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ABSTRACT 
 

 Computational aero-acoustics (CAA) requires efficient, high-resolution simulation tools.  Most current 
techniques utilize finite-difference approaches because high order accuracy is considered too difficult or expensive 
to achieve with finite volume or finite element methods.  However, a novel finite volume approach (Ultra HI-FI or 
UHF) which utilizes Hermite fluxes is presented which can achieve both arbitrary accuracy and fidelity in space and 
time.  The technique can be applied to unstructured grids with some loss of fidelity or with multi-block structured 
grids for maximum efficiency and resolution.  In either paradigm, it is possible to resolve ultra-short waves (<2 
PPW).  This is demonstrated here by solving the 4th CAA workshop Category 1 Problem 1. 
 

INTRODUCTION 
 

 Simulating sound generation, propagation, and reflection is notoriously demanding because of the wide range of 
scales.  For the past decade many of the successful CAA applications have been based upon finite difference 
methodologies because it was not clear how to achieve high numerical resolution and efficiency with finite volume 
and finite element approaches.  Commercial computational fluid dynamics developers long ago settled on finite 
volume approaches for steady calculations because shocks and complex geometry are more naturally dealt with 
(ref. 1).  Unfortunately, the low resolution and efficiency of CFD required new approaches – hence, the development 
of finite-difference based schemes with wide and/or Padé stencils (refs. 2 to 3).  In (ref. 3) and later (ref. 4) the 
advantage of a staggered grid was demonstrated and it was suggested finite volume techniques could naturally 
utilize this property.  The development of higher order finite volume and finite element schemes has quietly 
progressed (refs. 4 to 11).   And more recently, very high order finite volume approaches have been developed 
(refs. 12 to 14).   These recent developments demonstrate the feasibility and value of high order, low dissipation, 
low dispersion finite volume formulations.  Unfortunately, none of these approaches can achieve both arbitrary 
accuracy and fidelity in both space and time for nonlinear aeroacoustic flows in complex geometries.  As shown in 
Figure 1, conventional techniques require about 6 points per wavelength (PPW) for reasonable resolution and a lack 
of resolution directly affects the overall efficiency (ref. 15).  This can make a significant difference in the tractability 
of simulating complex engineering devices.  
 

 
Figure 1 – Resolution and Efficiency Comparison  

 

423NASA/CP—2004-212954



 The desire to pursue a high resolution finite volume approach in turbo-machinery aero-acoustics is in part 
driven by the need to simulate the following: 
 

• Mild shocks near transonic blade tips 
• Sharp blade leading edges with steep flow gradients 
• Sharp blade trailing edges to properly account for the Kutta condition 
• Vortical, entropic, and acoustic wave propagation over approximately 10 wavelengths 

  
 It is also due in part by the need to maintain the following properties: 
 

• Flow conservation in difficult areas such as blade leading edge and trailing edge (see Figure 2) 
• Isotropic shock and wave speed everywhere in the machinery 
• Nonlinear effects of blade curvature and active control surfaces 
• Isentropic (for inviscid flows) flow along solid boundaries 

 
 Finite difference approaches have the following impediments to meeting the above needs: 

 
• Structured, Overset, or Cartesian grids are either difficult to apply to complex geometries or grid 

singularities, as shown in Figure 3, occur as in the case of multi-block structured solvers 
• Determining derivatives with wide stencils or compact schemes are undefined at shocks resulting in 

instabilities, shock smearing, etc. 
• Corners pose difficulties (i.e. are multiply defined at wall/inflow and nonreflecting conditions require 

special treatment there) 
• Spatial filtering/damping requires one-sided derivatives at boundaries which effectively changes the 

dispersion relations 
• First order grid singularity noise sources arise from both multi-block curvilinear grids and sharp edged 

complex geometry 
 

 These considerations are addressed by using Ultra Hermite Integration, Flux, and Interpolation (Ultra HI-FI or 
UHF) methods.  The term “Ultra” refers to the most salient characteristic of these methods which is they can resolve 
ultra-short waves (<2 PPW) (ref. 16).  This level of fidelity was first achieved with a finite difference Hermite-
Taylor approach (ref. 17).   In a similar vein, UHF methods use Cauchy-Kowalewski-Taylor time advance, and the 
spatial derivatives of the cell averages are carried on the grid; And Hermite fluxes are calculated and used to 
conservatively time advance all derivatives of the cell averages (ref. 6).   This can be formulated with unstructured 
grids with upwinding (ref. 6); It can also be formulated in a centered staggered grid as by Chang/Van Leer (refs. 18 
to 20).  But the most efficient formulation is structured multi-block curvilinear because the geometry is implicitly 
represented to higher fidelity as higher derivatives of the metric terms are naturally included from differentiating the 
strong conservation of the governing equations.  For example, the variation of the coordinate transformation first 
derivatives (metric term, ηx) near a typical leading edge is show in figure 4. 

 
                                                          

 
 

 
 
 
 
 
 
 
 
 
 
 
 

              Figure 2 – Flux Conservation                                                                     Figure 3 --Grid Singularities 
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Figure 5 - Reconstruction of Shock  

 

Figure 4 -- Spatial variation of curvilinear metric terms 
 

NUMERICAL APPROACH 
 

 The key idea is to include spatial derivatives of 
the cell averages on the grid (ref. 6) which as 
shown in Figure 5 provide better shock fidelity as 
more derivative information is used in the 
reconstruction.   The spatial derivative of the cell 
average is still defined at shocks which addresses 
the common criticism of high order finite 
difference methods.  For the one-dimensional 
advection equation: 
 
                                                                       (1)  

 
the following cell averages are stored on the grid: 

 
   
                                                                              (2)    

                                                                   
 

 
 

More derivatives can be added as well to provide the fidelity and efficiency as shown in Figure 1.   
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 The integral form of the governing equations (eq. 1) may be repeatedly differentiated: 
 
 
 
 

                        (3) 
 
 
 

 
For this simple case the flux is simply the conserved variable, u.  We need to reconstruct the sampled or un-

averaged variables from the known averaged variables to calculate the flux at J=0 and J=1 in Figure 6. 
 

 
Figure 6- Basic Cell 

 
 This reconstruction can be accomplished in two ways, either by reconstruction via the primitive function (RP) 
(ref. 21) or by using constraints (ref. 22).  For the structured curvilinear staggered UHF method one would use two 
cells for the reconstruction with the following constraints: 
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with m=0 up to s. 

 
 For very high order UHF methods this process is intractable because current computer algebra techniques 
cannot symbolically invert large matrices and in those cases the RP approach using Hermite divided differences is 
more practical. 
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  After calculating the fluxes with (eq. 4), the first time derivatives of the cell average spatial derivatives are 
found with (eq. 3).  Next, the Cauchy-Kowalewski procedure can be applied as follows since from (eq. 1) we have:    

   
 

   
   (5) 

 
   
   

 
 This procedure can by performed efficiently with unrolled recursion (ref. 15).  At this point we can time 
advance the cell average data with a simple Taylor series in time: 

 
 
 

  
 

   
                                                                                   (6) 
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interpolated using Hermite divided differences (ref. 15).  Or, if the single cell unstructured UHF is used (ref. 6) then 
this information is already present. 

 

After this process the following cell averaged data, …,)(,)(,)(, 1111
xxx

n
xx

n
x

nn uuuu ++++ , is 
known at J=1/2 in Figure 6.  The process just described is repeated at the next time level resulting in a staggered, 
centered UHF method.  If an unstaggered single cell reconstruction is used as in (ref. 6), then an upwinding 
dissipation term should be included for stability. 
 

RESULTS 
 
     The advection equation (1) is solved using the centered, 
staggered UHF procedure just described with the following 
initial condition:  
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The results at time = 800 are shown for α=1.7, α=4.6, and 
α=20 in figs. 7 to 9.  Notice that Figures 8 and 9 show ultra-
short wave resolution with at least 7 digits of accuracy.  
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This performance can be better understood by examining the UHF method’s amplification factor as a function 
of wavenumber. Performing the usual Fourier linear modal analysis, assume a harmonic solution of the form in (1): 
 
                              (8) 

   
 

   (9) 
 
 

 We can immediately conclude that not only should the amplitude of all the waves remain unchanged, but that 
the amplitudes of the spatial derivatives of the waves should not change.  By performing this analysis for k>π, we 
find that UHF methods are indeed resolving the ultra-short waves as shown in Figure 10.  Notice the addition of 3 
more spatial derivatives clearly improves the fidelity beyond k>2π.      

Figure 10 -- Fidelity Comparison of 3 and 6 spatial derivatives of the cell averages on the grid 
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   Figure 11 – No derivatives repeats                               Figure 12 – Single derivative comparison 

 
In Figure 11 we can see that the amplification factor merely repeats itself every k=π which is another way of 

observing ultra-short aliased waves are indistinguishable on the grid.  Notice in Figure 12 that adding just one 
derivative to the calculation results in significant growth of the extremely short waves but in practice the method is 
stable because of the interaction of the damped spatial derivatives with the undamped portion of the ultra-short wave 
solution variables.   

 
CONCLUSION 

 
 Much remains to be explored but it is clear that the ultra-short wave resolution implies significant efficiencies 
are attainable while keeping the desirable properties of finite volume formulations.  New ultra-wave filters will need 
to be developed to fully utilize this level of fidelity (ref. 23).  A discussion of boundary conditions is beyond the 
scope of the paper but the interested reader may find (ref. 24) helpful.  The extension to Euler equations is laid out in 
(ref. 6) for unstructured single cell reconstruction and a demonstration of the multiblock structured two-cell 
reconstruction is being prepared.  Space limitations preclude explaining more. 
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