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Abstract 

The MODIS Level-3 optical thickness and effective radius cloud product is a gridded 

l'xl" dataset that is derived from aggregation and subsampling at 5 km of 1 km ,- 

resolution Level-2 orbital swath data (Level-2 granules). This study examines the impact 

of the 5 km subsampling on the mean, standard deviation and inhomogeneity parameter 

statistics of optical thickness and effective radius. The methodology is simple and 

consists of estimating mean errors for a large collection of Terra and Aqua Level-2 

granules by taking the difference of the statistics at the original and subsampled 

resolutions. It is shown that the Level-3 sampling does not affect the various quantities 

investigated to the same degree, with second order moments suffering greater 

subsampling errors, as expected. Mean errors drop dramatically when averages over a 

sufficient number of regions (e.g., monthly and/or latitudinal averages) are taken, 

pointing to a dominance of errors that are of random napre. When histograms built from 

subsampled data with the same binning rules as in the Level-3 dataset are used to 

reconstruct the quantities of interest, the mean errors do not deteriorate significantly. The 

results in this paper provide guidance to users of MODIS Level-3 optical thickness and 

effective radius cloud products on the range of errors due to subsampling they should 

expect and perhaps account for, in scientific work with this dataset. In general, 

subsampling errors should not be a serious concern when moderate temporal and/or 

spatial averaging is performed. 
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I. Introduction 

In order to study the global distribution of cloud properties and the main features of their 

monthly, seasonal and diurnal evolution, in other words, in order to examine cloud 

climatology, a gridded set of spatially-averaged cloud retrievals is the most appropriate. 

Such a product is provided for the MODIS instrument aboard the EOS Terra and Aqua 

platforms as Level3 MODO8* (Terra) and MYDO8* (Aqua) datasets [1]- There are 

actually three Level-3 MODIS cloud products available for each platform. Statistics are 

summarized over a l'xl" global grid for daily @3), eight-day @3), and monthly (M3) 

time scales. Each of the Level-3 products contain statistics generated fiom the Level-2 

(Orbital Swath) products. Statistics for a given derived quantity or Science DataSet 

(SDS) might include: simple (mean, minimum, maximum, standard deviation) statistics; 

,%. 

'i 

parameters of normal and lognormal distributions; fraction of pixels that satisfy some 

condition (e-g. cioudy, ciearj; histograms of the quantity within each gridpoint; 

histograms of the confidence placed in the retrieved quantity; histograms and/or 

regressions derived fiom comparing one science parameter to another; statistics 

computed for a subset that satisfies some condition [l]. All these statistics are computed , 

by subsampling pixel-level values every 5 km since the geolocation internal to the 

MODO6 (Level-2) cloud product is 5 lan [l]. Thus, cloud statistics for an overcast l'xl" 

gridpoint around the equator come from about -480 pixels instead of the -12,000 1-km 

pixels that are originally contained within the gridpint. The subject of this study is to 

examine whether this subsampling has distorting effects on several Level-3 SDSs and on 

some quantities of interest derived from them. This is obviously an important issue for 
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current and future users of the Level-3 cloud dataset who intend to compare MODIS 

cloud climatologies with those from other sources. 

The outline of the paper is as follows: First, in Section II. we present the dataset 

used to examine the subsampling effect, the SDSs and other quantities we are interested 

in, and discuss the methodology for analyzing the subsampling errors. In section 111 we 

present results for optical thickness statistics, and in section IV for effective radius 

statistics. Section V, examines whether the findings in sections 111 and IV are affected 

when the quantities of interest are derived from histograms built by following the Level-3 

binning rules for optical thickness and effective radius. The final section consists of an 

overview discussion on our findings and their implications for users of MODIS Level-3 

I cloud climatologies. 

II. Dataset and methodolocv 

We use 300 Level-2 granules obtained for various post-2000 November months around 

-40" N for both Terra (200 granules) and Aqua (100 granules). Each granule has 2030 

pixels along track and 1354 lines of pixels across track. For those pixels identified as 

cloudy from the cloud masking algorithm [2], the cloud phase is determined (liquid, ice, 

undetermined) and subsequently cloud optical thickness, z, and cloud effective radius, re,, 

(ratio of the third to the second moment of the cloud particle radius distribution) is 

retrieved (among others) [3]. The retrievals used here come from the 0.65 pm (over land) 

and 0.86 pm (over ocean) bands that are the most sensitive to changes in cloud optical 

thickness, in conjunction with the 2.1 pm band which is most sensitive to changes in 

cloud particle size [3]. Here, the pixel-by-pixel phase determination for our dataset will 
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be largely ignored skce it is not an e s s e ~ t i d  factor io sampling error estimations as will 

become evident later- The only time phase enters our discussion is in section V where, 

due to different histogram binning rules between the two phases, all cloudy pixels are 

assumed to be of one or the other phase. 

In the Level-3 dataset, the statistics of each 1"xl" gridpoint have been derived from 

aggregation and subsampling at 5 lan of approximately (near the equator) 110x1 10 pixels 

with a nominal resolution of 1 km. However, the available number of pixels to be 

subsampled approximately decreases with the cosine of latitude as one moves poleward. 

For example, at -83", each 1"xl" gridpoint is made of -1600 1 lun pixels. Thus, the 

number of pixels used to construct the Level3 statistics can potentially become quite 

small, especially when only a fraction of the gridpoint is cloudy (as is often the case). We 

have to therefore examine the impact of the varying m b e r  of pixels used to construct 

Level-3 statistics in our analysis. 

c 

Our approach is the following: We divide our granules in 110x1 10, 100x100. .. 

40x40 pixel regions (i-e., 8 regions sizes). Since one of the main goals is to examine the 

effects of subsampling on the cloud optical thickness inhomogeneity climatology 

presented in another paper in preparation (Oreopoulos and Cahalan 2004), we keep, as in 

that work, only regions with cloud fraction (fraction of pixels with non-zero optical 

thickness) greater than 0.1. For each of these regions (e-g. -53,000 regions of 110x110 

pixels), we calculate for our optical thickness analysis: cloud fraction (CF), spatial mean 

of optical thickness 3, standard deviation of optical thickness a,, and the inhomogeneity 

parameters 



1 + 41 + 4y / 3 
Ym = 

4Y 

O<xrl  

wh re y = 1nZ - E. The first two equations p ovide two different ways to estimate the 

shape parameter of a gamma distribution which has been found to describe well observed 

distributions of cloud optical thickness [4], [5]. The first equation is for the Method Of 

Moments (MOM), and the second is an empirical approximation for the Maximum 

Likelihood Estimate (MLE) method which gives a shape parameter less sensible to 

outliers [6]. The third equation is the definition of the inhomogeneity parameter of 

Cahalan et al. [7] which approximates the factor by which Z should be multiplied to 

recover the mean albedo of a region. For the effective radius analysis we calculate mean 

and standard deviation of effective radius. 

For both optical thickness and effective radius we calculate the quantities described 

above in two ways: 1) by using all the cloudy pixels within the region; and 2) by using 

only every 5"' pixel along both spatial directions, if it happens to be cloudy. We then 

calculate the percentage difference of the values obtained from the above two methods: 

this gives the impact of the subsampling as a percentage error (positive signifies that 

subsampling underestimates). We ignore cloud phase in this procedure, so the means and 

standard deviations calculated correspond the closest to their counterpart SDSs for 



“C~nbined Optical Thickness” and “Cornbind Effective Radias” in &e h ~ e l - 3  MODIS 

products. 

The analysis shown in the following also accounts for the fact that, at most times, 

we are not interested in the error of a single region, but in the error of an ensemble of 

regions. For example, in the work by ho+ulos and Cahalan under preparation, the 

authors are interested in the climatology of x and v, so they examine monthly, zonal, and 

global averages of these quantities. The mean e m r  of an ensemble of 30 regions can then 

be thdught of as the mean monthly sampling error for a single 1”xl” gridpoint. Similarly, 

the error for an ensemble of 90 regions can be thought of as the m e a  seasonal sampling 

e m  of a single gridpoint, the error of an ensemble of 360 regions as the mean annual 

sampling error of a single gridpoint or the daily error of a latitude zone, and the error for 

an ensemble of 10,OOO regions (-30x360) as the mean monthly subsampling error of a 

latitude zone. To examine these “climatological” errors, we construct 1000 ensembles of 

regions with each ensemble obtained by combining in a random fashion a prespecified 

number of regions (1,30,90,360, l0,OOO) for each of our 8 region sizes (5000 ensembles 

for each region size, i.e., 10oO consisting of 1 region,‘ 1000 consisting of 30 regions, etc.). 

We can subsequently examine the distribution of errors for these 40,OOO ensembles. 

III. Optical thickness errors 

Figure 1 shows the errors of subsampling (in %) of Z and a; for all (-53,700) llOxll0 

regions of our dataset (except for those whose errors fall outside the 6 0 %  bounds of the 

plot). We see that the errors for individual regions are often quite large, although the 

greatest concentration of points is within the G O %  error bounds. There is about the same 
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number of regions with positive and negative errors in 2, and the same applies for 

a,. This is a good indication of the random nature of these errors. For most regions 

(-76.6% of the regions) overestimates in 2 by subsampling are accompanied by 

overestimates in a; and vice-versa (upper-right and lower-left quadrants), but the number 

of regions where the error is of opposite sign is substantial. The top panel of Fig. 2 shows 

a similar graph, but this time for CF and x. The errors this time are in general smaller 

with the densest concentration of points restricted to the +lo% error bounds. The number 

of regions on each quadrant is now distributed more evenly than in the previous figure. 

The bottom panel shows the % errors in x of each region as a function of the cloud 

fraction of the region at the original resolution, and indicates that the distribution of x 

errors tightens around smaller values as the cloud fraction increases. 

Figure 3 shows the mean error for 110x1 10 regions as a function of cloud fraction. 

cloiid fraction 

within the predetermined 0.1-width bin. Note that the last bin has by far the most values 

consistent with the well-known U-shape behavior of cloud fraction distributions. This 

figure shows prominently the dramatic effect of averaging a large number of random 

errors: the mean errors of ensembles of -5,000 regions and above are very small, with the 

exception of vMOM at small cloud fractions. The larger impact of sampling on vMOM 

compared to the other two inhomogeneity parameters can be easily explained: both x and 

vmE depend on the linear mean md the mean logarithm of optical thichess, the former 

being simply the ratio e x p ( E ) / T ,  and the latter being a function of the difference 

l n T - G ;  since subsampling affects both means in the same way, i.e., both are either 

overestimated or underestimated for a certain region, the aforementioned ratio and 

E&& vzl-ue was s"v&ined by &vci-agiilg e-iois of regions 
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difference may not chmge much after subsampling, in other words, there is error 

cancellation. On the other hand, for 23.4% of 110x110 regions (Fig. l),  subsampling has 

opposite effects on Z and a;; when this happens, the value of vMOM (eq. la) from 

subsampled data will tend to diverge strongly from the value before subsampling. Since 

/ 
the number of regions for which this happens is significant, the effects will linger even 

after significant averaging of percentage errors. Between v- and x,  the latter is less 

affected by subsampling. There are two reasons for this. First, x is defined simply as the 

ratio'Gf two quantities affected in a similar manner by subsampling (eq. IC) ; v,, is a 

more complex function of the linear mean and mean logarithm difference (eq. lb), and is 

therefore subject to error propagation. Second, x has an upper bound of 1, by definition, 
za 

while v- (and, of course, vMOM) can grow without bounds. Despite the fact that we 

exclude regions with v, or vMOM greater than 40 in our analysis to mitigate the effect of 

these pathological cases, some residual impact from regions with large vMOM, where its 

value can change rapidly by subsampling, remains. Thus, the unbounded nature of v M ~ M  

is responsible for the apparent paradox that some of the most homogeneous regions may 

potentially be the ones suffering from the greatest percentage subsampling errors with 

respect to this parameter. 

Further evidence of the beneficial effects of averaging errors over a group of 

regions is shown in Fig. 4. These percentage errors of x and v- are for 1000 ensembles 

each consisting of 30- and 10,OOO- regions. The size of each region in these randomly 

constructed ensembles is 110x1 10 pixels. As discussed in section 2, the mean error of an 

ensemble of 30 regions is meant to represent typical monthly average errors of individual 

. 

gridpoints, while the mean error of an ensemble of 10,000 regions approximates typical 

. 
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monthly-average errors of latitude zones. The mean error of 30-region ensembles almost 

always stays within &2% for x and within +lo% for vmp The mean errors of ensembles 

consisting of 10,000 regions are much smaller than the 30-region ensembles and cluster 

within a very small range of values. This is not surprising since each of the 10,000-region 

ensemble, even if constructed randomly, contains many common regions with the other 

ensembles because the population from which it is drawn is only larger by an 

approximate factor of 5 (there are -53,700 110x110 regions on the dataset that satisfy our 

criteria). It is also interesting that the mean errors of 10,000-region ensembles are always 

positive for x. This is because of the tight range of x errors and the fact that there is a 

slightly larger number of regions with positive errors (Fig. 2, top, indicates that 52.7% of 

regions have positive errors). On the other hand, because of the wider range of vMLE 

errors, there are both positive and negative mean errors for 10,000-region ensembles. The 

nncitivp - - - - dnrninntp - -_-I-- -- diip --- tc thp Im-gpr fj-zcitjn~ nf ~nsi t ivp p ~ - n r s  fer i ~ d i v i d ~ d  r p g i ~ ~ s  

(-55%). 

Another way to assess the errors of subsampling on optical thickness statistics is 

shown in Fig. 5. The top panel shows the bounds of percentage errors than contains 95% 

of the 1000 ensembles, for ensembles consisting of B variety of region numbers (each of 

110x1 10 pixel size) as indicated in the abscissa. For example, the top panel of Fig. 5 

indicates that 95% (950) of 90-region ensembles have mean errors of Y M ~ M  within *5.2% 

(Yd point of topmost curve). CF and x have the smallest error bounds that contain 95% of 

the ensembles, followed by 7, v-, and Y,,,. For ensembles consisting of 10,000 

regions the error range that contains 95% of the ensembles is smaller than &% for all 

quantities (*0.25% for x!). The bottom panel of Fig. 5 shows the percentage error range 
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that contains 95% of 30-region ensembles of region size indicated in the abscissa. For 

example, 95% of 30-region ensembles have vMOM subsampling errors within +12.95% 

when the region size is 60x60 pixels (third point of topmost curve). Because we kept the 

number of ensembles constant at 1000 for each region size (even if there are naturally 

more regions of smaller size in our dataset), it is not surprising that there is a tendency for 

the sampling m o r  that contains 95% of the ensembles to decrease with region size. In 

other words, subsampling errors become greater for regions consisting of a smaller 

absolute number of cloudy pixels at the nominal 1 km resolution (i.e., 1"xl" gridpoints at 

higher'iatitudes, or gridpoints with smaller cloud fractions). 

- 

IV. Effective radius errors 

The analysis in this section follows on the footsteps of the analysis presented in the 

previous section. Case in point, Fig. 6 is the counterpart of Fig. 1 , but is now for the mean 

and standard deviation of effective radius. There are similarities with Fig. 1, such as the 

rapid decrease in the density of points outside the G O %  error range, but also differences 

such as the stronger dominance of positive errors for both the mean and the standard 

deviation. Indeed, only 21.3% of 110x110 regions have negative errors in the mean, and 

33.3% have negative errors in the standard deviation. This explains the lack of negative 

errors when averaag  over a larger number of regions, as we do in Fig. 7 and 8, which 

are similar to the previous Figs. 3 and 4 (also, Fig. 9 is analogous to Fig. 5). Fig. 7 

; 

.- 

suggests that mean errors of subsampling for mean effective radius are slightly greater 

than those for mean optical thickness, while somewhat unexpectedly the error in standard 

deviation does not improve with cloud fraction (although it improves with region size as 
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shown in the bottom panel of Fig. 9). Also, there seems to be resistance in reducing the 

mean errors below 2% even when ensembles consist of 10,000 regions (Fig. 8, and top 

panel of Fig. 9). 

All this points to systematic biases in the statistics of effective radius when 

subsampling is performed: apparently, subsampling yields frequent systematic 

underestimates of both the mean and the standard deviation of effective radius, i.e., errors 

are not always random. This curious phenomenon was further explored by examining 

effective radius histograms retrieved from unsampled and subsampled data. Indeed, when 

the normalized frequency distribution of combined effective radius (i.e., both liquid and 

ice clouds) was plotted for the unsampled data from all 300 granules (not shown) with a 1 

pm bin resolution, four peaks were observed: one narrow for the 3-4 pm bin, one wide 

between 8 and 12 pm, one narrow for the 29-30 pm bin, and one more narrow in the 58- 

59 pm bin- The first two peaks a~lrp. definitely Iiqijid c,lni~d peaksi the third coincides with 

the upper limit of liquid cloud droplet effective radius, and must therefore contain both 

liquid and ice particles, and the fourth peak is an ice cloud peak. While the 1 km and 5 

km histograms agree overall, there are small, but noticeable differences in those peaks: 

for the first two peaks, there is a larger normalized frequency for the subsampled 

retrievals, while the opposite happens for the last two peaks. These differences are large 

enough to result in systematically smaller effective radii for the subsampled data in the 

. majority of regions to which we divide the granules. They also lead to somewhat wider 

histograms for the unsampled data which explains the tendency for positive standard 

deviation subsampling errors. Further separate analysis of the 200 Terra granules and the 

100 Aqua granules showed that the distinct differences previously described between 
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original and subsampled histograms appeared only in the Terra effective radius 

histograms (not shown); the counterpart histograms for optical thickness were virtually 

indistinguishable for both platforms. When Term effective radius histograms were then 
, 

constructed separately (not shown) for retrievals corresponding to different pairs of 

detector elements (the 2.1 pm band has 20 detector elements each of 500 m resolution for 

a total viewing path of 10 km along track, so for the 1 km effective radius Level-2 

product measurements from 2 detectors are aggregated), one of the histograms stood out 

as having characteristics such as those described above for the ensemble histogram of 

subsampled data. This histogram was from the detector pair that yielded lines 1, 11,21, 

31, etc. of the granule which were always included in the subsampled dataset. Thus, a 

source of bias errors can appear in subsampled Level-3 data if pixel lines with 

systematically different radiative characteristics (and therefore systematically different 

retrievaisj than the other iines are aiways seiected by the subsampiing aigorithm. T i s  is 

what happened in our case, and while the bias error is small in magnitude, it was still 

easily detected by the subsampling analysis. 

V. Errors from histograms 

The MODIS Level3 cloud product also includes SDSs that are histograms of cloud 

optical thickness and effective radius. These are also constructed from subsampled data 

Although the statistical quantities and parameters we examined here are either given 

directly as distinct SDS products (7, q, G) or can be trivially derived from them using 

eq. (1) &, vMOM, v&, it would be of interest to obtain an assessment of the errors if the 

quantities of interest are obtained from the histogram SDSs. 
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The three moments, 5, a;, &, that are needed for eq. (1) are derived from the 

discrete probability distribution function p ( z )  built from the histograms for each region 

(of the 8 regions sizes) using 5 km subsampled data, as follows: 

C 1 

Analogous relationships apply for effective radius. The number of bins N varies 
. .  I 

according to the type of histogram, and the values we used for each case are given below. 

It should be underlined that the subsampling error is defined in this case as the 

difference between the value of the desired quantity calculated from the nominal 1 km 

data directly (Le., not from histograms constructed with 1 km data) and the value derived 

using eq. (2), i.e., from histograms of subsampled 5 km data. 

Figure 10,is for optical thickness and is analogous to the bottom panel of Fig. 5. 

The top panel is for calculations using MODIS Level-3 binning for liquid clouds (N = 45 

bins) and the bottom is for calculations using ice cloud binning (N  = 30 bins). Both 

histograms extend up to a value of 100 for optical thickness, but the width of the bins is 

different (the ice histograms better resolve small values of optical thickness and are 

coarser for large values). Results for both panels of Fig. 10 look similar to the results in 
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the bottom panel of Fig. 5, except for the v- e m r  for liquid cloud histogram binning 

which is worse for most region sizes fiom its counterpart for vMoM. 

Figme 11 is for effective radius and is analogous to the bottom panel of Fig. 9. The 

top panel is for calculations using histogram binning for liquid clouds and the bottom is 

for calculations with ice cloud binning. The former originally uses N=23 bins in the 

Level-3 dataset, extending from 2 to 30 pm, but a 24* very wide bin was added from 30 

to 60 pm to accommodate the large particle effective radii encountered in our dataset. 

The latter uses N=12 histogram bins extending from 6 to 60 pm. Again, there is little 

difference from what has already been shown in Fig. 9, with the exception of the error in 

standard deviation when the liquid cloud histogram binning is used. This is probably the 

result of the coarse last bin that was arbitrarily added. Results with ice cloud binning do 

not seem to be much affected by neglect of particle sizes below 6 pm. 

In conclusion, for monthly or longer time scales, one can reconstruct cloud optical 

thickness or effective radius moments, or optical thickness inhomogeneity parameters 

from MODIS Level-3 histograms (built from subsampled 5 km data) for a 1 Ox 1 O region, 

without suffering much additional subsampling error relative to the case where the 

moments and parameters come from distinct Level-3 SDSs. 

VI. Summary and conclusions 

Cloud optical thickness and effective radius Scientific Datasets (SDSs) in the MODIS 

Level-3 daily, eight-day, and monthly products come from aggregation on a loxlo grid of 

Level-2 orbital swath data that have been subsampled at 5 km. This study has examined 

the impact of this subsampling on cloud fraction, the mean and standard deviation of 
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optical thickness and effective radius, as well as on parameters that convey the radiative 

impact of the variability of optical thickness. As a measure of the subsampling effect we 

use the percentage difference between unsampled and subsampled results for ensembles 

of regions with size on the order of l'xl". The unsampled data come from 300 Terra and 

Aqua granules obatined at -40'N for several post-2000 November days. 

It was shown that Level-3 subsampling does not affect the various quantities 

investigated to the same degree, with second order moments and quantities depending on 

second order moments suffering greater subsampling errors, as expected. For individual 

regions consisting of 110x110 pixels the vast majority of regions have errors within 

&20% for mean and standard deviation of optical thickness and effective radius. Errors 

for cloud fraction and the inhomogeneity parameter x are smaller, and errors for the 

inhomogeneity parameters vMOM and vmE are greater (especially for vMoM). Mean errors 

cirop ciramaticaiiy when averages over a sufficienr: number of regions (e.g., monrhiy 

and/or latitudinal averages) are taken: for ensembles of 30 regions (corresponding to 

monthly averages) errors for most regions sizes are less than 15% for vMoM and vmE 95% 

I 

of the time, while for the other quantities'they are in generally below 5%. Subsampling 

errors seem to be mostly of random nature, but there was evidence that small but 

systematic underestimates may be occuring for effective radius mean and standard 

deviation. We traced this back to systematic differences in the retrievals from different 

2.1 pm bmd detectors: the szbsampling procedure was systematically picking a pixel line 

(from the first two detectors) which had radiatively different appearance from the other 

pixel lines. Finally, when histograms built from subsampled data with the same binning 
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as in the Level-3 dataset are used to reconstruct the quantities of interest, &e mean errors 

at monthly scales do not deteriorate sigmficantly. 

It may be worth mentioning that subsampling error analysis was also performed 

with the 2D bounded cascade model of Marshak et d. [8] which offers the advantage that 

the properties of clouds (cloud fraction, degree of inhomogeneity, mean optical 

thickness) can be easily controlled. Optical thickness errors due to subsampling from 

model clouds largely mirrored those derived from MODIS. The ranking of parameters 

according to error magnitude is the same (x exhibits the smallest errors and vMOM the 

largest), the error decreased with cloud fraction and cloud homogeneity, and exhibited 

rapid decline when averaged over ensembles of randomly generated cascades fields. 

The results in this paper provide guidance to users of MODIS .Level-3 cloud 

products on the range of errors due to subsampling they should expect and perhaps 

account for, in scientific work with this dataset. Although the findings may be to some 

extent specific to the type of clouds encountered in our granules which come from a 

relatively limited geographical location and are for a particular month of the year only, it 

would probably be safe to conclude that subsampling errors should not be a serious 

concern for individual gridpoints of MODIS Level-3 eight-day (E3) and monthly (M3) 

data, or D3 (daily) data that have undergone moderate additional temporal averaging, or 

for spatial averages (e.g., zonal averages). A study of the type shown here, but with a 

global dataset and more SDSs would be even more robust statistically and would give a 

more definitive answer on the impact of MODIS Level3 subsampling. 
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List of figures 

Figure 1 Subsampling error in the mean and standard deviation of optical thickness (both 

in %) for each 110x110 pixel region of our dataset. The numbers in the comers are the 

percentage of regions with errors fallong into each of the four quadrants. Note that there 

were few regions whose errors fell outside the axis limits (~50%) of this plot. 

Figure 2 Subsampling error in CF and x (both in %) for each 110x1 10 pixel region of 

our dataset (top), and subsampling error of x as a function of the actual (unsampled) 

cloud fraction of each region (bottom). 

Figure 3 Mean error (in %) for various statistics of optical thickness as a function of 

cloud fraction. The right ordinate shows the number of 110x1 10 pixel regions with cloud 

fraction that falls within each 0-1-width bin (regions with cloud fractions less than 0.1 

were omitted). 

Figure 4 Mean error (in 96) of x and vmE for each of the lU00 ensembles of 30- and 

10000- 110x1 10 pixel regions as a function of the mean value of the ensemble obtained 

at the original 1 km nominal resolution. 

Figure 5 Top: Subsampling error range (in %) that contains 95% of the 1000 ensembles 

each made of the number of 110x110 pixel regions shown in the abscissa; bottom: as in 

top panel, but for 1000 ensembles of 30-regions of the size shown in the abscissa. 

Figure 6 As in Fig. 1, but for effective radius. 

Figure 7 As in Fig. 3, but for mean and standard deviation of effective radiiis. 

Figure 8 As in Fig. 4, but for mean and standard deviation of effective radius. 

Figure 9 As in Fig. 5,  but for mean and standard deviation of effective radius. 



Figure 20 As the bottom panel of Fig. 5 (save the cloud fraction), bat when histqpms 

from 5 km subsampled data are used to reconstruct the statistics or inhomogeneity 

parameters. Top panel shows results when the Level-3 binning for liquid clouds is used, 

and bottom panel when ice cloud binning is used. 

Figure 11 As Fig. 10, but for mean and standard deviation of effective radius. 
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Some of the most important parameters to study the role of clouds in climate are their 

optical thickness OT (an indicator of the amount of cloud water) and effective radius 

REFF (a measure of cloud particle size). MODIS aboard the Terra and Aqua satellite 

platforms is able to retrieve nearly global datasets of these parameters at an 

approximately 1 km resolution. While these are very useful for regional studies, climate 

studies can often be more efficiently performed by using coarser resolution datasets. For 

researchers who perform climate studies, the MODIS team provides higher-level (Level- 

3, as they are called) gridded datasets of 1"xl" (roughly 100 km X 100 km) resolution 

that are averaged over 1-day, &day or monthly time periods. To build this dataset the 

MODIS aggregation algorithm does not use every 1 km pixel, but only every 9 pixel in 

both spatial directions, that is, it samples only 1 out of 25 pixels. This may lead to errors 

in the gridded mean values of OT and REFF relative to the case where all the pixels are 

used. The purpose of the study presented in this paper is to assess the nature, magnitude, 

and dependencies of these sampling errors. Actually, it not only examines the errors in 

the mean values of OT and REFF, but also of other related parameters that quant.lfy the 

inhomogeneity of clouds in term of their impact on reflected solar radiation. The general 

conclusion of the study is that users of Level-3 data should not be particularly concerned 

about sampling errors since their magnitude is usually small and they are mostly of 

random nature. The latter means that the values of sampling errors can be driven further 

down if climatologies of OT, REFF and the inhomogeneity parameters are built by 

ensembles of 1"xl" regions such as those used to form monthly, latitudinal, 

hemispherical or global averages or any combination of temporal and spatial averages. 


