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ABSTRACT 

The success of numerous upcoming NASA infrared (IR) missions will rely critically on accurate knowledge of the IR 
refractive indices of their constituent optical components at design operating temperatures. To satisfy the demand for 
such data, we have built a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS), which, for typical 1R 
materials. can measure the index of refraction accurate to 6 x IO-’. This versatile, one-of-a-kmd facility can also 
measure refractive index over a wide range of wavelengths, from 0.105 pm in the far-ultraviolet to 6 pm in the IR, and 
over a wide range of temperatures, from 10 K to IOOT, all with comparable accuracies. We first summarize the 
t e c h c a l  challenges we faced and engineering solutions we developed during the construction of CHARMS. Next we 
present our “first light,” index of refraction data for fused silica and compare our data to previously published results. 

1. INTRODUCTION 

The optical designs of a wide variety of cryogenic, infrared optical instruments re!y on transmissive, refracting optical 
materials. In order for the designs of these instruments to be optimal, practical, and feasible, it is essential to know the 
indices of refraction of the component materials to high accuracy. Furthemre,  it is also desirable and often necessary 
to obtain index values for requisite materials at the actual temperatures and wavelengths of intended use. 

Refractive index data already exists for a small subset of common IR optical materials - such as fused silica, silicon, 
germanium, zinc selenide, etc. - obtained at room temperature for shorter IR wavelengths. Meanwhile for high 
sensitivity IR instruments at longer wavelengths to work well, their optics must be cooled to cryogenic temperatures, 
often approaching absolute zero. Owing to limitations of conventional optical properties measurements and the cost and 
difficulty in building cryogenic measurement capabilities, high quality, IR refractive index data for longer wavelengths 
and at cryogenic temperatures, even for those common IR optical materials, is scarce. Data for less common yet still 
very useful materials, which open up optical design space, is altogether laclung. 

Numerous NASA IR missions will require such accurate. cryogenic refractive index data for successful optical designs 
to be completed and instruments to be built. These missions and instruments include the James Webb Space Telescope 
(JWST), the Near Infrared Camera (NIRCam), the Fourier-Kelvin Stellar Interferometer (FKSI), the Space Infrared 
Interferometer Telescope (SPIRIT), the Sub-millimeter Probe of the Evolution of Cosmic Structure (SPECS), and the 
Earth Atmosphere Solar-occulting Imager (EASI), among others. 

2. REFRACTOMETER SYSTEM ANATOMY 

It is widely acknowledged that the most accurate and precise measurements of the real part of the refractive index, 
n(k,T), of optical materials are obtained through minimum deviation refractometry.’.’ However, technical challenges 
have hindered researchers from using this technique in certain wavelength and temperature ranges, especially when 
moderately but adequately accurate data for given applications can be obtained through easier methods for those 
conditions. The initial design and development of CHARVIS is documented in several other  publication^,'^'^^ so here we 
only briefly review the system operation and concentrate on exploring the technical and engineering challenges that have 
shaped CHARMS. 
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2.1 System overview: minimum deviation refractometry 

CHARMS is a minimum deviation prism refractometer enclosed in a small, high-performance thermal vacuum chamber. 
The minimum deviation method of refractometry requires the precise and accurate knowledge of two angles: the apex 
angle, a, of a prismatic sample, and the deviation angle, 6, of the beam passing through the sample when the condition 
of minimum deviation is satisfied (see Figure I ). The condition of minimum deviation is established when the incident 
angle of an incoming (incident) ray is equal to that of the outgoing (deviated) ray; consequently, inside the prism the ray 
propagates perpendicular to the bisector of the apex. The difference between the direction of the undeviated ray and the 
direction of the deviated ray is the “deviation angle” through the prism; it can easily be shown using Snell’s law that 
under these conditions the deviation angle is minimized and unique. 

Figure 1: Required parameters in minimum deviation refractometry 

2.2 Overview of system operation 

To begin a set of refractive index measurements, we first mount the sample inside the sample chamber (see Figure I 1, 
section 3.3, evacuate the system, and cool the sample to the desired temperature. We constantly monitor temperatures 
in the system during this process using silicon diodes and T-type thermocouples. There are several components in our 
system, however, whose survival rely on operation near room temperature (such as our ultra low runout mechanical spin 
tables); for these we can add heat as necessary through a network of kapton heaters. Once the sample reaches thermal 
equilibrium - roughly 8 hours for temperatures near 20 K - we select the appropriate starting wavelength and begm 
taking measurements. 

Under automated control, the software rotates the first fold flat to steer the undeviated slit image to the reference (center) 
column on the detector array. The orientation of the fold flat rotary stage is recorded by the absolute encoders (see 
section 3.1) and saved in memory as the undeviated position. “Nulling” the slit image position on the detector array - 
i.e. requiring the deviated slit image centroid to land on this same detector reference column during subsequent angle 
measurements - enables the most accurate measurements of the deviation angle. Next, the software rotates the fold flat 
to the approximate angle at which it expects to find the deviated beam (as calculated from user inputs for best guess of 
index and nominal apex angle) and steers the deviated slit image onto the detector. Before nulling the deviated slit 
image to the center column, however, we must first orient the prism to satisfy the condition of minimum deviation (as 
described in section 2.1). The prism is rotated while the position of the deviated slit image centroid on the detector is 
recorded as a function of absolute rotary encoder angle on the sample platform. While the sample is continuously 
rotated in one direction, the deviated slit image on the detector moves in the direction of less deviation. stops, and then 
reverses direction as the prism is rotated through the condition of minimum deviation. Once the software completes that 
scan, the prism is returned to that orientation which provides minimum deviation (defined as the orientation at which the 
first derivative of slit image position on the detector versus prism rotation angle is zero), and the rotating fold flat now 
steers the refracted beam onto the previously defined reference column of the detector. The difference between the 
current encoder readings for the fold flat and the encoder readings for the undeviated beam is an angle which is exactly 
one-half of the deviation angle 6(LT) for that wavelength. (Because we are using a fold flat and not observing the slit 
image directly with a rotating camera arm, the angle through which the fold must be rotated to steer the slit image onto 
the reference column of the detector is only half of the actual deviation angle.) By measuring the directions of both 
deviated and undeviated beams for every data point - as opposed to measuring just the deviated beam and assuming the 
undeviated beam remains fixed - we can minimize errors associated with possible drifts in our system alignment. 
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Figure 2: Current layout of CHARMS: (1) source (not shown), (2) collimating mirror. (3) sample prism. (4) rotating 
fold mirror, ( 5 )  fixed fold mirror, (6) camera mirror. (7) focus mirror, (8) detector (not shown). 

The process is now repeated for all other wavelengths of interest while the temperature is held constant. (Actually, the 
temperature is held nearly constant but is very accurately measured, see section 3.5.) The only change in the procedure 
is that the condition of minimum deviation, having been found once, can be easily preserved as we change wavelengths, 
i.e. it does not need to be “found” for each new A in the scan. Due to the symmetry of the angles of refraction at the 
prism faces with respect to the bisector of the prism’s apex, the change in the angle of minimum deviation (defined as 
the position of the sample rotation stage which satisfies the conditions for minimum deviation) with wavelength is 
exactly equal to one half of the change in deviation angle. Since we are measuring the half-deviation angle as described 
in the preceding paragraph and not the deviation angle itself, this symmetry is manifest in a one-to-one correspondence 
between the change in deviation angle and the required rotation of the sample prism to maintain the condition of 
minimum deviation as we change wavelengths. In other words, if we rotate the sample prism by the same amount that 
we need to rotate the fold mirror to keep the deviated beam on the reference column of the detector as we change 
wavelengths, the condition of minimum deviation will be preserved. 

Once the deviation angles for all wavelengths are measured for a given temperature, we are ready to measure the apex 
angle of the sample prism Our ability to accurately measure the apex angle of the sample in situ as a function of 
temperature is yet another unique aspect of CHARMS. Rather than assuming that the apex angle remains constant 
through these potentially extreme thermal excursions, we are able to reduce our measurement uncertainty by determining 
the apex angle a(T) of the prism to an accuracy of better than kO.5 arcseconds for all temperatures. To do so. we make 
use of our recently developed electronic Cartesian autocollimator (CAC). The CAC is described more fully in section 
3.2, and also in another paper.6 

T h s  completes a dataset for n(h,T) for one value of T. The same process is now repeated for each (LT) in the desired 
measurement parameter space. To gather the next data point, the software either allows the temperature to slowly drift 
up to the next desired temperature value, or it  can add heat in the appropriate locations to drive the temperature of the 
sample to the next desired value. The actual value of the sample temperature is typically not of primary importance; 
rather. we insist only that the system be stable during the time needed to collect angle and temperature information for a 
single data point n(k,T). Since all of the appropriate parameters - T, a(T), and 6(5T) - are accurately measured during 
this time, we can safely interpolate between accurately measured data points to derive the index of refraction for 
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specific, yet arbitrary (hT) (Ths  phlosophy is to be contrasted w t h  the less preferable but histoncal custom of 
crrrupolurron to arbitrary n(hT) from dlsparate wavelength and temperature regions) Finally we calculate the values of 
n(hT) according to the slmple expression, unique to the condition of mnimum deviation 

3. ENGINEERING CHALLENGES AND INNOVATIONS 

The primary reasons that high accuracy measurements of index such as these have not been made in the past stem from 
the number and variety of significant technical challenges involved. Many of these difficulties arise from working at 
cryogenic temperatures. Others are related to the precision metrology requirements required to make useful index 
measurements. Through a combination of novel engineering solutions and a design focused on attaining the highest 
accuracy measurements possible, we have been able to surmount or work around these challenges. 

3.1 Precision rotations and their measurement 

We would not be able to achieve our desired accuracy in CHARMS without the precision rotary stages and absolute 
optical encoders introduced in the previous section and pictured in Figure 3. Their unparalleled performance is essential 
for making the accurate and precise angular measurements required to build a refractometer capable of reporting 
refractive index accurately to the fifth decimal place. Our next challenge was to find a way to drive these stages that was 
compatible with our sub-arcsecond resolution requirement on rotation. Using a stepping motor, we drive the rotary stage 
by means of two pulleys and a custom designed, toothed gear that acts to decrease the step size of the motor to our 
desired resolution (see Figure 4a). We have improved upon this initial design by replacing the stepper motor in Figure 
4a with the one pictured in Figure 4b. This new motor and motor controller give us better resolution and also the 
capability to change the fundamental motor step size and stepping rate through software to make our motions even more 
precise and efficient, respectively. 

Figure 3a Figure 3b 

Figure 3: Leviton absolute optical encoders: ( i a )  Encoder read head with 50K fiber image conduit. (3b) Encoder 
imaging electronics located external to thermal vacuum chamber. 

3.2 Cartesian Autocollimator: 

Just as the optical encoders allow us to make accurate determinations of the positions of the rotary stages, we need a way 
to accurately measure the apex angle of the sample prism, in place, as a function of temperature. In an attempt to 
simplify the measurement process, many previous refractometry efforts measured the apex angle of the prism under 
ambient conditions only, assuming the apex angle of the prism remained constant with temperature. This practice may 
be valid depending on the required index accuracy and on the type of material being measured. In order to meet our 
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index accuracy requirements. however. this assumption is unacceptably dangerous 

Figure 4a Figure 4b 

Figure 4: (a) installed hardware for precision mechanical bearing and stepping motor drive mechanism (with gear 
reducer) for sample prism stage (b) hardware implementation of improved stepping motor packaging. The vacuum tight 
housing allows the stepping motor itself to operate in air while providing high precision rotary actuation inside the 
evacuated refractometer chamber 

To meet our requirement to accurately measure apex angles as a function of temperature. we have developed an 
electronic autocollimator based on one of the new Leviton absolute Cartesian optical encoders. The inner workings of 
the Cartesian autocollimator (CAC) are discussed in another paper ', but some results and the details of the present 
application are presented here. Apex angle measurements are taken once for each desired temperature of interest in the 
data set so that for each point T of n(X,T). we have a corresponding an). This method of measuring the apex angle of 
the prism is accurate to f l .5  arcseconds, which limits its contribution to the overall error budget to 28 x 
knowledge of index for a typical sample prism in the IR. 

in 
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Figure 5: Sample data set showing agreement between CAC and absolute rotary optical encoders in air 

3.3 Monochromator assembly and sources 

Depending on the spectral dispersion, dddh,  for the material being measured, knowledge of wavelength may be one of 
the most significant sources of index uncertainty in our system. With t h s  in mind, we are refurbishing a McPherson 
grating monochromator to satisfy our source wavelength accuracy requirements. Through combined exchanges of the 
light source and grating, we can use this versatile monochromator to realize a spectral range from 0.105 to 60 pm. To 
calibrate the monochromator readout as a function of wavelength, we will use several well-defined line sources across 
our available wavelength range to serve as fixed points in our calibration curve. 
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The monochromator stepping motor wavelength drive currently establishes a desired wavelength setting either by 
numeric c o m n d  or by manually satisfying a mechanical counter setting. However, the accuracy of wavelengths set 
through this type of open loop control. ].e. with no actual position feedback, is less than ideal. In order to control 
wavelength output of the monochromator as accurately as possible, and to better than the manufacturer’s specifications, 
we are exploring the addition of a Leviton rotary encoder (similar to encoders on the mechanical bearing stages) to the 
rotating shaft of the grating. By so doing, wavelength knowledge will actually be set in a closed-loop fashion as the 
actual measured angle of the grating’s orientation corresponds directly to a wavelength calculated through the welI- 
known grating equation. 

3.4 Detector options and configurations 

We have several different array-type detector options from which to choose depending on the wavelength range under 
study. For IR measurements we have purchased an Indigo Merlin camera that uses an indium antimonide (InSb) array 
detector having 320 x 256 pixels that are 30 pm square, cooled by a pour fill LN2 dewar. By operating the Merlin in a 
windowless configuration, we anticipate a useful range of sensitivity from 1 to 6 pm. For coverage through the visible 
and into the UV. we have a windowless TI TC2 11 CCD having an array of 192 x 165 pixels that are 13.75 pm wide by 
16 pm high. The CCD’s surface is coated with a Lumigen phosphor to extend wavelength response down to around 120 
nm in the FUV. 

Regardless of the detector of choice, however, there are several detector parameters that contribute to our overall system 
accuracy. We rely on the ability to accurately centroid the refracted and undeviated slit images when making angular 
measurements with the absolute encoders that are at the heart of the refractometer. Depending on the element width of 
the detector array, the image width, and the signal-to-noise ratio of the peak of the image irradiance distribution, the 
centroid of the image can typically be determined to less than 0.005 element widths. For an element width of 30 pm and 
a plate scale of the camera mirror of 5 pm per arcsecond, the associated uncertainty is therefore 0.005 x 30 x 5 = 0.75 
arcseconds. This uncertainty in knowledge of centroid position directly contributes to an uncertainty in the measured 
deviation angle for the sample prism and corresponds to an error in the amount of 20 x IO4 in index. Averaging 
centroids will improve certainty, however, to a degree which is a yet to be determined. 

3.5 Thermal system design and implementation 

The design of the thermal system for CHARMS is entirely focused on getting the sample prism cold, isothermal, and 
stable. While we measure the index of refraction over a wide range of sample temperatures, we typically do not try to 
maintain the sample at any particular temperature. As explained in Section 2.1. it is only accurate and precise. knowledge 
of temperature, not a particular value of the temperature, which is important for our measurements. The time constant 
associated with the passive drift in temperature for our system is such that we can sufficiently finely sample refractive 
index as a function of temperature to make valid interpolations between nearby data points to determine values of index 
for a particular temperature. 

The first component of the thermal design is a cylindrical liquid nitrogen shroud lining the interior walls of the 
refractometer chamber. Next, we have designed a custom sample chamber that completely surrounds the sample, with 
the exception of two optical view ports where the incident and exit beams travel (see Figure 6). In addition to shielding 
the sample from any parasitic radiative heat loads, the sample chamber also acts to cool the sample conductively, as 
explained below. Using liquid cryogen or a cryogenic refrigerator to cool this sample chamber and, in turn, the sample, 
we can measure refractive index over a wide range of temperatures. 

In order to conductively cool the sample, we rely on a series of high thermal conductivity braided copper straps 
(unfluxed desoldering braid) that couple the sample platform (upon which the sample sits) to the sample chamber. 
Taking into consideration the thermal conductivity of copper. the length and number of individual conductors in the 
braid, and the conductivity of the interfaces at either end of the braids, we determined that with 16 straps it would take 2 
hours to cool the sample to 20 K; with 32 straps it might take as little as 1 hour. We currently plan to use 32 straps if we 
can empirically demonstrate that so many straps would not apply so much torque on the sample platform that the actual 
rotation angle of the sample would not track the rotation of the sample’s rotation stage. 
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Figure 6: Windowless sample chamber with ( 1 )  optical viewports, ( 2 )  copper sample platform, (3) optical encoder 
scale, (4) mechanical bearing, and (5) G10 "thimble" isolators. Sample chamber is lid not shown. 

4. ERROR ANALYSIS 

Uncertainties in absolute index values by minimum deviation refractometry due to a number of environmental, optical, 
and mechanical sources have been derived elsewhere in the literature 2.7.8. The goal in the design of the present 
refractometer is to attack every source of uncertainty with the aim of minimizing each for the most accurate data 
possible. For reference, we will first discuss potential sources of error and their respective weights in the overall error 
budget for a minimum deviation refractometer operating in the IR, and then we present our measured capabilities both in 
the IR and in the visible for two common prism matenals. 

4.1 Prism fabrication 

Overall system accuracy begins with the specification of an appropriate prism size and apex for the best guess of index 
in the wavelength region of interest. Several different factors drive the requirements for fabrication of our sample 
prisms. We generally prefer to use a full 2.5 cm diameter refracted beam to maximize signal to noise in our centroiding 
algorithm However, manufacturing a prism of that size is not always feasible. For example, to measure the index of a 
prism made of LiF with an approximate index of 1.38 at 2 pm and an optimal apex angle of 60". we would need to have 
3.8 cm long refracting faces at least 2.5 cm high to refract a beam 2.5 cm in projection; this may drive the cost of 
fabrication of a prism for that particular material to an unreasonable amount. Reducing the apex angle to 30" and 
making the refracting faces smaller may make the prism easier and less expensive to manufacture, but would nearly 
triple the uncertainty in deviation angle measurements and increase the uncertainty in apex by 50% While this 
compromise in index accuracy may be acceptable in some instances, i t  nevertheless needs to be taken into consideration 
when specifying an appropriate prism for fabrication. Generally there is an optimal apex angle for a given sample 
material (;.e. refractive index) and primary wavelength that minimizes the uncertainty in apex and deviation angle 
measurements for a given system capability. 

4.2 Sources of uncertainty 

If  we were to measure the spectral index of refraction of a germanium pnsm having an approximate index of 4 2 at a 
wavelength of 2 5 pm and an apex angle of 17' (whch has been optimzed for Ge at 2 5 pm). each source of uncertainty 
listed in Table 1 would contnbute an error in the amount of one part in the sixth decimal place of absolute index ' 
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Establishing and maintaining the condition of minimum deviation is important, but is generally so easily achieved that 
no uncertainty is listed in the following tables. 

Table 1- Sources of uncertainty in absolute index giving An = 1 x for a Ge prism of apex 17” and 
index -4.2 at 2.5 um 

apex angle 
halfdeviation angle 
level 
sample temperature 
air temperature 
atmos. pressure 
humidity 
wavelength 

f 0.018 
f 0.04 
+9 
f 0.2 
f 0.6 
f 1.9 
2 3  
f 0.03 

arcsecond 
arcsecond 
arcminute 
c 
C 

HZ0 nun Hg 
mm Hg 

nm 

relative to standard temp. ( 1  5 C) 
relative to standard temp. ( I  5 C )  
relative to standard pressure (760 nun) 
relative to dry air (0 nun) 

4.3 Accuracy capabilities 

Through the advances described in the previous sections, we believe we can improve the quality of our measurements 
significantly over previous efforts. In addition, by working in a vacuum, we are immune to many environmental sources 
of uncertainty such as air temperature, atmospheric pressure, and humidity that significantly influence refractometry at 
ambient conditions. Table 2 lists the most significant index uncertainties based on the current capabilities of our system 
for the same sample treated in Table 1. Table 3 describes our accuracy capabilities for fused silica measured in the 
visible for which we present our “first light” data in the following section. 

Table %Expected capabilities in the IR in vacuum and uncertainties in n x for the same Ge prism 
described in Table 1. 

apex angle f 0.5 arcsecond 28 
halfdeviation angle f I .S arcsecond 40 
level + 9  arcminute 1 

wavelength f 0.2 nm 6 

capability An x 

sample temperature f 0.5 C 3 

Taking these uncertainties in quadrature, we anticipate typical uncertainty in index below 5 x 10.’ in index for ideal 
prismatic forms of this and other IR materials. 

Table >Measured capabilities in the visible and uncertainties in n x 

capability An x 

for fused silica prism of apex 
60” and index - 1.45 

apex angle f 0.5 arcsecond 2 
half-deviation angle f 0.75 arcsecond 5 

sample temperature ’. 0.5 C 5 
wavelength &0.1 nm 4 

level + 9  arcminute 1 

Taking these uncertainties in quadrature, our measured accuracy capabilities are below 1 x IO-’ in index for fused silica 
measured in the visible. 

5. INITIAL RESULTS 

5.1 Results for fused silica 

At the time of this writing, we have the capability to make index measurements only at ambient conditions. We are in 
the process of installing and characterizing the thermal control system and hope to have full cryogenic measurement 
capability by the Summer of 2004. Nevertheless, we have made index measurements at ambient on several standard 
sample materials as verification of our capabilities. Here, we present our index data for fused silica. 
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Table 4: Representative spectral index data for fused silica corrected to 20' C. 

Wavelength 
(nm) 
640. I 
632.8 
61 1.9 
604.6 
594.1 
543.5 

Measured index 
(corrected to 20' C) 

1.456820 
1.457008 
1.4.57649 
1.457889 
1.458229 
1.460 1 99 

Derived value 
(Malitson) 
1.456809 
1.4570 18 
1.4576.5 1 
1.457886 
1.458237 
1.460190 

In Table 4 and Figure 7, we present our initial refractive index measurements on a fused silica prism of nominal apex 
angle 60" in the visible. For t h s  sample, the index measurements were done at 2.5' C and then corrected to 20 C for 
comparison with de farto standards of index of refraction measured by l.H. Malitson at the National Bureau of 
Standards' in the 1960's. In addition to determining the spectral dispersion equation for the index of fused silica, 
Malitson also determined that the interspecimen variability of fused silica introduces an uncertainty of 2 x 
in this wavelength regime. 

in index 
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Figure 7: Calculated and measured spectral index of refraction of fused silica for selected wavelengths at 20" C. 

For these initial measurements our setup was slightly modified from but fundamentally very similar to, our final design. 
Though some components of the system were still being designed and fabricated, we wanted to make initial 
measurements to verify the operation of the hardware we did have and also to better understand the subtleties of the 
refractometer operation to improve the designs of those components that were not yet completed. The only significant 
change from our design was that in place of our grating monochromator, we chose to use a tunable heliumneon (HeNe) 
laser as our light source to illuminate a variable width slit. This pave us very accurate wavelength information and was 
easy to set up in place of our monochromator. 
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7. CONCLUSION 

Several upcoming NASA missions and other industrial technologies using refractive optics will require accurate 
measurements of the index of refraction of their constituent optical components. While data do exist for some materials 
with limited accuracy over limited wavelength and temperature ranges, the overall availability of index of refraction data 
is largely insufficient. In an effort not only to provide increased accuracy of knowledge of the index of refraction for 
c o m n l y  used optical materials, especially in the infrared, but also to open up the available design space by measuring 
new and more exotic materials, we have built a minimum deviation prism refractometer with cryogenic rneawrement 
capabilities. This refractometer will improve upon the trusted methodology of minimum deviation refractometry by 
measuring both the deviation and apex angles of the prismatic sample for each temperature and wavelength of interest. 
We anticipate measurement capabilities from 0.120 bm in the far ultraviolet to 6 pm in the IR and at temperatures from 
near absolute zero to significantly above room temperature. Our anticipated level of accuracy is 21 x 
index in the visible and 6 x IO9 in the IR. 

in absolute 
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