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The goal of this problem was to provide a detailed study of the accuracy
of boundary treatments with a range of incidence angles including shear and a
sonic point.

There are three parts. In each we solve the linearized Euler equations on a
prescibed domain: (−2, 2)×(0, 1) with initial conditions consisting of a pressure
dipole, entropy and vorticity disturbances. Here x1 = ±2 are the artificial
boundaries, the speed of sound is scaled to 1, and we solve up to t = 64.

PART 1

For part 1 the base flow is a uniform subsonic flow skew to the boundaries:

U1 = 0.3, U2 = 0.4. (1)

In addition, periodic boundary conditions are prescribed x2.
The exact solution is given by the following formulas:

p = P (x1 − U1t, x2 − U2t, t), ρ = D(x1 − U1t, x2 − U2t, t),
u = U(x1 − U1t, x2 − U2t, t), v = V (x1 − U1t, x2 − U2t, t),

where

P (x1, x2, t) =
2∑

i=1

Bi

∞∑
k=−∞

∫ t−rik

−∞

e−µi(s−τi)
2

√
(t− s)2 − r2

ik

ds,

D(x1, x2, t) = P (x1, x2, t) + S

∞∑
k=−∞

e−µSr2
Sk ,

U(x1, x2, t) = −
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0

∂P

∂x1
(x1, x2, s)ds+ U0(x1, x2),

V (x1, x2, t) = −
∫ t

0

∂P

∂x2
(x1, x2, s)ds+ V0(x1, x2),

U0(x1, x2) = f1(x1)
∫ 2
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∫ x1

−2

∂P

∂t
(z, x2, 0)dz,

V0(x1, x2) = −f ′
1(x1)

∫ x2

0
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and
r2
ik = (x1 − x1,i)2 + (x2 − x2,ik)2,

r2
Sk = (x1 − x1,S)2 + (x2 − x2,Sk)2,

f1(x1) =




0, x1 < −1.9
1− e−((x1+1.9)/2.5)8 , |x1| ≤ 1.9
1, x1 > 1.9.

The parameters Bi, µi, x1,i, x2,ik, S, µS , x1,S , x2,Sk are chosen so that, to
a high degree of accuracy (11 digits), the initial data is supported on (−2, 2)
and the boundary conditions are satisfied. The integrals are evaluated using
a combination of Gaussian quadrature and endpoint corrected trapezoid rules,
again to high accuracy. The infinite sums are truncated after the point where
their contributions are below machine precision. We also note that the jump in
f1 is approximately 4× 10−13.

Precisely we chose a dipole-like initial configuration for the pressure pulse:

τ1 = τ2 = −.95, µ1 = µ2 = 30, B2 = −B1 = 1,

x1,1 = −x1,2 = 0.1, x2,10 = x2,20 = 1/2.

and for the entropy pulse:

µS = 12, S = 1, x1,S = 0, x2,S0 = 1/2.

To guarantee periodicity we have:

x2,ik, x2,Sk =
1
2
+ k, −∞ < k < ∞.

We note that similar solutions have been used to test boundary conditions
for the linearized Euler equations in [2] and for the scalar wave equation in [1].

PARTS 2 AND 3

In part 2 the base flow is given by the subsonic Couette flow:

U1 = Mx2, M = 0.9, U2 = 0, (2)

and in part 3 by the transonic Couette flow:

U1 = Mx2, M = 1.2, U2 = 0. (3)

For these problems we replace the periodic boundary conditions by the wall
boundary condition, v = 0. The initial conditions are defined by the same
functions and parameters as part 1 except that the image source locations x2,ik

are determined to guarantee compatibility with the wall conditions. For k ≥ 0:

x2,i,k+1 = 2− x2,i,−k, x2,i,−(k+1) = −x2,ik,
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x2,S,k+1 = 2− x2,S,−k, x2,S,−(k+1) = −x2,Sk.

In this case we don’t have a code which evaluates an exact solution. Instead
we use a well-resolved numerical solution on a sufficiently long domain to elimi-
nate the influence of the boundaries. Tha basic numerical scheme is identical to
the one we used to solve these and other benchmark problems, and is described
in more detail elsewhere in the proceedings. In time we use a standard 4th order
Runge-Kutta method with time step dt = 1/2000: 128, 000 steps for the entire
solution. Space derivatives are calculated using an 8th order difference scheme
on a square grid with an extra point near the boundaries (added for stability).
Thus the mesh in the domain [−L,L] × [0, 1] has (nx + 3) ∗ (ny + 3) points
(nx = 128 ∗ 2 ∗ L, ny = 128; hx = hy = 1/128)

The length of the domain is chosen so that reflection from the left and right
boundaries causing possible errors would not come before time t = 64.0

L− 2
M + 1

+ (L− 2) > 64.0

Hence, L = 44 for Problem 2 (M = .9), and L = 47 for Problem 3 (M = 1.2).
We note that this required 385, 120 points in the transonic case. We have not
fully assessed the accuracy of this solution, but preliminary comparisons with
coarser mesh solutions suggests that it is accurate to more than three digits.
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