (128)
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Using the well known integral representation of the modified Bessel function
of the second kind:

Kν(t) =
Γ(ν + 1/2)2ν

π1/2tν

∫ ∞

0

cos(xt)

(1 + x2)ν+1/2
dx, t > 0, (129)

it follows that

f(t) =
2
√

π

Γ(κ)

(
t

2

)κ−1/2

Kκ−1/2(t), t > 0. (130)

This establishes the identity

I(z = is) = iL [f(t)], Re(s) > 0, (131)

where f(t) is defined by the previous equation and L is the Laplace transform
operator.

12 Conclusions

Starting with the definition of the plasma dispersion function in terms
of the integral (35), a second order differential equation is derived that im-
mediately allows the dispersion function to be expressed in terms of Gauss’
hypergeometric function. Using the well known properties of the hypergeo-
metric function, the many properties of the plasma dispersion function are
then derived in a unified manner. A summary of the results is provided in
Section 2.

Appendix A: Evaluation of the Integral I0

By definition

I0 = I(z = i) =

∫ ∞

−∞

1

(1 + x2)κ
· 1

(x− i)
dx. (A1)

Multiplying the integrand by (x + i)/(x + i), this becomes

I0 = 2i

∫ ∞

0

1

(1 + x2)κ+1
dx, (A2)
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and with the change of variable t = x2 one obtains

I0 = i

∫ ∞

0

t−1/2

(1 + t)κ+1
dx. (A3)

The remaining integral is the Beta function

B(p, q) =

∫ ∞

0

tp−1

(1 + t)p+q
dt =

Γ(p)Γ(q)

Γ(p + q)
, (A4)

with p = 1/2 and q = κ + 1/2. Therefore, it follows that

I0 = i
√

π
Γ(κ + 1/2)

Γ(κ + 1)
. (A5)

The calculation of I ′(z = i) is similar.

Appendix B: Alternative Derivation of the Ex-

pansion for |z| > 1

The purpose of this appendix is to give an independent derivation of the
expansion (83) for |z| > 1. The starting point is the representation of that
function as a Laplace transform. Using the definition

Kν(x) =
π

2

I−ν(x)− Iν(x)

sin(πν)
, (B1)

together with the series expansion for the modified Bessel function Iν(x), one
obtains

(x

2

)ν

Kν(x) =
π

2 sin(πν)

{
∞∑

n=0

1

Γ(n− ν + 1)n!

(x

2

)2n

−
∞∑

n=0

1

Γ(n + ν + 1)n!

(x

2

)2n+2ν
}

, (B2)
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where x > 0 and ν > 0 is not an integer. By a well known theorem,11 the
Laplace transform of this function has the asymptotic expansion

L

{(
t

2

)ν

Kν(t)

}
∼ π

2 sin(πν)

{
∞∑

n=0

Γ(2n + 1)

Γ(n− ν + 1)

1

n!22n

1

s2n+1

−
∞∑

n=0

Γ(2n + 2ν + 1)

Γ(n + ν + 1)

1

n!22n+2ν

1

s2n+2ν+1

}
, (B3)

where s →∞ along any ray eiθ with |θ| < π/2. In fact, the following analysis
shows that this series converges in the right half-plane whenever |s| > 1 and,
therefore, equality holds throughout this region. However, this fact is not
needed now. Setting ν = κ− 1/2, then from the relations (131) and (56) one
obtains

F
(
1, 2κ, κ + 1,

1− s

2

)
=

1

i
√

π

Γ(κ + 1)

Γ(κ + 1
2
)
I(is)

∼ π

2 sin[(κ− 1
2
)π]

κ

Γ(κ + 1
2
)

{
∞∑

n=0

Γ(2n + 1)

Γ(n− κ + 3
2
)

1

n!22n

1

s2n+1

−
∞∑

n=0

Γ(2n + 2κ)

Γ(n + κ + 1
2
)

1

n!22n+2κ−1

1

s2n+2κ

}
, (B4)

where s → ∞ along any ray eiθ with |θ| < π/2. It will now be shown that
this agrees with the expansion (83), that is:

F
(
1, 2κ, κ + 1,

1− s

2

)
=

√
π

Γ(κ + 1)

Γ(κ + 1
2
)

[
1 + i tan(πκ)sgn[Re(is)]

]
(−s2)−κ

(
1− 1

s2

)−κ

+
κ

(κ− 1
2
)

1

s

{
1 +

1
2

3
2
− κ

(
1

s2

)
+

1
2
· 3

2

(3
2
− κ)(5

2
− κ)

(
1

s2

)2

+ · · ·

}
. (B5)

The even and odd power terms are compared separately. First the even
terms. Using the duplication formula

Γ(2z) = π−1/222z−1Γ(z)Γ

(
z +

1

2

)
(B6)
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and the binomial theorem, the even terms in (B4) can be summed as follows

− π

sin[(κ− 1
2
)π]

κ

Γ(κ + 1
2
)

∞∑
n=0

1

n!

Γ(2n + 2κ)

Γ(n + κ + 1
2
)

1

22n+2κ−1s2n+2κ

=

√
π

cos(κπ)

κΓ(κ)

Γ(κ + 1
2
)

∞∑
n=0

Γ(n + κ)

Γ(κ)n!

1

s2n+2κ

=

√
π

cos(κπ)

κΓ(κ)

Γ(κ + 1
2
)
s−2κ

(
1− 1

s2

)−κ

. (B7)

This will now be compared with the even terms in (B5):

√
π

Γ(κ + 1)

Γ(κ + 1
2
)

[
1 + i tan(πκ)sgn[Re(is)]

]
(−s2)−κ

(
1− 1

s2

)−κ

. (B8)

It is easy to show that

(−s2)−κ

s−2κ
=

{
e+iπκ if 0 < arg(s) < π/2
e−iπκ if −π/2 < arg(s) ≤ 0,

(B9)

therefore,
s−2κ

cos(κπ)
=

[
1 + i tan(πκ)sgn[Re(is)]

]
(−s2)−κ, (B10)

which establishes the equality of (B7) and (B8), that is, for the even power
terms in (B4) and (B5). Similarly, using the duplication formula (B6) the
odd terms in (B4) are easily shown to be equal to the odd terms in (B5).
This gives an independent proof of (83) in the upper half plane which, by
means of the symmetry relations, extends to the whole plane.
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