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1 Introduction and Motivation

There are several motivations for the development of the integral calculus library for the
PVS theorem prover: (1) Increasingly our formal methods team is being called upon to
develop analysis techniques that can demonstrate the safety of algorithms and systems used
for air traffic management both on the ground and in the air[6, 4, 3]. This problem domain
inevitably requires reasoning about the effect of the software on aircraft trajectories. As
aircraft approach the airport and subsequently reach the final approach fix, they follow non-
constant speed profiles that can require the use of calculus [4], (2) The power of the PVS
theorem has been growing over the last 10 years. A particularly challenging problem is the
formalization and mechanical verification of the classic proofs of integral calculus including
the Fundamental Theorem of Calculus. The author has often wondered if theorem proving
technology might ever reach the place where it can be a pedagogical aid to the mathematics
student and eventually a tool of practical use to the mathematician. The formalization of
the integral calculus in PVS should provide a basis for judging how close we are to this goal.
(3) The goal of reducing all of mathematics to primitive logic has a long heritage. Russell
and Whitehead sought to place all of the mathematics upon the foundation of set theory and
classical logic. When the paradoxes were discovered at the beginning of the 20th century,
they abandoned their effort. Although mathematicians have not demonstrated much interest
in continuing the Russell and Whitehead program, computer scientists have[1]. The Lebesgue
integral has been formalized in the Isabelle/Isar theorem prover [11] and the Gauge Integral
in Isabelle/HOL as well [8]. Harrison describes the development of the theory of integration
in the HOL theorem prover in [9]. L. Cruz-Filipe developed a constructive theory of analysis
in the Coq theorem prover in his Ph.D dissertation [5]. Here, we are providing the same
mathematical foundations for the PVS theorem prover. This work uses and extends the
work done by Bruno Dutertre [7]. He developed the first version of the PVS analysis library
which provided definitions and properties of limits, derivatives, and continuity. This work
develops the theory of integration through the Fundamental Theorem of Calculus.

In this paper I will provide a summary of the formalization and a few illustrations of
the mechanical proofs to emphasize the difference between the rigorous proofs provided by
Rosenlicht [12] in his classic text and a mechanically checked proof in PVS [10, 13]. The
PVS theories and proofs are available at NASA Langley’s formal methods web site [2].

2 Riemann Integral: Definition of Partition

We begin our formalization of the integral with the definition of a partition. Rosenlicht
defines a partition as follows:

Definition. Let a,b € R, a < b. By a partition of the closed interval [a, b] is meant a finite
sequence of numbers xg, x1, ..., x5 such that a = 2o < 21 < 29... < zy = b.

In PVS a “finite sequence” is record with two fields:

finite_sequence: TYPE = [# length: nat, seq: [below[length] -> T] #]



To define a partition we create a predicate subtype of finite sequences with the appropriate
properties:

integral_def[T: TYPE FROM real]: THEORY

BEGIN

a,b,x: VAR T

closed_interval(a:T, b:{x:Tla<x}): TYPE = { x | a <= x AND x <= b}

partition(a:T,b:{x:Tla<x}): TYPE =
{fs: finite_sequence[closed_interval(a,b)] |
Let N = length(fs), xx = seq(fs) IN
N > 1 AND xx(0) = a AND xx(N-1) = b AND
(FORALL (ii: below(N-1)): xx(ii) < xx(ii+1))}

The width of this partition is defined by Rosenlicht as follows:
max{xr; —x;_1:1=1,2,..,N}
In PVS we have:

width(a:T, b:{x:T|la<x}, P: partition(a,b)): posreal =
max({ 1: real | EXISTS (ii: below(length(P)-1)):
1 = seq(P) (ii+1) - seq(P) (ii)})

In PVS it is necessary to include the endpoints of the interval a,b as the first arguments
of width. Note the convenience of maz{z; — z;—, : i = 1,2,..., N} compared to the PVS
formalization. In the PVS definition, there is an existential quantifier which is hidden by
the traditional notation.

3 Definition of Riemann Sum

Definition. If f is a real-valued function on [a, b] by a Riemann sum for f corresponding to
the given partition is meant a sum

where z; 1 <z} < z; foreach i =1,2,...,N.
Originally the following formalization was attempted:

Riemann_sum(a:T,b:{x:T|a<x},P:partition(a,b),f: [T->real]l): real =
LET xx = seq(P), N = length(P)-1 IN
sigma[upto(N)](1,N, (LAMBDA (n: upto(N)):
f(x_in(xx(n-1),xx(n)))*(xx(n)-xx(n-1))))

using sigma from the reals library and defining x_in as
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x_in(aa:T,bb:{x:Tlaa<x}): {t: T | aa <= t AND t <= bb}

there were two problems with this formulation, one minor and one serious. First, this will not
typecheck (unprovable TCC) because the typechecker does not know that sigma function
will not evaluate xx(n) outside of the range 1 to N. The value of n-1 in xx(n-1) will actually
never go negative, but PVS has no way of knowing this. Second, this definition is deficient in
that the value of 2’ on which f is evaluated is provided by x_in. Although it is in some sense
arbitrary, there is no real quantifier here. The proof of the integral split theorem requires
that we quantify over all possible values of z’. See section 6 for more details. Thus, we define
the following predicate on partitions and sequences:

xis?(a:T,b:{x:Tla<x},P:partition(a,b))
(fs: [below(length(P)-1) -> closed_interval(a,b)]): bool =
(FORALL (ii: below(length(P)-1)):
P(ii) <= fs(ii) AND fs(ii) <= P(ii+1))

Given a sequence of x values, this predicate is true iff the ith value is contained in the ith
section of the partition.
Now we can define a Riemann sum as follows:

Rie_sum(a:T,b:{x:T|a<x},P:partition(a,b),
xis: (xis?(a,b,P)),f:[T->reall): real =
LET N = length(P)-1 IN
sigma[below(N)] (0,N-1, (LAMBDA (n: below(N)):
(P(n+1) - P(n)) * f(xis(n))))

We note that the index is taken from 0 to N-1 to solve the typechecking problem and the
fourth parameter xis provides the values of ' on which the height of each rectangle can be
calculated: f(z').

It is also convenient to define a predicate that checks whether a particular value equals
Rie_sum(a,b,P,xis,f):

Riemann_sum?(a:T,b:{x:Tla<x},P:partition(a,b),f: [T->reall) (S:real): bool
(EXISTS (xis: (xis?(a,b,P))): LET N = length(P)-1 IN
S = Rie_sum(a,b,P,xis,f))

4 Definition of Riemann Integral

Maxwell Rosenlicht provide the following definition of an integral:

Definition. Let a,b € R,a < b. Let f be a real-valued function on [a,b]. We say that f is
Riemann integrable on [a,b] if there exists a number A € R such that, for any e > 0, there
exists a § > 0 such that |S — A| < € whenever S is a Riemann sum for f corresponding to
any partition of [a, b] of width less than §. In this case A is called the Riemann Integral of f
between a and b and is denoted ,

/ f(z)dz



In other words, in order to establish that fab f(z)dx = A, we must show that for any given
€ there exists a ¢ and a real number A such that no matter how we partition the interval, if
the width of that partition is less than § and S is the Riemann sum corresponding to that
partition, we have |S — A| < e.

We begin the formulation of the Riemann integral, by defining the following predicate:

integral?(a:T,b:{x:T|a<x},f: [T->real],S:real): bool =
(FORALL (epsi: posreal): (EXISTS (delta: posreal):
(FORALL (P: partition(a,b)):
width(a,b,P) < delta IMPLIES
(FORALL (R: (Riemann_sum?(a,b,P,f))):
abs(S - R) < epsi))))

From this definition we can construct a predicate integrable? and a function integral
which is defined on integrable? functions:

integrable?(a:T,b:{x:T|a<x},f: [T->reall]): bool =
(EXISTS (S: real): integral?(a,b,f,S))

integral(a:T,b:{x:Tla<x}, ff: { f | integrable?(a,b,f)} ):
{S: real | integral?(a,b,ff,S)}

The uniqueness of the integral was demonstrated in the proof of

integral_unique: LEMMA a < b AND integral?(a,b,f,Al) AND
integral?(a,b,f,A2) IMPLIES Al = A2

Thus, the return type of the function integral consists of only one possible value. From
this we can easily prove

integral_def: LEMMA a < b IMPLIES
( (integrable?(a,b,f) AND integral(a,b,f) = s)
IFF integral?(a,b,f,s) )

Next, we eliminate the restriction that a < b, as follows:

Integrable?(a:T,b:T,f: [T->real]): bool = (a = b) OR
(a < b AND integrable?(a,b,f)) OR
(b < a AND integrable?(b,a,f))

Integrable_funs(a,b): TYPE = { f | Integrable?(a,b,f)}

Integral?(a:T,b:T,f:[T->real],S:real): bool = (a = b AND S = 0) OR
(a < b AND integral?(a,b,f,S))

Integral(a:T,b:T,f:Integrable_funs(a,b)): real =
IF a = b THEN O
ELSIF a < b THEN integral(a,b,f)
ELSE -integral(b,a,f)
ENDIF



The names were capitalized to distinguish these functions from the more restricted ones.

All of the proofs were straight-forward. The total number of proof commands were just
a little over 500 in number, including all of the typecheck condition proofs. The only long
proof was integral_unique which required 102 proof steps.

5 Linearity Properties

Following Rosenlicht, the first properties of the integral that were proved were the linearity
properties:

integral_const_fun: LEMMA a < b IMPLIES integrable?(a,b,const_fun(D))
AND integral(a, b, const_fun[T] (D)) = D*(b-a)

integral_scal: LEMMA a < b AND integrable?(a,b,f) IMPLIES
integrable?(a,b,D*xf) AND
integral(a,b,D*f) = D*integral(a,b,f)

integral_sum: LEMMA a < b AND integrable?(a,b,f) AND integrable?(a,b,g)
IMPLIES
integrable?(a,b, (LAMBDA x: f(x) + g(x))) AND
integral(a,b, (LAMBDA x: f(x) + g(x))) =
integral(a,b,f) + integral(a,b,g)

integral_diff: LEMMA a < b AND integrable?(a,b,f) AND integrable?(a,b,g)
IMPLIES
integrable?(a,b, (LAMBDA x: f(x) - g(x))) AND
integral(a,b, (LAMBDA x: f(x) - g(x))) =
integral(a,b,f) - integral(a,b,g)

These properties were then used to prove that non-negative functions have non-negative
integrals:

integral_ge_0: LEMMA a < b AND integrable?(a,b,f) AND
(FORALL (x: closed_interval(a,b)): f(x) >= 0) IMPLIES
integral(a,b,f) >= 0

Size of proofs:

lemma Proof Buffer Size
integral_const_fun | 35 lines
integral_scal 85 lines
integral_sum 85 lines
integral_diff 37 lines
integral_ge_0 94 lines




All of these proofs were easy. However the following simple property (example 2 on page
114 of Rosenlicht):

integral_jmp: LEMMA a < b AND a <= z AND z <= b AND f(z) = cc AND
(FORALL x: x /= z IMPLIES f(x) = 0) IMPLIES
integrable?(a,b,f) AND integral(a,b,f) = 0

required 602 proof lines. Lemmas integral_sum and integral_jmp were then used prove
the following lemma in 36 steps:

integral_chg_one_pt: LEMMA a < b IMPLIES
FORALL y: a <=y AND y <= b AND
integrable?(a,b,f)
IMPLIES integrable?(a,b,f WITH [(y) := yv]) AND
integral(a,b,f) = integral(a,b,f WITH [(y) := yv])

which shows that if you change a function at one point, then its integral does not change.
Of course this could be generalized to show that one can change a countably infinite number
of points and not change the value of the integral, but this proof has not been attempted in
the PVS system.

The following lemma (named Lemma 1 on page 118 of Rosenlicht) required 338 PVS
proof lines:

integrable_lem: THEOREM a < b IMPLIES
(integrable?(a,b,f) IFF
(FORALL (epsi: posreal): (EXISTS (delta: posreal):
(FORALL (P1,P2: partition(a,b)):
width(a,b,P1) < delta AND
width(a,b,P2) < delta IMPLIES
(FORALL (RS1: (Riemann_sum?(a,b,P1,f)),
RS2: (Riemann_sum?(a,b,P2,f))):
abs (RS1 - RS2) < epsi )))))

This was Rosenlicht’s first major building block for the more difficult theorems. His next
step was to develop the necessary apparatus to integrate step functions.

6 Step Functions

Establishing the key properties for integrals involving step functions proved more difficult
than was expected. Surprisingly, some of the most difficult challenges occurred in places
where visually the proofs were easy to see.

The first step was to provide a definition for a step function. This was accomplished by
exploiting the machinery we had already constructed for partitions. We define a predicate
that returns true iff the function is constant on the sub-intervals of the partition:



step_function_on?(a:T,b:{x:Tla<x},f: [T->real], P: partition[T](a,b)): bool =
Let N = length(P), xx = seq(P) IN
(FORALL (ii: below(N-1)): (EXISTS (fv: real):
(FORALL (x: open_intervall[T] (xx(ii),xx(ii+1))):
f(x) = fv)))

Then we define a “step function” to be a function for which there exists a partition for which
step_function_on? holds:

step_function?(a:T,b:{x:Tla<x},f: [T -> reall): bool
= (EXISTS (P: partition(a,b)): step_function_on?(a,b,f,P))

The first step function that was solved was the simple “square wave”:

Example_3: LEMMA a <= x1 AND x1 < xh AND xh <= b AND
(FORALL z: (IF x1 < z AND z < xh THEN f(z) =1
ELSE f(z) = 0 ENDIF))
IMPLIES integrable?(a,b,f) AND
integral(a,b,f) = xh-x1

This was example 3 on page 114. The proof of this lemma in Rosenlicht’s text was 27 lines,
the PVS proof was surprisingly difficult requiring 640 steps.

By showing that a step function is equivalent to a finite sum of these square wave func-
tions, Rosenlict’s Lemma 2 (page 119) was proved:

Lemma. A step function is integrable. In particular, if xg,x1,..., Ty @S a partition of the
interval [a,b], if ¢1,...,cn, € R and if f: [a,b] — R is such that f(z) =c¢;, if i1 <z <4

fori=1,...,n, then
b n
/ f(z)dz = ZCZ(IZ — ;1)
a i=1

In PVS we have:

step_function_integrable?: LEMMA a < b AND step_function?(a,b,f) IMPLIES
integrable?(a,b,f)

step_function_on_integral: LEMMA a < b IMPLIES
FORALL (P: partition[T](a,b)):

7



step_function_on?(a,b,f,P) IMPLIES
integral(a,b,f) =
LET N = length(P) IN
sigma(0,N-2, (LAMBDA (i: below(N-1)):
val_in(a,b,P,i,f)*(P(i+1) - P(i)))) ;
where val_in(a,b,P,i,f) is just the value of f in the ith section of the partition P. In PVS
this was defined as follows:

pick(a:T,b:{x:Tla<x}, (P: partition[T](a,b)),j: below(length(P)-1)):
{t:T | seq(P)(j) <t AND t < seq(P)(j + 1D} =
choose({t:T | seq(P)(j) < t AND t < seq(P)(j + 1D}

val_in(a:T,b:{x:Tla<x}, (P: partition[T](a,b)),j: below(length(P)-1),f): real
= f(pick(a,b,P,j))

Establishing step_function_on_integral required the proof of 8 supporting lemmas and
over 2500 proof steps.

The next key result proved in Rosenlicht is the following proposition from page 120:

Lemma. : The real-valued function f on the interval [a,b] is integrable on [a,b] if and only
for each € > 0 there exists step functions fi, fo on [a,b] such that

fi(z) < f(z) < fa(x) for each z € a, b
and

/ (fo(z) = fi(z))dz < €

This result, which he simply labeled as a proposition, required 2% pages in his book. The
PVS proof was accomplished in two steps. First the forward direction was established:

step_to_integrable: LEMMA a < b AND % Rosenlict pg 120 forward direction
(FORALL (eps: posreal):
(EXISTS (f1,f2: [T -> reall):
step_function?(a,b,f1) AND step_function?(a,b,f2)
AND (FORALL (xx: closed_interval(a,b)):
f1(xx) <= f(xx) AND f(xx) <= f2(xx))
AND integrable?(a,b,f2-f1)
AND integral(a,b,f2-f1) < eps))
IMPLIES integrable?(a,b,f)

This proof was straight-forward and required only 146 PVS proof steps. However, the reverse
direction was very difficult. The proof of the reverse direction took about 3 man weeks of
effort. First it was necessary to establish that an integrable function is bounded (600 proof
steps):



integrable_bounded: LEMMA a < b AND 7 Rosenlicht pg 122
integrable?(a,b,f)
IMPLIES bounded_on?(a, b, f)

where bounded_on?(a, b, f) was defined as

bounded_on?(a,b,f): bool = (EXISTS (B: real):
(FORALL (x: (closed_intv(a,b))): abs(f(x)) <= B))

Then an additional 960 proof steps were necessary to finish the reverse direction.
The next main result proved was that a continuous function is integrable (Pg 123 Rosen-
licht)

Theorem. If f is a continuous real-valued function on the interval [a,b] then f: f(z)dx
er1sts.

The PVS version is:

continuous_integrable: LEMMA a < b AND
(FORALL (x: closed_interval(a,b)): continuous(f,x))
IMPLIES integrable?(a,b,f)

The proof given in Rosenlicht is 16 lines while the formal PVS proof is over 1200 lines long.
See the appendix for discussion of why there is such a large difference between PVS proofs
and traditional mathematical rigor.

The integral split theorem was probably the most difficult result to achieve in PVS. Here
is its statement in Rosenlicht (page 123):

Theorem. Let a,b,c € R,a < b < ¢, and let f be a real-valued function on [a,c|. The f is
integrable on [a, c| if and only it is is integrable on both [a,b] and [b,c|, in which case

/abf(x)d:c—i-/bcf(x)dx:/acf(:r)da:

This theorem is easily stated in PVS as follows:

integral_split: THEOREM a < b AND b < ¢ AND
integrable?(a,b,f) AND
integrable?(b,c,f)
IMPLIES integrable?(a,c,f) AND
integral(a,b,f) + integral(b,c,f) = integral(a,c,f)

Although the rigorous proof in Rosenlicht was only 2 pages, the PVS proof required the
use of 131 lemmas, whose proofs required over 4000 PVS proof commands. As explained in
section 3, the Riemann sum was originally defined using x_in:

x_in(aa:T,bb:{x:Tlaa<x}): {t: T | aa <= t AND t <= bb}



to select the z;s within each subinterval in the partition. Using this definition all of the
theorems were completed except the integral split theorem. In the first version of the library,
the integral split theorem was included as an axiom, because the time required to prove this
lemma was deemed prohibitive at that time. Using this axiom and the other proven lemmas
the fundamental theorem was completed. The library was released with the expectation that
this integral split lemma would be proved later.

The first indication of a problem with this definition of a Riemann sum, was in an email
from David Lester of Manchester University. He pointed out that this definition does not
allow you to establish that an integrable function was bounded!. After receiving his email,
the definition was revised, and all of the other lemmas were reproved using the new definition,
and finally this integral split theorem was also completed. There are now no axioms in this
PVS library.

7 Fundamental Theorem of Calculus

The culmination of this work was the completion of the Fundamental Theorem of Calculus
in the PVS theorem prover. The statement of this theorem in PVS is:

fundamental: THEOREM continuous(f) AND
(FORALL x: F(x) = Integral(a,x,f))
IMPLIES derivable(F) AND deriv(F) = f

where derivable and deriv are defined in the differential calculus part of the analysis library
that had been previously developed by Bruno Dutertre of the Royal Holloway & Bedford
New College (now at SRI International). These define derivability (i.e. differentiability) and
the derivative respectively.

The PVS proof chain analyzer reports that the final completed proof of fundamental de-
pends upon 978 proven lemmas and theorems. The following corollaries were also completed:

fundamental2: THEOREM continuous(f)
IMPLIES (EXISTS F: derivable(F) AND deriv(F) = f)
fundamental3: THEOREM derivable(F) AND deriv(F) = f AND continuous(f)
IMPLIES Integral(a,b,f) = F(b) - F(a)

Next the concept of the antiderivative was formulated as follows:

antiderivative?(F,f): bool = derivable(F) AND deriv(F) = f

antiderivative_lem: LEMMA antiderivative?(F,f) AND derivable(G) AND
deriv(G) = f
IMPLIES (EXISTS (c: real): F = G + const_fun(c))

!Here you have an integrable function and want to establish that f is bounded. It is not enough to pick
an arbitrary x; value in a interval ¢ to compute the height of the rectangle f(x;). You need to exploit the
fact that no matter what value of x; you chose, f(x;) is sufficiently small if indeed the function is integrable.
This requires explicit quantification of each z; for all intervals in the partition.
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A functional that returns the antiderivative was also provided:

antideriv(f: continuous_fun[T]): { gg: [T -> real] |
derivable(gg) AND deriv(gg) = f }

8 Conclusion

A formalization of the integral calculus in the PVS theorem prover has been completed.
The theory and proofs were based on Rosenlicht’s classic text on real analysis and follow
the traditional epsilon-delta method. The goal of this work was to provide a practical
set, of PVS theories that could be used for verification of hybrid systems that arise in air
traffic management systems and other aerospace applications. All of the basic linearity,
integrability, boundedness, and continuity properties of the integral calculus were proven.
The work culminated in the proof of the Fundamental Theorem Of Calculus. There is a
brief discussion about why mechanically checked proofs are so much longer than standard
mathematics textbook proofs.
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A  Why Are PVS Proofs So Much Larger?

Obviously providing a complete script of every formal step of one of the key lemmas in
this library would require hundreds of pages and the details would be of no interest to
the reader?. Furthermore, these proof steps are easily viewed using PVS on our publically
available libraries.

Therefore, I thought it might be of interest to the reader to offer some simple examples
of how a completely formal proof differs from the traditional rigorous proof offered in a
standard mathematics text. This presentation is in no way comprehensive — it highlights
only a fraction of the complexities one faces in a completely formal theorem prover.

A.1 Formalizing Partitions

In a classic text book, the following suffices to define a partition of an interval:
a=29 < T < Xg...< TN =0b
But in a formal system this must be represented as a finite sequence of real numbers:

partition(a:T,b:{x:Tla<x}): TYPE =
{fs: finite_sequence[closed_interval(a,b)] | .... }

Formally, z; is seq(P) (i) where P is a partition. But that is only a superficial difference.
The real problem comes from all of the properties one implicitly knows about these z;s:

seq(P) (0) = a AND
seq(P) (N-1) = b AND
(FORALL (ii: below(N-1)): seq(P) (ii) < seq(P) (ii+1))}

which are defined in the “....” part of the definition above. From i < j it is obvious that
x; < x4, but in PVS whenever one needs this property it has to be brought into the proof
manually as a lemma:

parts_order : LEMMA FORALL (P: partition(a,b), ii,jj: below(length(P))):
ii < jj IMPLIES seq(P)(ii) < seq(P)(jj)

Even the trivial property that if a < x < b, then z must be in one of the subintervals, say i,
requires the use of the following lemma

part_in : LEMMA FORALL (P: partition(a,b)):
a <b AND a <= x AND x <= b IMPLIES
(EXISTS (ii: below(length(P)-1)):
seq(P) (ii) <= x AND x <= seq(P) (ii+1))

which first must be proved by induction. If you need the trivial property that if z is inside
subinterval 7, then it is not in another subinterval j, you must bring in the following lemma:

2 A typical proof of say 100 proof steps, produces over 4000 lines of proof trace when each step is replayed.
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parts_disjoint: LEMMA FORALL (P: partition(a,b), ii,jj: below(length(P)-1)):
seq(P) (ii) < x AND x < seq(P)(1 + ii) AND
seq(P) (jj) < x AND x < seq(P)(1 + jj)
IMPLIES
ij = i
If you have established that something is true for an arbitrary subinterval ¢, and you want
to conclude that it is therefore true for all of [a, b], you need to reference:

Prop: VAR [T -> bool]
part_induction: LEMMA (FORALL (P: partition(a,b)):
(FORALL ( x: closed_interval(a,b)):
LET xx = seq(P), N = length(P) IN
(FORALL (ii : below(N-1)):
xx(ii) <= x AND x <= xx(ii+1) IMPLIES
Prop(x))
IMPLIES Prop(x) ) )

and manually instantiate the property of interest. Clearly, this adds a tremendous amount
of time-consuming, tedious work.

In general constructs such as xg,z1,...,zy inevitably lead to inductions, the details of
which mathematicians such as Rosenlicht rarely delve into.

A.2 Step Functions

There are many properties of step functions that are obviously true from a visual viewpoint,
but require fairly time-consuming proofs in a mechanical theorem prover. For example,
the property that if you add two step-functions, you get another step function is assumed
without proof in Rosenlicht. However, the proof in PVS was surprisingly tedious:

sum_step_is_step: LEMMA a < b AND
step_function?(a, b, f) AND
step_function?(a, b, g)
IMPLIES
step_function?(a, b, f + g)

This lemma required over 350 proof steps and the construction of a function

UnionPart(a:T,b:{x:T|a<x},P1,P2: partition[T] (a,b)): partition[T](a,b) =
set2part(union(part2set(a, b, P1), part2set(a, b, P2)))

that generates a new partition containing all of the z;s from the two step functions being
added together. All of the trivial properties such as the fact that if an x; is a discontinuity
point on one of the original step functions then it is also one of the discontinuity points in
the generated one must be manually introduced into the proof in order to be used. The
obvious property that the nth sub interval of the new partition must be contained within
some sub interval of the original partitions is
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Union_lem: LEMMA FORALL (a:T, b: {x:Tla<x}, P1,P2: partition[T](a, b),
n: below(length(UnionPart(a,b,P1,P2))-1)):
in_sect?(a,b,UnionPart(a,b,P1,P2),n,x)
IMPLIES
(EXISTS (k: below(length(P1)-1)):
seq(P1) (k) <= UnionPart(a,b,P1,P2)(n) AND
UnionPart(a,b,P1,P2) (n+1) <= seq(P1l) (k+1) )

This property requires a tricky proof using the following maximum:

"max[length(P1!1) - 1] ({k: below(length(P1!1) - 1) |
seq(P1!1) (k) <= UnionPart(a!l, b!1, P1!1, P2!1) ‘seq(n!1)})")

i.e, the largest subinterval index less than n. Similar proofs were needed for the difference of
two partitions, the concatenation of two partitions and several other constructions involving
step functions.

A.3 Complications Due To Working In Type Theory Rather Than
Set Theory

One of the most disturbing things about working in type theory rather than set theory is
that standard operators such as ¥, are not unique. There are different versions depend-
ing upon the domain of the function being summed. For example the summation opera-
tor over functions from [nat -> reall is sigma[nat] whereas the operator for functions
from [upto[N] -> real] is sigma[upto[N]] and they are not interchangeable even though
upto [N] is a subtype of nat.

Also restrictions of function domains to subdomains can lead to ugliness involving the
PVS prelude restrict/extend functions For example

continuous[closed_interval[T] (seq(PP) (ii!1), seq(PP) (1 + ii!1))]
(restrictlT,
closed_intervall[T] (seq(PP) (ii!1), seq(PP)(1 + ii!l)),
real]
(f11),
x!1)

in addition to a proliferation of different versions of continuous e.g. continuous[T] (f),
continuous[closed_interval(a,b)] (f), and continuous[closed_intervall[T]
(seq(PP) (ii!1), seq(PP) (1 + ii!1))].

B Illustration

As noted before, the complete presentation of a PVS proof of a lemma would require dozens
of pages and likely to be of no real interest to the reader. Therefore in this section I merely
provide a proof sketch of a theorem from page 123 of Rosenlicht.
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B.1 Continuous Function Is Integrable

Theorem. If f is a continuous real-valued function on the interval [a,b] then fab f(z)dx
exists.

Proof. We shall prove this theorem by showing that the criterion of the preceding lemma
obtains. Since f is uniformly continuous on [a,b], given any € > 0 we can find a ¢ such that
whenever z,z" € [a,b] and |2'—2"| < § then |f(z')— f(2")] < €¢/(b—a). Choose any partition
%o, X1, ...xn Of [a,b] of width less than 6. For each i =1, ..., N choose z}, 2! € [z;_1, z;] such

that the restriction of f to [z;_1, ;] attains a minimum at a and a maximum at z}. Define
step functions fi, fo on [a, b] by

_ (@) fzi<z<wzyi=1,..N
f1(x)—{ () ifzr=ux;4i=0,1,..,N

) fr; <z <zi=1,..N

(z;
() ifx=ux4,i=0,1,...N

Then fi(z) < f(z) < fo(z) for all x € [a,b]. Furthermore for each i = 1,..., N we have
|zf—z| < zh—z! <6, sothat | f(z))—f(2])| < €/(b—a) and therefore fo(x)—fi(x) < €/(b—a)
for all € [a, b]. Therefore

[ () = £1@) dx < mas{ (o) — (@) : 7 € [0} (= )

€

b—a

< c(b—a)=c¢

B.2 Formal Proof Sketch of This Theorem

The Informal proof is 16 lines in Rosenlicht. The Formal PVS proof is over 1200 lines long
(not counting the auxiliary lemmas and TCCs). The PVS proof script (i.e. M-x edit-proof)
is 417 command lines and the proof trace is over 8000 lines long. Here are some highlights
of this formal proof. The formal proof begins with

{-1} a'1 < b!l

{-2} FORALL (x: closed_interval(a!l, b!1)): continuous(f!1l, x)
{1} integrable?(a!l, b!1, f!1)

We use a lemma that establishes that £!1 is uniformly continuous and obtain

[-1] uniformly_continuous?(LAMBDA (s: closed_interval[T](a!l, b!1)):
f1i1(s),
LAMBDA (t: real):
IF T_pred(t) AND a!l <=t AND t <= b!1l
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THEN TRUE

ELSE FALSE
ENDIF)
[-2] a!1 < b!1
[-3] FORALL (x: closed_interval(a!l, b!1)): continuous(f!l, x)

[1] integrable?(a!l, b!1, f!1)
We rewrite with the lemma step_to_integrable and the goal becomes:

[1] EXISTS (f1, f2: [T -> reall):
step_function?(a!l, b!1l, f1) AND step_function?(a!l, b!l, £2)
AND FORALL (xx: closed_interval[T](a!l, b!1)):
f1(xx) <= f!1(xx) AND f!1(xx) <= f2(xx)
AND integrable?(a!l, b!l, f2 - f1)
AND integral(a!l, b!l, f2 - f1) < eps!1l

We instantiate £1 and £2 with fmin and fmax defined as follows

min_x(a:T,b:{x:Tla<x}, f: fun_cont_on(a,b)):
{mx: T | a <= mx AND mx <= b AND
(FORALL (x: T): a <= x AND x <= b IMPLIES
f(mx) <= £f(x))}

max_x(a:T,b:{x:Tla<x}, f: fun_cont_on(a,b)):
{mx: T | a <= mx AND mx <= b AND
(FORALL (x: T): a <= x AND x <= b IMPLIES
f(mx) >= £f(x))}

fmin(a:T,b:{x:Tla<x},P: partition(a,b), f: fun_cont_on(a,b)):
{ff: [T -> reall | LET xx = seq(P) IN
FORALL (ii : below(length(P)-1)):
FORALL (x: T): (xx(ii) < x AND x < xx(ii+1) IMPLIES
ff(x) = f(min_x(xx(ii),xx(ii+1),f))) AND
((xx(ii) = x OR x = xx(ii+1)) IMPLIES
ff(x) = £(x))}

fmax(a:T,b:{x:Tla<x},P: partition(a,b), f: fun_cont_on(a,b)):
{ff: [T -> real]l | LET xx = seq(P) IN
FORALL (ii : below(length(P)-1)):
FORALL (x: T): (xx(ii) < x AND x < xx(ii+1) IMPLIES

ff(x) = f(max_x(xx(ii),xx(ii+1),f))) AND
((xx(ii) = x OR x = xx(ii+1)) IMPLIES
ff(x) = f(x))}

These leaves us with the following goal:
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{1} step_function?(a'!l, b!l, fmin(a!l, b!1l, PP, f!1))
AND step_function?(a!l, b!l, fmax(a!l, b!1l, PP, f!1))
AND FORALL (xx: closed_interval[T](al!l, b!1l)):
fmin(a'l, b!1, PP, f!1)(xx) <= fl1(xx) AND
f11(xx) <= fmax(a'!l, b!1, PP, f!1) (xx)
AND integrable?(a!l, b!1l,
fmax(a!l, b!1, PP, £!1) - fmin(a!l, b!1, PP, f!1))
AND integral(a!l, b!i,
fmax(a'!l, b!1, PP, f!1) - fmin(a!l, b'l, PP, f!1))
< eps!1l

Next, we demonstrate that fmin and fmax are indeed step functions. And then seek to
establish each of the remaining conjuncts. Lets look at just one of the obligations:

fmin(al!l, b'1l, PP, f!1)(xx'1) <= fl1(xx!1)
To prove this we get the definition of fmin and bring in part_induction:

{-1} FORALL (Prop: [T -> booll, a, b: T, P: partition[T](a, b),
x: closed_interval[T](a, b)):
LET xx: [below[P‘length] -> closed_intervall[T](a, b)] = seq(P),
N = length(P)
IN
(FORALL (ii: below(N - 1)):
xx(ii) <= x AND x <= xx(ii + 1) IMPLIES Prop(x))
IMPLIES Prop(x)
[-2] FORALL (ii: below(length(PP) - 1)):
FORALL (x: T):
(seq(PP) (ii) < x AND x < seq(PP)(1 + ii) IMPLIES
fmin(a!l, b!1, PP, fl1)(x) =
fl1(min_x[T] (seq(PP) (ii), seq(PP)(1 + ii), f!1)))
AND
((seq(PP) (ii) = x OR x = seq(PP)(1 + ii)) IMPLIES
fmin(a'!l, b!1, PP, fl1)(x) = fl1(x))
[-3] a'l1 < Db'l

[1] fmin(a!l, b!1, PP, f!1)(xx!1) <= fl1(xx!1)
Provide the property for the induction

(inst -1 "(LAMBDA x: fmin(a!l, b!1, PP, f!11)(x) <= f!1(x))"
fgt{" npiqn wppn "XX!].")

obtaining

[-1] seq(PP)(ii!l) <= xx!1
[-2] =xx!1 <= seq(PP)(1 + ii!1)
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{-3} (seq(PP)(ii'!1) < xx!1 AND xx!1 < seq(PP)(1 + ii'1l) IMPLIES
fmin(a'l, b!1, PP, £!1) (xx!1) =
f!1(min_x[T] (seq(PP) (ii!1), seq(PP) (1 + iil1), f!1)))
AND
((seq(PP) (ii'1) = xx!1 OR xx!1 = seq(PP)(1 + ii!1)) IMPLIES
fmin(a!l, b!1, PP, f!1)(xx!1) = f!l1(xx!1))
[-4] a!l < b'l

[1] fmin(a!l, b!1, PP, f!1)(xx!1) <= fl1(xx!1)

If seq(PP) (ii!1) < xx!1 then the result follows quickly from the definition of min_x. But
we have to also deal with the cases where seq(PP) (ii!1) = xx!1orseq(PP) (1+ii!1) = xx!1
which I will pass over here.
Once we have established the integrability of
fmax(a'l, b!1, PP, f!1) - fmin(a!l, b!1l, PP, f!1)
we need to establish:
integral(a!l, b!1, fmax(a!l,b!1,PP,f!1)- fmin(a'!l,b!1,PP,f!1)) < eps!1l.
In the prover, we have:

[-1] integrable?(a!l, b!1l,
fmax(a'l, b!1, PP, f!1) - fmin(a'l, b!1l, PP, f!1))
[-2] step_function?(a!l, b!1l, fmax(a!l, b!1, PP, f!1))
[-3] step_function?(a!l, b!1l, fmin(a!l, b!1, PP, f!1))
[-4] eq_partition(a!l, b!1l, 2 + floor((b!1 - a!l) / delta!l)) = PP
[-5] FORALL (x,
y:
(LAMBDA (t: real):
IF T_pred(t) AND a!1 <= t AND t <= b!1 THEN TRUE
ELSE FALSE
ENDIF)):
abs(x - y) < delta!l IMPLIES
abs(f!1(x) - f!1(y)) < (eps!l / 2) / (b!1 - a!l)
[-6] a'l < Db'l
[-7] FORALL (x: closed_interval(a!l, b!1)): continuous(f!l, x)

{1} integral(a!l, b!1, fmax(a!l, b!1l, PP, f!1) - fmin(a!l, b!1, PP, f!1))
< eps!l
Using the a lemma about partitions with equal sub-intervals, we have

{-1} width(a!1l, b!1,
eq_partition(a!l, b!1l, 2 + floor((b!1l - al!l) / delta!l)))
= (b!1 - a!1) / (1 + floor((b!1 - a!1l) / delta!l))

with some algebraic manipulations we obtain:

[-2] width(a!l, b!1, PP) < delta!l
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Using lemma integral_bound_abs we get

{-1} (a!'1 < b!1 AND
integrable?(a!l, b!l,
fmax(a!l, b'1l, PP, £!1) - fmin(a!l, b!l, PP, £!1))
AND
(FORALL (x: closed_intervall[T](a'!l, b'!1)):
abs ((fmax(a'l, b'!1, PP, f!1) - fmin(a!l, b!1l, PP, £!1))(x)) <=
eps!l / (2 * (b!'1 - a!1))))
IMPLIES
abs(integral(a!l, b!1,
fmax(a!l, b!1, PP, £!1) - fmin(a!l, b!1, PP, £!1)))
<= eps!l / (2 x (b!1 - a!1)) * (b!1 - a!l)
width(al!l, b!l1, PP) < deltall
integrable?(a!l, b!1l,
fmax(a'l, b!1, PP, f!1) - fmin(a!l, b!1, PP, f!1))
[-4] step_function?(a!l, b!l, fmax(a!l, b!1, PP, f!1))
[-5] step_function?(a!l, b!l, fmin(a!l, b'!1, PP, f!1))
[-6] FORALL (x,
y:
(LAMBDA (t: real):
IF T_pred(t) AND a!1 <= t AND t <= b!1 THEN TRUE
ELSE FALSE
ENDIF)):
abs(x - y) < delta!l IMPLIES
abs(f!1(x) - £!1(y)) < (eps'lt / 2) / (b!1 - a!l)
[-7] a!1 < b!1
[-8] FORALL (x: closed_interval(a!l, b!1)): continuous(f!l, x)

[1] integral(a!l, b!1, fmax(a!l, b!1l, PP, f!1) - fmin(a!l, b!1, PP, f!1))
< eps!l

[2] integrable?(a!l, b!1, f!1)

The uniform continuity result [-6] is used to establish

abs(MAX_x - MIN_x) < delta!l IMPLIES
abs(f!1(MAX_x) - f!1(MIN_x)) < (eps!l1 / 2) / BMA

(Note: this occurs as the following subcase:
continuous_integrable.1.1.1.1.1.1.1.1.1.2.1.1.1.2.1.1.2.1.1.1.1 )
Further manipulation enables us to simply (-1) to:

{-1} abs(integral(a'l, b!1,
fmax(a'!'l, b!i, PP, f!1) - fmin(a!l, b!'i, PP, £!1)))
<= eps!l / (2 * BMA) * BMA
where BMA = "b!1-a!1l, from which the subgoal follows from properties about abs. The
complete proof trace is 8000 lines long.
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C Example of Proof Deficiency in Rosenlicht

The proofs in Rosenlicht are remarkably complete and well documented. Nevertheless, it is
not unusual to encounter special cases that are not covered in the book. Here is an example
of such a deficiency taken from page 114 and 115.

Theorem. Let o, 3 € [a,b] with o < B. Let f : [a,b]— > R be defined by
1 ifze(a,B)
F0=10 focluisd @s

Then )
[ tayaa=p-a

Proof. Let xg, 1, ...,xy be a partition of [a, b] of width less than ¢ and consider a Riemann
sum for f corresponding to this partition, say

S= Zf($§)($i — Ti-1)

where z;_1 < z; < z; for each i = 1,2,..., N. Since f(x}) is 1 or 0 according as the point
is in the open interval (o, 8) or not, we have

S = Z* (JIZ — .Ti,l)

the asterisk indicating that we include in the sum only those i for which z} € (o, 5). Now
choose p, ¢ from among the 1 = 1,2,..., N such that

Tpo1 S a< Ty, Tgo1 < B <14

But this step overlooks the possibility that all of the x; may fall outside of («, 5). The proof
is repairable, but this case must be dealt with explicitly. The PVS theorem prover required
that all of the details of this case be supplied. However, these details were not included
in the Rosenlicht text. Admittedly this would clutter up the text book, but a complete
formal proof must cover it. Another special case is when N is 3 or less for which the above
construction again fails. Later in the proof the following fact is used p+1 < ¢ — 1. But this
is not possible if N is very small. O

D User Guide

It is expected that most users of this formalization of the integral, will only need the theo-
rems in two PVS theories: integral and fundamental_theorem. Here is a quick reference
guide to these theorems:
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Theorem

Lemma Name

faa f(z)dz =0

Integral_a_to_a

fbcdx:c*(b—a)

Integral_const_fun

fb da:——ff

Integral_rev

f cf(z dx—cff

Integral_scal

faf xdx:faf

)dz + [° g(x) do

Integral_sum

f,ff(ﬂﬁ) —g(x)dz = [} (=)

dr — fab g(z) dz

Integral_diff

f:f WITH |[(y) := yv]dx = fabfdx

Integral_chg_one_pt

f@)>0> [P fdz>0

Integral_ge_0O

[f@)| <M S| [} f(z)

dz| < M % (b—a)

Integral_bounded

f integrable D |f(z)| < B

Integrable_bounded

f continuous D f integrable

continuous_Integrable?

[P f(@)dz + [ f(@)de [¢ f(z)da

Integral_split

For step function f : fab flz

) dx = Z?:l ci(;

— ;1) | step_function_on_integral

F=["dtDF =Ff

fundamentalil

J, f(2)dt = F(b) — F(a)

fundamental3

The theory was first developed for integrals where a < b.

over a number of PVS theories:

These results are distributed

Theorem Lemma Name Theory
fb cdr=cx*(b—a) integral_const_fun integral_prep
N cf dr =c [’ f(z integral_scal integral_prep
fa f(z x)dr = fa f dx—l—fabg(:v) dx | integral_sum integral_prep

Z?:l ci(z;

- 33i—1)

_on_integral

fab f(a:) — x) dr = f: f(x)dx— fabg(x) dr | integral_diff integral_prep
f;fdx = fabf WITH [(y) := yv] dz integral_chg_one_pt integral_prep
f(z)>0D ff fdx >0 integral_ge_0 integral _prep

f integrable D |f(z)| < B integrable_bounded integral_bounded
f continuous D f integrable continuous_integrable | integral_cont
fabf(x) dz + [, f(z)dz [{ f(z)dz integral_split integral_split
For step function f : fab f(z)dxr = | step_function integral_step

All of the theories and proofs are available at

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html
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