
——————————————————–

FINAL REPORT

NASA GRANT NAG 9-1244

HYBRID PARTICLE-ELEMENT SIMULATION OF IMPACT

ON COMPOSITE ORBITAL DEBRIS SHIELDS

submitted by

Eric P. Fahrenthold

Department of Mechanical Engineering
University of Texas

1 University Station C2200
Austin, TX 78712, USA

November 8, 2004

——————————————————–



ABSTRACT

This report describes the development of new numerical methods and new constitutive

models for the simulation of hypervelocity impact effects on spacecraft. The research has

included parallel implementation of the numerical methods and material models developed

under the project. Validation work has included both one dimensional simulations, for com-

parison with exact solutions, and three dimensional simulations of published hypervelocity

impact experiments. The validated formulations have been applied to simulate impact ef-

fects in a velocity and kinetic energy regime outside the capabilities of current experimental

methods. The research results presented here allow for the expanded use of numerical simu-

lation, as a complement to experimental work, in future design of spacecraft for hypervelocity

impact effects.
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INTRODUCTION

The seven chapters which follow describe numerical methods and constitutive modeling

work which offers improved capabilities for the simulation of hypervelocity impact effects.

• Chapter 1 describes the development of a new hybrid-particle finite element method

for hypervelocity impact simulation.

• Chapter 2 describes validation of the hybrid-particle finite element method developed

in the first chapter, in simulations of published hypervelocity impact experiments.

• Chapter 3 describes validation of the hybrid-particle finite element method developed

in the first chapter, in simulations of rigid body dynamics problems with known exact

solutions.

• Chapter 4 describes an improved formulation of the hybrid-particle finite element

method developed in the first chapter, simplifying the method and improving its com-

putational efficiency.

• Chapter 5 describes the development of a new rate dependent elastic-plastic model for

Kevlar, and its application in the simulation of hypervelocity impact effects on com-

posite orbital debris shielding, like that deployed on the International Space Station.

• Chapter 6 describes the development of a new rate dependent anisotropic elastic-plastic

model for reinforced carbon-carbon, and its application in the simulation of hyperve-

locity impact effects on the wing leading edge of the Space Shuttle.

• Chapter 7 describes the application of hybrid particle-finite element methods in the

simulation of foam impact effects on the Space Shuttle thermal protection system.

The Conclusions section suggests opportunities for future research, and Appendix 1 tab-

ulates some specific simulation data for reinforced carbon-carbon.
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AN ELLIPSOIDAL PARTICLE-FINITE ELEMENT METHOD

FOR HYPERVELOCITY IMPACT SIMULATION
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AN ELLIPSOIDAL PARTICLE-FINITE ELEMENT METHOD

FOR HYPERVELOCITY IMPACT SIMULATION

Ravishankar Shivarama3 and Eric P. Fahrenthold4

Department of Mechanical Engineering, 1 University Station C2200
University of Texas, Austin, TX 78712, USA

A number of coupled particle-element and hybrid particle-element methods have been de-

veloped for the simulation of hypervelocity impact problems, to avoid certain disadvantages

associated with the use of pure continuum based or pure particle based methods. To date

these methods have employed spherical particles. In recent work a hybrid formulation has

been extended to the ellipsoidal particle case. A model formulation approach based on La-

grange’s equations, with particles entropies serving as generalized coordinates, avoids the

angular momentum conservation problems which have been reported with ellipsoidal smooth

particle hydrodynamics models.

KEYWORDS: particle methods, finite element methods, impact simulation

INTRODUCTION

A review of the literature on hypervelocity impact simulation shows that most research in

this field has focused on the development and application of continuum hydrocodes, using ei-

ther Eulerian, Lagrangian, or Arbitrary Lagrangian-Eulerian (ALE) formulations [1,2,3]. In

the last decade attention has shifted towards particle based methods [4], in particular smooth

particle hydrodynamics (SPH). Although both continuum and particle based methods have

demonstrated excellent results in a range of practical applications, these methods are not

without problems. As a result some recent research has formulated coupled particle-element

3Graduate student
4Professor, corresponding author, phone: (512) 471-3064, email: epfahren@mail.utexas.edu
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[5] or hybrid particle-element [6] methods, aimed at avoiding certain disadvantages of the use

of pure continuum based methods or pure particle based methods in hypervelocity impact ap-

plications [7]. The present paper develops a generalized hybrid method, extending the work

of Fahrenthold and Horban [6], presenting for the first time a combined particle-element for-

mulation based on a nonspherical particle geometry. Nonspherical particle formulations are

also of interest in certain molecular dynamics [8] and astrophysics [9,10] applications, where

material or flowfield geometry has suggested the use of repulsion potentials or interpolation

kernels with ellipsoidal forms.

Most previous hypervelocity impact simulation work has employed Eulerian finite volume

and Lagrangian finite element methods [1,11] and more recent extensions of these methods

to Arbitrary Lagrangian-Eulerian frames [12]. Although continuum hydrocodes are accurate

and efficient simulation tools for many important problems, they are not well suited for use in

all hypervelocity impact applications. Eulerian codes can accommodate arbitrarily general

contact-impact, but their approximate models of material strength effects are best suited to

a very high velocity impact regime. Lagrangian codes incorporate very accurate models of

material strength effects, but their slideline based contact-impact algorithms are best suited

to a relatively low velocity impact regime. ALE methods allow for intelligent tailoring of the

mesh, ideally avoiding (but not eliminating) the preceding limitations.

None of the aforementioned continuum formulations is ideally suited to applications where

the generation, transport, and contact-impact dynamics of material fragments is of central

concern. When material fragments become much smaller than the finite volume cell size,

Eulerian flow field interpolations may not accurately represent the physical state of the highly

comminuted medium. Hence the adaptive introduction of a high resolution Eulerian mesh

is required. Similarly the use of Lagrangian finite elements to represent a highly fragmented

medium calls for the introduction of a very extensive and adaptive slideline mesh. It is

not surprising that these continuum formulations can be difficult to apply in cases where

fragmentation dynamics are of central interest, given the highly discontinuous nature of the
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field variables in such systems.

Recognizing the disadvantages of continuum formulations in certain hypervelocity im-

pact applications, a number of different particle methods [13,14,15] have been introduced.

In general these methods replace or augment the conventional continuum kinematics with

particle based interpolations, to more efficiently represent fragment generation, transport,

and contact-impact effects in applications where modeling of the latter physics is of central

concern. The overwhelming majority of particle based hypervelocity impact models have

employed SPH techniques and spherical kernels. A notable exception is the work of Shapiro

and co-workers [9,10], who extended the basic SPH method to ellipsoidal kernels. However

those authors indicate that their method fails to conserve angular momentum, and they of-

fer no solutions to the tensile instability, numerical fracture, and other problems which have

hindered the effective use of SPH methods in some applications. The formulation presented

here does not involve element-to-particle conversion, as discussed for example by Johnson et

al. [14], who converted distorted finite elements into SPH particles. The latter conversion,

if it occurs before failure of the element, may introduce the aforementioned SPH tensile

instability and and numerical fracture problems.

The present paper formulates a hybrid ellipsoidal particle-finite element model for hyper-

velocity impact simulation. Unlike the coupled particle-element formulations of Hayhurst et

al. [16] and other authors, which use particles to model some structures and finite elements

to model other structures, the present paper employs particles and elements everywhere. The

simultaneous use of particles and elements is not redundant, since they are used to represent

distinct physics. The particles model all inertia and contact-impact effects, and are associ-

ated with interpolation functions which represent compressed states. The elements model all

strength effects, namely tension and elastic-plastic shear. This approach has several advan-

tages. The tensile instability and numerical fracture problems common to SPH formulations

are avoided, since interpolation kernels are not used to represent interparticle tension forces,

and since material strength effects give rise to interparticle forces only among reference con-
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figuration neighbors. Although true Lagrangian kinematics are used to calculate tensile and

shear forces, the use of particles in all inertia and contact-impact calculations means that

material failure is simply accommodated (without element-to-particle remapping or mass

and energy discard) via the loss of element cohesion. Particles not associated with any in-

tact elements translate and rotate as individual fragments, in response to contact-impact

loads. No slidelines are used, so that contact-impact of all intact and fragmented material

is modeled everywhere. Although the authors do not contend that this numerical approach

is best for all impact simulation problems, it offers important advantages in hypervelocity

impact applications. In the latter field an interest in multi-structure perforation, erosion,

fragmentation, and very general contact-impact modeling is not unusual.

The model formulation work described in the sections which follow is different from that

normally employed to develop hydrocode models of either the continuum or particle type.

Two particular features should be mentioned. First an energy method (Lagrange’s equations)

is used to develop the semi-discrete model, so that no reference is made to any partial

differential equations. The introduction of entropy variables as generalized coordinates makes

it possible to account for very general thermal dynamics while using a discrete Lagrangian

approach. Secondly the formulation introduces Euler parameter states [17] to account for

the rotational motion of the nonspherical particles. An Euler parameter description of the

particle kinematics is desired in order to avoid the singularities of Euler angle based models.

Although the use of Euler parameters leads nominally to a differential-algebraic formulation,

the development which follows introduces momentum state variables, to reduce the order

of the system and thereby eliminate the Lagrange multipliers associated with the Euler

parameter constraint. The model formulation work described here therefore generalizes in

a geometric sense the particle-element work of Fahrenthold and Horban [6] and generalizes

in a thermomechanical sense the Euler parameter based mechanical models of Chang and

Chou [18] and others [19,20].

The organization of this paper may be summarized as follows. The second and third
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sections define the particle and element kinematics and the interpolations used for all field

variables. The fourth and fifth sections develop kinetic energy and thermomechanical po-

tential energy functions for the system. The sixth section describes the dissipative process

models, for plastic formation and damage evolution. The seventh and eighth sections present

artificial viscosity and artificial heat diffusion models, similar to those used in other shock

physics codes, and develop entropy evolution equations which take the place of the energy

conservation relations normally employed. The ninth section introduces a virtual work ex-

pression, to account for externally applied loads. The tenth section combines the canonical

thermomechanical Lagrange equations with the multiple nonholonomic constraints devel-

oped in the preceding sections, and derives an unconstrained explicit state space model

for the particle-element system. The final section presents two example problems, show-

ing good agreement of simulations performed using the model developed here to published

data for three dimensional impact experiments. Additional validation work, for simulations

performed using a spherical kernel, are described by Fahrenthold and Shivarama [21], who

also provide details on the numerical implementation and test results showing numerical

convergence and good parallel speedup.

PARTICLE KINEMATICS

The inertia distribution in the modeled system is represented by a collection of n ellipsoidal

particles, with m(i) the mass of the ith particle, whose position and orientation are described

by a center of mass position vector (c(i)) and an Euler parameter vector (e(i)) with component

forms

c(i) = [ c
(i)
1 c

(i)
2 c

(i)
3 ]T , e(i) = [ e

(i)
0 e

(i)
1 e

(i)
2 e

(i)
3 ]T (1)

where T denotes the transpose. The components of the center of mass position vector

are described in a fixed Cartesian coordinate system. The Euler parameters [17] define an

orthogonal rotation matrix (R(i)) for each particle

R(i) = H(i) G(i)T (2)
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H(i) =


 −e

(i)
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(i)
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(i)
3 e

(i)
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2 e

(i)
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(i)
0 −e

(i)
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(i)
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(i)
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(i)
0


 (3)

G(i) =


 −e

(i)
1 e

(i)
0 e

(i)
3 −e

(i)
2

−e
(i)
2 −e

(i)
3 e

(i)
0 e

(i)
1

−e
(i)
3 e

(i)
2 −e

(i)
1 e

(i)
0


 (4)

which relates the components of any vector (â), described in a body fixed co-rotating coor-

dinate system, to its corresponding components in the fixed Cartesian system, using

a = R(i) â (5)

The four Euler parameters may be used to compute three Euler angles for each particle,

and are preferred for use in large rotation dynamics problems, since the Euler angles are

singular functions. Although the Euler parameters are nonsingular, they must satisfy the

constraint

e(i)Te(i) = 1 (6)

which requires that

G(i) e(i) = 0, G(i) ė(i) = − Ġ(i) e(i), G(i) G(i)T = I (7)

where I denotes an identity matrix.

The Euler parameters and their time derivatives are related to the particle angular velocity

vectors ( ω(i) ), with components expressed in the particle’s co-rotating frame, by the well

known [17] relations

ω(i) = 2 G(i) ė(i), ė(i) =
1

2
G(i)T ω(i) (8)

Similarly the anti-symmetric matrix Ω, with axial vector ω, which satisfies

Ω(i)v = ω(i) × v (9)

for any vector v, is related to the Euler parameters and their time derivatives by

Ω(i) = 2 G(i) Ġ(i)T = −2 Ġ(i)G(i)T (10)

7



The next section presents a density interpolation associated with the particles just de-

scribed, and defines Lagrangian finite elements whose nodal coordinates are components of

the particle center of mass position vectors.

DENSITY INTERPOLATION AND FINITE ELEMENTS

In the material reference configuration, the ellipsoidal particles are arranged in a packing

scheme defined by a mapping from a body centered cubic unit cell, the mapping composed

of stretchings in three orthogonal directions, those directions aligned with the principal axes

of the ellipsoids. The density interpolation for compressed states is

ρ(i) = ρ(i)
o +

n∑
j = 1

ρ(j)
o W (i,j) (11)

where ρ(i) is the continuum density at the centroid of the ith particle, ρ
(i)
o is the reference

density for the ith particle, and W (i,j) is the interpolation kernel

W (i,j) =
1

8
(1 − δij)

[(
1

ζ(i,j)

)3

− 1

]
û

(
ξ(i,j)

)
(12)

ξ(i,j) =

(
α + β

2

) (
ρ

(i)
o

ρ(i)

) 1
3

− ζ(i,j) (13)

The symbols δij and û denote respectively the Dirac delta function and the unit step function

û(x) =

{
0, x ≤ 0
1, x > 0

(14)

The constants α and β are effective separation distances, in a unit cell, measured respectively

between body centered particles and between a body centered particle and a particle located

at a cell vertex

α =
(π

3

) 1
3
, β =

√
3

2

(π

3

) 1
3

(15)

Note that the lead coefficient in the expression for W (i,j) is due to the presence of eight

nearest neighbors in the reference configuration.
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The function ζ(i,j) is an ellipsoidal coordinate, defined in a frame which co-rotates with

the jth particle

ζ(i,j) =
[ (

c(i) − c(j)
)T

R(j)A(j)R(j)T
(
c(i) − c(j)

) ] 1
2

(16)

A(j) =


 2βh

(j)
1 0 0

0 2βh
(j)
2 0

0 0 2βh
(j)
3



−2

(17)

where h
(j)
1 , h

(j)
2 , h

(j)
3 are the half-lengths of the principal axes of the jth particle.

Several properties of the density interpolation and kernel functions just described should

be noted. The interpolation provides an exact Lagrangian description of the variation of

density under uniform compression, and incorporates a lower bound equal to the particle ref-

erence density, so that tensile instabilities are avoided. The kernel is singular, so that no two

particle centers overlap, avoiding particle streaming effects. In the reference configuration

neighbor particles do not contribute to the density calculation, so that no special treatment

of surface particles with incomplete neighbor sets is required. The density dependence of

the compact kernel support means that particles interact only with near neighbors, and that

mechanical interaction with remote neighbors through intervening matter is avoided. Finally

note that the dimensionless kernel used here is closer in functional form and physical inter-

pretation to the repulsion potentials used in molecular dynamics, than to the dimensional

kernels with cubic spline form used in most SPH formulations.

The center of mass coordinates of vertex centered particles are nodal coordinates for hex-

ahedral finite elements, which are used to account for tension and elastic-plastic shear in

cohesive solid materials. These elements are used with one point integration, as described

by Hallquist [22], although in the present case the element packing scheme and density in-

terpolation preclude the development of hourglass modes. Since large deformation problems

are of interest in hypervelocity impact applications, the element nodal coordinates are used

here to compute a Jacobian (J (j)) and a Lagrangian deviatoric strain tensor (E
(j)

) for each

9



element, defined by [23]

J (j) = det F(j), E
(j)

=
1

2

(
C

(j) − I
)

(18)

where F(j) is the deformation gradient for the jth element and

C
(j)

= F
(j)T

F
(j)

, F
(j)

=
(
det F(j)

)− 1
3 F(j) (19)

The plasticity model discussed in a later section assumes an additive decomposition of the

deviatoric strain, with the elastic deviatoric strain tensor (Ee(j)) for the jth element defined

by

Ee(j) = E
(j) − Ep(j) (20)

so that the evolution equations for the plastic strain tensor (Ep(j)) must satisfy the isochoric

plastic deformation constraint

tr
(
Cp(j)−T Ċp(j)

)
= 0, Ep(j) =

1

2

(
Cp(j) − I

)
(21)

It should be emphasized that the numerical modeling methodology developed in this paper

applies for a wide range of element types and plasticity models. The particular element

kinematics and constitutive equations used in this paper are representative formulations

which account for large deformation kinematics.

KINETIC ENERGY

The kinetic co-energy for the system is

T ∗ =
n∑

i = 1

T ∗(i) (22)

where T ∗(i) is the kinetic co-energy for the ith particle

T ∗(i) =
1

2
m(i) ċ(i) T ċ(i) +

1

2
ω(i) T J(i) ω(i) (23)

and the components of the inertia matrix J(j) are calculated in a body fixed frame. Since

the components of the angular velocity vector are quasi-velocities, equations (8) are used to
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rewrite the second term

T ∗(i) =
1

2
m(i) ċ(i) T ċ(i) + 2 ė(i) TG(i) TJ(i) G(i) ė(i) (24)

which identifies the center of mass coordinates and the Euler parameters as generalized

coordinates in Lagrange’s equations. Note that the relations (7) allow the rotational kinetic

co-energy to be expressed as

T
∗(i)
rot = 2 e(i) T Ġ(i) TJ(i)Ġ(i) e(i) (25)

so that the generalized force associated with the Euler parameter dependence of the kinetic

co-energy is

k(i) =
∂T ∗(i)

∂e(i)
= 4 Ġ(i) TJ(i)Ġ(i) e(i) (26)

The next section develops a potential energy expression for the particle-element system.

POTENTIAL ENERGY

The potential energy of the particle-element system is the sum of the particle internal

energies and the element stored energies due to tension and elastic shear, and has the general

form

V =
n∑

i = 1

m(i) u(i) +
ne∑

j = 1

(
U ten(j) + Udev(j) + Upen(j)

)
(27)

where u(i) is an internal energy per unit mass, ne is the number of elements, U ten(j) is a

stored energy in tension, Udev(j) is a stored energy in shear, and Upen(j) is a penalty energy

used to position the body centered particle in each element. The particle internal energy

density is determined by the mass density and entropy density (s(i))

u(i) = u(i)
(
ρ(i), s(i)

)
, s(i) =

S(i)

m(i)
(28)

where S(i) is the total entropy of the ith particle. The functional form of the internal energy

per unit mass depends on the equation of state, and it is not unusual in such calculations to
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rely upon tabular data [24]. In any case, the extensive state variables which determine the

particle internal energy are

u(i) = u(i)
(
c(j), e(j), S(i)

)
(29)

The form of the element stored energy functions depends upon the constitutive assump-

tions. Although the general method developed here admits a wide range of constitutive

models, simple forms are assumed here, and are described as follows. The stored energy in

tension is

U ten(j) =
1

2
(1 − D(j)) κ(j) V (j)

o (J (j) − 1)2 û(J (j) − 1) (30)

where κ(j) is a bulk modulus, D(j) is the normal damage, and V
(j)
o is the element reference

volume. The stored energy in shear is

Udev(j) = (1 − d(j)) µ(j) V (j)
o tr

(
Ee(j)TEe(j)

)
(31)

where µ(j) is a shear modulus and d(j) is the deviatoric damage. The penalty function is

Upen(j) =
1

2
(1 − D(j)) K(j) (ĉ(j) − c(j))2 (32)

where ĉ(j) is the center of mass position vector for the body centered particle of the jth

element, c(j) is the average of the center of mass position vectors for the vertex centered

particles (the element nodes), and the penalty stiffness is

K(j) = E(j)V (j)
o

1
3 (33)

where E(j) is Young’s modulus for the element. The damage variables are used to model the

loss of cohesion due to element failure, and are discussed in the next section.

The preceding constitutive assumptions combine with the element kinematic relations

J (j) = J (j)
(
c(i)

)
, Ee(j) = Ee(j)

(
c(i),Ep(j)

)
(34)

to yield the following state variable dependence for the system potential energy

V = V
(
c(i), e(i), S(i),Ep(j), D(j), d(j)

)
(35)
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The listed arguments, which include the particle entropies, are by definition Lagrangian

generalized coordinates.

The system potential energy function defines the conservative generalized forces

∂V

∂c(i)
= g(i),

∂V

∂e(i)
= M(i),

∂V

∂S(i)
= θ(i) (36)

where θ(i) is a particle temperature, and g(i) and M(i) are forces and torques which act on

the ellipsoidal particles. The energy conjugates for the dissipative state variables define a

deviatoric stress

S(j) = − 1

V
(j)
o

∂V

∂Ep(j)
(37)

as well as the energy release rates

ΓD(j) = − ∂V

∂D(j)
, Γd(j) = − ∂V

∂d(j)
(38)

The next section discusses evolution equations for the dissipative state variables.

PLASTICITY AND DAMAGE MODELS

The evolution equations for the plastic strain tensor and continuum damage variables will

serve as nonholonomic constraints on the system level Lagrange equations. As discussed in

the last section, the general formulation developed here admits a wide range of constitutive

models. The relatively simple dissipative constitutive models assumed here are described

in this section. The plasticity model is adapted from Fahrenthold and Horban [25], and

represents the simplest possible accommodation of the isochoric deformation constraint (21).

The damage evolution relations are adapted from the Eulerian hydrocode work of Silling [26].

The flow rule for the plastic strain is

Ėp(j) =
λ̇(j)

Π(j)
(Cp(j) W(j) + W(j) Cp(j)) (39)

W(j) = Cp(j) Sp(j) + Sp(j) Cp(j) − 1

3
tr

(
Cp(j) Sp(j) + Sp(j) Cp(j)

)
I (40)

where λ̇(j) is a scalar multiplier and

Π(j) = (1 + η(j)εp(j))N(j)

[
1

2
tr

(
W(j)TW(j)

)]1/2

(41)
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ε̇p(j) =

[
1

2
tr

(
Ėp(j)T Ėp(j)

)]1/2

(42)

with η(j) a strain hardening modulus, N (j) a strain hardening exponent, and εp(j) the accu-

mulated plastic strain. The effective stress tensor which appears in the flow rule is

Sp(j) = (1 + η(j)εp(j))−N(j)

S(j), S(j) = − 1

V
(j)
o

∂V

∂Ep(j)
= (1 − d(j)) 2 µ(j) Ee(j) (43)

where the indicated deviatoric stress is power density conjugate to the plastic strain rate, in

the entropy equality for the solid medium.

The yield condition is

f (j) = τ (j) − Y (j), τ (j) =

[
1

2
tr

(
Sp(j)TSp(j)

)]1/2

(44)

where τ (j) is the second invariant of the effective stress. The yield stress Y is

Y (j) = Y
(j)
0 (1 − d(j))

(
1 − γ(j)θH(j)

)
(45)

where Y
(j)
0 is the reference yield stress, γ(j) is a thermal softening modulus, and θH(j) is the

maximum historical homologous temperature. The plastic strain increment at each time

step is determined using a one step iteration procedure [22] with

∆λ(j) =
(τ (j) − Y (j)) û(τ (j) − Y (j))

(1 − d(j)) 2 µ(j)
(46)

The final evolution equations for the plastic strain have the functional form

Ėp(j) = Ėp(j)
(
c(i), S(i),Ep(j), d(j)

)
(47)

and are nonholonomic constraints on the particle-element model.

Hypervelocity impact problems normally involve perforation and fragmentation effects, so

that the ability to model such physics is essential. In the present case normal and deviatoric

damage variables are introduced, to model the transition from a cohesive solid, characterized

by intact finite elements, to a comminuted medium, described by the free flow of particles.
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Free particles interact with cohesive material and with other fragments under general contact-

impact loads.

The damage evolutions applied here are

Ḋ(j) =
Λ(j)

n̂ ∆t
û(1 − D(j)), ḋ(j) =

Λ(j)

n̂ ∆t
û(1 − d(j)) (48)

where ∆t is the time step, n̂ is the number of time steps used to model the transition from

an intact to a failed element, and

Λ(j) = max{ û(εp(j) − ε
p(j)
f ), û(θ(j)

max − θ(j)
m ), û(J (j)

c − J
(j)
min), û(σ(j)

max − σ(j)
s ) } (49)

The function just defined initiates damage evolution in an element when when the accumu-

lated plastic strain εp(j), maximum temperature θmax, minimum element Jacobian J
(j)
min, or

maximum eigenvalue of the deviatoric stress σ
(j)
max reach corresponding critical values for the

failure strain (ε
p(j)
f ) , melt temprature (θ

(j)
m ), maximum compression (J

(j)
c ), or spall stress

(σ
(j)
s ). More sophisticated damage evolution relations may be introduced without change

to the general modeling framework. The damage evolution equations are nonholonomic

constraints which apply to the system level Lagrange equations.

ARTIFICIAL VISCOSITY AND HEAT DIFFUSION

The shock physics problems of interest here call for the introduction of artificial viscosity

and artificial heat diffusion effects. The standard formulation used here takes the viscosity

force fv(i) on the ith particle to be

fv(i) =
n∑

j = 1

ν(i,j) max
(
0, v(i,j)

)
r(i,j), r(i,j) =

(
c(i) − c(j)

)
| c(i) − c(j) | (50)

where the velocity difference v(i,j) is positive for converging particles

v(i,j) = − (
ċ(i) − ċ(j)

) · r(i,j) (51)

The damping coefficient ν(i,j) is

ν(i,j) =
1

2

(
ρ(i) c(i)

s V (i)
o

2
3 + ρ(j) c(j)

s V (j)
o

2
3

) [
co +

2 c1|v(i,j)|
(c

(i)
s + c

(j)
s )

]
û(1 − ζ(i,j)) (52)
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where c
(i)
s is the sound speed for the ith particle and the parameters co and c1 are dimen-

sionless linear and quadratic numerical viscosity coefficients.

The numerical heat diffusion model assumed here takes the thermal power flow for the

ith particle to be

Q̇con(i) =
n∑

j = 1

R(i,j) ( θ(i) − θ(j) ) (53)

R(i,j) =
1

2

(
ρ(i) c(i)

s c(i)
v V (i)

o

2
3 + ρ(j) c(j)

s c(j)
v V (j)

o

2
3

)
ko û(1 − ζ(i,j)) (54)

where c
(i)
v is the specific heat for the ith particle and the parameter ko is a dimensionless

numerical heat diffusion coefficient.

ENTROPY EVOLUTION EQUATIONS

The introduction of entropy state variables, which facilitates the use of an energy based

modeling approach, means that the conservation of energy relations normally incorporated

in shock physics models are replaced here by evolution equations for the particle entropies.

These evolution equations are

Ṡ(i) = Ṡirr(i) − Ṡcon(i) (55)

where the irreversible entropy production (Ṡirr(i)) is due to plastic deformation, damage

evolution, and viscous disspation

Ṡirr(i) = θ(i)−1

[
fv(i)T ċ(i) +

ne∑
j = 1

φ(i,j)
{

ΓD(j)Ḋ(j) + Γd(j)ḋ(j) + V (j)
o tr

(
S(j)T Ėp(j)

)}]
(56)

and φ(i,j) is the fraction of the dissipation in element j associated with the ith particle. The

conduction entropy flow (Ṡcon(i)) is due to artificial heat diffusion

Ṡcon(i) = θ(i)−1 Q̇con(i) =
n∑

j = 1

R(i,j) ( 1 − θ(j)

θ(i)
) (57)

Since the dissipated energy is not lost but rather transduced to the thermal domian, the en-

tropy evolution equations are nonholonomic constraints in the thermomechanical Lagrangian

formulation.
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VIRTUAL WORK

Although external loads are normally not considered in hypervelocity impact applications,

for completeness this section develops a virtual work expression. The virtual work for the

system is a summation over the particles

δW =
n∑

i = 1

δW (i) (58)

In this case the particle angular velocities are the time derivatives of rotational quasi-

coordinates (q(i))

q̇(i) = ω(i) (59)

so that the virtual work for the ith particle is

δW (i) = f (i)T δc(i) + T(i)T δq(i) (60)

where f (i) and T(i) are externally applied forces and torques. In view of equation (8), virtual

changes in the quasi-coordinates and the Euler parameters are related by

δq(i) = 2 G(i) δe(i) (61)

so that the particle virtual work expression is

δW (i) = f (i)T δc(i) + 2
[
G(i)TT(i)

]T
δe(i) (62)

The coefficients of the virtual changes in the generalized coordinates are by definition gen-

eralized nonconservative forces in the system level Lagrange equations.

LAGRANGE’S EQUATIONS

The stored energy functions, constraint equations, and virtual work expression developed

in the preceding sections may be combined with the canonical Lagrange equations, to obtain

an ODE model for the particle-element system.

17



The canonical Lagrange equations are

d

dt

(
∂T ∗

∂ċ(i)

)
− ∂T ∗

∂c(i)
+

∂V

∂c(i)
= Qc(i) (63)

d

dt

(
∂T ∗

∂ė(i)

)
− ∂T ∗

∂e(i)
+

∂V

∂e(i)
= Qe(i) (64)

∂V

∂S(i)
= Qs(i),

∂V

∂Ep(j)
= Qp(j) (65)

∂V

∂d(j)
= Qd(j),

∂V

∂D(j)
= QD(j) (66)

where Qc(i), Qe(i), Qs(i), Qd(i), QD(i), and Qp(j) are generalized forces determined by the

constraints and the virtual work. Note that the rate form of the Euler parameter constraint

for the ith particle is

ė(i)Te(i) = 0 (67)

Introducing a Lagrange multiplier γe(i) for each Euler parameter constraint as well as La-

grange multipliers γs(i), γd(i), γD(i), and Xp(i) for the entropy, normal damage, deviatoric

damage, and plastic strain evolutions equations, the generalized nonconservative forces are

found to be

Qc(i) = f (i) − γs(i)

θ(i)
fv(i) (68)

Qe(i) = 2 G(i)TT(i) + γe(i)e(i) (69)

Qs(i) = γ(i) (70)

Qd(j) = γd(j) −
n∑

i = 1

γs(i)

θ(i)
φ(i,j) Γd(j) (71)

QD(j) = γD(j) −
n∑

i = 1

γs(i)

θ(i)
φ(i,j) ΓD(j) (72)

Qp(j) = Xp(j) −
n∑

i = 1

γs(i)

θ(i)
φ(i,j) V (j)

o S(j) (73)
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If these results and the degenerate Lagrange equations (65) and (66) are combined with the

previously derived expression for the kinetic co-energy, the momentum balance relations take

the form

d

dt

(
m(i) ċ(i)

)
+

∂V

∂c(i)
= f (i) − fv(i) (74)

d

dt

(
4 G(i) TJ(i) G(i) ė(i)

) − k(i) +
∂V

∂e(i)
= 2 G(i)TT(i) + γe(i)e(i) (75)

Introducing the momentum variables

p(i) = m(i) ċ(i) , h(i) = J(i) ω(i) (76)

and premultiplying the angular momentum balance expression (75) by 1
2
G(i), which [using

equation (7)] removes the last term, yields the final state space formulation

ṗ(i) = −g(i) − fv(i) + f (i) (77)

ḣ(i) = −Ω(i)h(i) − 1

2
G(i)M(i) + T(i) (78)

ċ(i) = m(i)−1 p(i) (79)

ė(i) =
1

2
G(i)TJ(i)−1h(i) (80)

Augmented by the evolution equations for S(i), D(j), d(j), and Ep(j), these are explicit first

order equations for the particle-element system. With appropriate initial conditions they

may be integrated to obtain solutions for a wide range of hypervelocity impact problems.

EXAMPLE SIMULATIONS

This section compares the results of simulations performed using a numerical implementa-

tion [27] of the model developed here, to published experimental results for two hypervelocity

impact problems. The simulations employed a Mie-Grunsisen equation of state and

co = 0.001, c1 = 0.0, ko = 0.1, εp
f = 1.0 (81)
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with material properties taken from Steinberg [28].

The first example involves the impact of a uranium alloy rod on a steel plate, 0.64 cm in

thickness, in an experiment described by Hertel [29]. The cylindrical projectile is 0.767 cm

in diameter, with a length to diameter ratio of ten, and impacts the plate at an obliquity of

73.5 degrees and a velocity of 1.21 kilometers per second. The velocity of the target plate is

0.217 kilometers per second. The simulation employed 712,929 particles, with the projectile

composed of spherical particles and the target plate composed of ellipsoidal particles with

aspect ratios of 1.5:1.5:1.0. Figure 1 shows an element plot of the initial configuration, while

Figure 2 shows a particle plot of the simulation results at 100 microseconds after impact.

The simulation results for the rod erosion (27.5 percent) and residual rod velocity (1.10

km/s) show good agreement with the corresponding experimental values (27.6 percent and

1.07 km/s).

The second example involves the impact of a tungsten rod on a steel plate, 0.95 cm in

thickness, in an experiment described by Yatteau et al. [30]. The cylindrical projectile is

0.475 cm in diameter, with a length to diameter ratio of twenty, and impacts the plate at

an obliquity of 75 degrees and a velocity of 1.83 kilometers per second. The target plate

is stationary. The simulation employed 671,176 particles, with the projectile composed of

spherical particles and the target plate composed of ellipsoidal particles with aspect ratios of

1.5:1.5:1.0. Figure 3 shows an element plot of the initial configuration, while Figure 4 shows

a particle plot of the simulation results at 150 microseconds after impact. The simulation

results for the rod erosion (37.9 percent) and residual rod velocity (1.60 km/s) show good

agreement with the corresponding experimental values (40 percent and 1.78 km/s).

In the preceding problems the vast majority of the particles are associated with the target

plates, so that the use of ellipsoidal particles reduces the total particle count by a factor of

approximately 2.25, equal to the product of the three indicated aspect ratios. It should be

noted that the computational advantages of a reduced particle count can in part be offset

by an increase in the average number of nominal neighbors per particle. This increase is
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due to the fact that the neighbor search for each particle must consider a spatial volume

proportional to the cube of the major ellipsoidal axis, despite the fact that a closer approach

without contact can occur when particle minor axes are appropriately aligned. Experience to

date indicates that the use of ellipsoidal particles leads to a reduction in memory requirements

which is proportional to the reduction in particle count, but to a cpu time requirement similar

to that measured in corresponding simulations with spherical particles.

CONCLUSION

The present paper has developed an ellipsoidal particle-finite element method for hyper-

velocity impact problems, and demonstrated its use in the simulation of three dimensional

impact experiments. The hybrid particle-element kinematic scheme allows for the use of

true Lagrangian strength models, while incorporating a completely general description of

contact-impact effects. Tensile instability, numerical fracture, and angular momentum bal-

ance problems, often associated with particle formulations, are avoided. Material remaps,

mass or energy discard, slideline algorithms, and adaptive mesh refinement, often associated

with continuum models, are also avoided. Derivation of the model is based on a thermome-

chanical form of Lagrange’s equations, with entropy variables as generalized coordinates. The

use of an energy based modeling approach facilitates the systematic integration of diverse

particle based and element based interpolations. Work to date suggests that the method pro-

vides a numerically robust and accurate approach to the simulation of hypervelocity impact

problems.
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Figure 1: Uranium alloy long rod impact on a steel plate, element plot of the initial config-
uration
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Figure 2: Uranium alloy long rod impact on a steel plate, particle plot at 100 microseconds
after impact
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Figure 3: Tungsten long rod impact on a steel plate, element plot of the initial configuration
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Figure 4: Tungsten long rod impact on a steel plate, particle plot at 150 microseconds after
impact
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Extension and Validation of a Hybrid Particle-Finite Element
Method for Hypervelocity Impact Simulation

Eric P. Fahrenthold and Ravishankar Shivarama

Department of Mechanical Engineering, 1 University Station C2200, University of Texas, Austin,
TX 78712, USA

Abstract

The hybrid particle-finite element method of Fahrenthold and Horban [1], developed for the
simulation of hypervelocity impact problems, has been extended to include new formulations
of the particle-element kinematics, additional constitutive models, and an improved numer-
ical implementation. The extended formulation has been validated in three dimensional
simulations of published impact experiments. The test cases demonstrate good agreement
with experiment, good parallel speedup, and numerical convergence of the simulation re-
sults.

Keywords: impact simulation, numerical methods

1. Introduction

In previous work Fahrenthold and Horban [1] developed a hybrid particle-finite element
method for hypervelocity impact simulation, and applied that formulation in the analy-
sis of several three dimensional problems. The referenced modeling methodolody employs
Lagrangian finite elements to represent material strength effects, namely tension and elastic-
plastic shear, and Lagrangian particles to represent inertia, compressed states, and contact-
impact effects. Particles and elements are used in tandem throughout the simulation, for all
materials, so that no element-to-particle transformations are required. The introduction of
both particles and elements is not redundant, since they are employed to account for distinct
physical effects. A systematic approach to the formulation of this hybrid numerical scheme is
provided by Hamiltonian mechanics. General thermomechanical dynamics are represented,
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via the introduction of entropy variables as generalized Hamiltonian coordinates.
Development of the particle-element method just outlined has been motivated by difficul-

ties encountered in the application of pure Eulerian, Lagrangian, or particle based methods
to the problem of orbital debris shielding design [2]. The latter application calls for simu-
lation of shock loading and perforation at very high velocities, accurate characterization of
strength-dependent structural response, efficient modeling of fragment transport, and gen-
eral descriptions of contact-impact. Recent research suggests that hybrid [3] or coupled [4]
numerical methods are best suited to simulate orbital debris impact on space structures.
Numerical methods developed for the latter application may also have application in related
problems, such as research on the effects of behind armor debris.

2. Extended Formulation

The hybrid particle-finite element model of Fahrenthold and Horban [1] has been extended
to include alternative formulations of the particle-element kinematics, additional constitutive
models, and an improved numerical implementation. The extended formulation described
in this section has been evaluated for accuracy, numerical convergence, and parallel speedup
in a series of three dimensional simulations of published experiments, as described in the
sections which follow.

The density interpolation of reference [1] used distinct kernels for reference configura-
tion nearest neighbors and for all other particles. A simplified alternative is the implicit
interpolation

ρ(i) = ρo
(i) +

1

8

n−1∑
j=1

ρo
(j)

( [
2αh(j)

rij

]3

− 1

)
Λ

(
2βh(j)

rij

[
ρo

(i)

ρ(i)

] 1
3

− 1

)
(1)

where ρ(i) is the interpolated density, ρo
(i) is a reference density, h(j) is a particle radius, rij

is a particle center of mass separation distance, the constants α and β are determined by the
body centered cubic particle packing scheme, n is the number of particles, Λ denotes the unit
step function, and the summation applies for j �= i. Note that the preceding interpolation
yields exact results for hydrostatic compression of a particle set arranged in the selected
packing scheme, and that in general all neighbor particles interact in the same fashion.

The particle packing scheme used in the present work leads to eight nearest neighbors
for body centered particles in the reference configuration. Fahrenthold and Horban [1] used
the body centered particle associated with each hexahedral element to define subelement do-
mains. The volumes of these subdomains may be used to determine the interparticle tensile
forces associated with material dilatation. This six point integration scheme is computa-
tionally expensive, and leads to hexahedral elements which are stiffer than those employed
for example in some very successful Lagrangian codes [5]. In the present work the potential
energy contribution due to tension is written

U ten =
ne∑

j=1

1

2
(1 − D(j)) {V (j)κ(j)(J (j) − 1)2 Λ(J (j) − 1) + 2h(j)E(j) | c(j) − cavg(j) |2 } (2)
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where ne is the number of elements, V (j) is the element reference volume, κ(j) is the element
bulk modulus, E(j) is the element Young’s modulus, J (j) is the element Jacobian, D(j) is the
element normal damage, c(j) is the position vector of the body centered particle, and cavg(j)

is the average position vector of the particles which define the element nodes. This potential
function represents a one point integration of the element, to quantify tension effects, along
with a penalty term which positions the body centered particle. Note that interparticle
tension is (neglecting surface tension) a strength effect, and is therefore associated with
relative motion of a reference configuration neighbor set (in this case the finite elements)
and not a time varying neighbor set of the type used to quantify collision forces [6].

Shock physics codes can include options for the treatment of energy conservation errors
which may occur during integration or transformation of the system level model. Examples
are a default energy discard used in the remap step of CTH [7] and energy errors which
may arise from contact-impact calculations in ALE [8] or SPH [9,10] formulations. Although
precise energy conservation can be demonstrated in simple benchmark problems, it can be
computationally expensive to achieve the same result in the simulation of more complex
practical problems. For the hybrid particle-element formulation described here, an optional
energy correction term has been added to the particle entropy evolution equations

∆Serr = ε ∆Herr

(
n∑

j=1

θ(j)

)−1

(3)

where ∆Herr is the error in the system Hamiltonian, θ(j) is a particle temperature, and with
ε = 0.1 the error correction is introduced over ten time steps. The effect of this term is
to satisfy global energy conservation by introducing an internal energy correction for each
particle which is proportional to the current particle temperature.

Simulation results obtained using particle based models are in general influenced by the
choice of particle packing scheme. The locations and properties of nearest neighbor particles
define in general a local stiffness distribution for the medium which is anisotropic, as in the
case of pure crystals [11]. In addition the choice of a particle packing scheme determines
an effective void ratio for the medium. Hence it is not surprising that particle packing can
influence simulation results. The preprocessor used in the present work employs a random
number generator to delete a user specified fraction of body centered particles from the
original perfect lattice structure. The introduction of these flaws mimics the influence of grain
orientations, dislocations, and other defects on the mechanical response of real materials.

The simulations described in references [1] and [3] employed analytic equations of state.
Extension of the code described in the latter work has included the introduction of interpo-
lation routines, to accommodate tabulated equations of state in two independent variables.
Currently the SESAME tables [12] are used for simulations at very high velocities, and are
accessed in their default form, with pressure and internal energy defined on a density and
temperature grid. Iteration is therefore used to converge on an internal energy calculated
from the Gibbs relation

U̇ int(i) = θ(i) Ṡ(i) +
m(i)P (i)

ρ(i)2

(
n∑

j=1

∂ρ(i)

∂c(j)
ċ(j)

)
(4)
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where m(i) is a particle mass and P (i) is a particle pressure. An initial call to the SESAME
routines is used to establish the reference internal energy associated with the simulation
initial conditions.

In addition to the preceding work, significant extensions and applications of the hybrid
particle-element method discussed here are reported elsewhere. First, Shivarama [13] has
extended the basic formulation to include ellipsoidal particles, introducing a nonspherical
kernel, rotational motion of the particles, and Euler parameters as state variables. This
extension makes possible for example the modeling of thin plate structures at greatly reduced
particle counts. It should be noted that previous work on nonspherical particle models for
shock physics problems has been very limited [14,15]. Second, application of the method
to composite orbital debris shielding problems is reported by Fahrenthold and Park [16],
including development and numerical implementation of a rate-dependent material model
for Kevlar.

3. Validation Simulations

A series of three dimensional simulations was performed to evaluate the extended formu-
lation just described. The simulations modeled published experiments conducted at impact
velocities ranging from one to eleven kilometers per second. Each example problem was
modeled at two different mesh densities, to investigate numerical convergence of the simu-
lation results. The selected problems have been previously studied by various investigators,
to evaluate other numerical methods and computer codes. Tables 1 and 2 provide details on
the problem parameters and material properties for all the validation simulations. Material
properties were estimated using data from Steinberg [23]. The first two example problems
used a Mie-Gruneisen equation of state, while the third example problem used the SESAME
tables.

Table 1. Parameters of the example problems

Parameter Sphere Long rod Debris shield
Projectile material Aluminum DU 0.75% Ti Aluminum

Target/shield/wall material Aluminum Steel Aluminum
First shield thickness (cm) na na 0.25

Second shield thickness (cm) na na 0.25
Target/wall plate thickness (cm) 0.1143 0.64 0.50

Shield spacing (cm) na na 6.0
Projectile velocity (km/sec) 6.56 1.21 11.0

Impact obliquity (deg) 45 73.5 45
Projectile diameter (cm) 0.953 0.767 0.5062

Projectile length-to-diameter ratio na 10 4.36

na = not applicable
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Fig. 1. Element plot of the initial
configuration for the sphere impact

problem.
Fig. 2. Particle plot of the simulation
results for the sphere impact problem.

Table 2. Material properties used in the example problems

Material property Aluminum DU 0.75% Ti Steel
Shear modulus (Mbar) 0.271 0.74 0.801

Reference density (g/cc) 2.7 18.62 7.842
Initial yield stress (Mbar) 0.0029 0.0095 0.012

Maximum yield stress (Mbar) 0.0058 0.0220 0.025
Strain hardening exponent 0.1 0.095 0.5
Strain hardening modulus 125.0 1000.0 2.0

Melt temperature (degrees Kelvin) 1,220 1,710 2,310
Specific heat (Mbar-cm3 per g-kilodeg Kelvin) 0.00884 0.00111 0.00448

Spall stress (Mbar) 0.012 0.028 0.032
Plastic failure strain 1.0 1.0 1.0

The first example problem involves the oblique (45 degree) impact of an 0.953 cm diam-
eter aluminum sphere on a thin (0.1143 cm) plate, at 6.56 kilometers per second, and is
representative of typical Whipple shield design problems. Figure 1 shows an element plot of
the initial configuration of the projectile and target, while Figure 2 shows a particle plot of
the simulation results at 6.6 microseconds after impact. The simulation results show good
agreement with the experimental radiograph [17]. This problem was run on 16 processors of
an IBM Regatta at two different mesh densities, with models composed of 0.67 million and
3.20 million particles. The dimensions of the plate perforation were compared to determine
the effect of model resolution on the simulation results. Table 3 shows that an increase in
the particle count by nearly a factor of five produced only a small variation in the predicted
dimensions of the plate perforation.
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Fig. 3. Element plot of the initial
configuration for the long rod impact

problem.
Fig. 4. Particle plot of the simulation

results for the long rod impact problem.

Table 3. Simulation results for the sphere impact problem

Problem size Wall clock time Perforation width Perforation length
(particles) (hours) (cm) (cm)

0.673 million 4.04 1.90 2.43
3.196 million 39.6 1.81 2.39

The second example problem involves the oblique (73.5 degree) impact of an 0.767 cm
diameter uranium alloy rod (L/D = 10) on a steel plate target (thickness 0.64 cm), at a
rod velocity of 1.21 kilometers per second (target velocity was 0.217 km/s). This problem
is representative of typical armor-antiarmor design applications. Figure 3 shows an element
plot of the initial configuration of the projectile and target, while Figure 4 shows a particle
plot of the simulation results at 100 microseconds after impact. The simulation results
provided in Table 4 show good agreement with the corresponding experimental values [18] of
residual rod length (5.55 cm) and residual rod velocity (1.07 km/sec). This problem was run
on 16 processors of an IBM Regatta at two different mesh densities, with models composed
of 1.56 million and 5.06 million particles. Table 4 shows that a factor of more than three
increase in the particle count produced only a small variation in the simulation results.

Table 4. Simulation results for the long rod impact problem

Problem size Wall clock time Residual length Residual velocity
(particles) (hours) (cm) (km/s)

1.566 million 13.8 5.74 1.09
5.060 million 74.4 5.78 1.09

The third example problem involves the oblique (45 degree) impact of an aluminum shaped
charge projectile (0.5062 cm diameter, 2.2046 cm length) on an aluminum plate target pro-
tected by a dual plate aluminum debris shield. The projectile velocity was 11.0 kilometers
per second, while the wall plate thickness (0.50 cm), shield thickness (0.25 cm), and total
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Fig. 5. Element plot of the initial
configuration for the dual plate shield

problem.
Fig. 6. Particle plot of the simulation

results for the dual plate shield problem.

standoff distance (12.0 cm) are representative of orbital debris shielding design applications.
This problem has been designated a benchmark for use in the numerical analysis of spacecraft
protection systems [19]. Figure 5 shows an element plot of the initial configuration of the sys-
tem, while Figure 6 shows a particle plot of the simulation results at 150 microseconds after
impact. Consistent with the corresponding experiment, the simulation results show bulging
but no perforation of the wall plate. This problem was run on SGI Origin systems at two
different mesh densities, with models composed of 4.27 million and 12.90 million particles.
The smaller model required 56.8 wall clock hours on 256 (400MHz) processors, while the
larger model required 332 wall clock hours on an average of 502 (600Mhz) processors. The
two simulations indicated very similar wall plate damage. Figures 7 through 9 show details
of the shield perforations and wall plate damage, in element plots made at 150 microseconds
after impact. This problem illustrates that the hybrid numerical method used here is well
suited to represent both the very general contact-impact dynamics illustrated in Figure 6
and the large deformation plasticity illustrated in Figures 7 through 9.

4. Parallel Speedup Tests

The simulations described in the preceding section illustrate that three dimensional hy-
pervelocity impact simulation can be very computer resource intensive. Hence the parallel
performance characteristics of the relevant algorithm and numerical implementation is of
considerable interest. This section discusses several algorithmic and implementation issues
and presents measured parallel speedup data. Parallel implementation [20] of the hybrid
method discussed here is based on the OpenMP standard [21], a set of portable compiler di-
rectives which may be simply applied to achieve loop level parallelism. Although an OpenMP
implementation does not manage distributed memory, the effects of nonuniform memory ac-
cess on code performance can in some cases be observed and influenced, through changes in
the initial data placement scheme.

The hybrid nature of the present numerical formulation requires that both finite element
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Fig. 7. Element plot of the simulation
results for the dual plate shield problem.

Fig. 8. Oblique view of the simulation
results for the dual plate shield problem.

based and particle based computation take place throughout the simulation. The Lagrangian
finite element calculations involve an invariant neighbor set for each particle, known at the
start of the calculation. This allows for a very efficient parallel implementation, and sug-
gests the use of a material based domain decomposition technique on distributed memory
systems. Unfortunately a Lagrangian description of contact-impact and fragmentation ef-
fects, applied here and represented using the particle kinematics, involves a second (and
time varying) neighbor set for each particle. Calculations involving this neighbor set are
relatively inefficient, since a significant number of nominal neighbors identified by a search
algorithm will turn out to be outside the effective mechanical or thermal interaction range.
This portion of the calculation suggests the use of a geometry based domain decomposition
technique, like that used in Eulerian codes, for distributed memory systems. However in
this case, unlike Eulerian models, the membership of the contact-impact neighbor set for a
given particle is time varying. This can present significant problems with load balancing and
communications overhead.

The aforementioned considerations are reflected in the results of performance testing on
the code used here, which indicates that: (a) particle based calculations largely determine the
required wall clock time, (b) most wall clock time is spent in the routines which calculate the
densities and particle interaction forces, via summations over the contact-impact neighbor
set, and (c) round-robin (or maximum entropy) initial data placement provides the best
overall performance on nonuniform memory access systems.

The authors provided in reference [3] speedup data for test cases run on as many as 128
processors of an SGI Origin, applying a hybrid particle-element modeling methodology to
problems as large as 0.5 million particles. As noted in the last section, more recent work has
focused on much larger models, hence speedup tests have recently been performed at larger
processor counts. These tests employed a 1024 processor SGI Origin and problem sizes as
large as fifteen million particles. The test problem used for speedup measurements was the
oblique sphere impact problem discussed in the section on validation simulations. Tables 5
and 6 show the results of test cases run for two different model sizes (4.7 and 14.6 million
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Fig. 9. Second oblique view of the simulation results for the dual plate shield problem.

particles), at various processor counts, ranging from 256 to approximately one thousand. In
both cases speedup is measured relative to the wall clock time required for the test problem
on 256 processors, and efficiency is defined as the ratio of measured to ideal relative speedup.
The wall clock times shown are those required to complete 100 time steps of the simulation.

Table 5 shows good relative efficiency for the smaller test problem, when moving from
256 to 504 cpus, but very poor performance (in fact an increase in wall clock time) when
the cpu count is then increased to 1008. Note that in the 1008 processor simulation each
cpu is allocated approximately 5,000 particles, a load level apparently too light to allow for
efficient parallel performance. Table 6 provides results for the larger test problem, where
a minimum load level of nearly 15,000 particles per processor is maintained. In this case
parallel performance is significantly improved, with a relative efficiency of almost seventy
percent measured as the processor count is increased from 256 to 976. The preceding results
indicate that the numerical method and OpenMP implementation tested here can efficiently
address rather large scale problems. A dependence of parallel efficiency on processor load,
observed here, is not unusual for engineering applications [22].

Table 5. Speedup measurements for a 4.7 million particle test problem

Number of Particles Wall clock time Speedup Efficiency
processors per processor (hours) (relative) (relative)

256 18,281 0.7858 1.000 1.000
504 9,286 0.4858 1.618 0.822
1008 4,643 0.5008 1.569 0.400
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Table 6. Speedup measurements for a 14.8 million particle test problem

Number of Particles Wall clock time Speedup Efficiency
processors per processor (hours) (relative) (relative)

256 57,031 1.8439 1.000 1.000
512 28,516 1.0391 1.775 0.887
640 22,813 0.8803 2.095 0.838
976 14,959 0.7031 2.623 0.688

5. Conclusion

A number of new numerical methods based entirely or in part on particle kinematics
are currently under development. They emphasize the fact that some important engineer-
ing problems are dominated by noncontinuum physics, such as fragmentation and contact-
impact. Such problems may not fit easily into a classical continuum mechanics modeling
framework. The present paper has described recent work aimed at extending and validating
a hybrid numerical method for hypervelocity impact simulation. The results suggest that the
method is accurate, numerically robust, and suitable for large scale parallel computation.
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HAMILTON’S EQUATIONS WITH EULER PARAMETERS

FOR RIGID BODY DYNAMICS MODELING

Ravishankar Shivarama3 and Eric P. Fahrenthold4

Department of Mechanical Engineering, University of Texas, Austin, TX 78712

A combination of Euler parameter kinematics and Hamiltonian mechanics provides a rigid

body dynamics model well suited for use in strongly nonlinear problems involving arbitrarily

large rotations. The model is unconstrained, free of singularities, includes a general poten-

tial energy function and a minimum set of momentum variables, and takes an explicit state

space form convenient for numerical implementation. The general formulation may be spe-

cialized to address particular applications, as illustrated in several three dimensional example

problems.

INTRODUCTION

A variety of rigid body dynamics modeling problems demand consideration of very large

rotations. Some of the best known examples involve aircraft [1] and spacecraft [2,16], al-

though the analysis of large rotation dynamics is of generic interest in a wide range of

applications, including mechanism and machine theory [3,4] and molecular dynamics [12].

Most models of rigid body dynamics problems employ Euler angles [5]. Such formulations

lead to equations of motion which are unconstrained, but which contain singularities [1].

Other singular three parameter methods have been developed, including for example those

of Laning-Bortz-Stuelpnagel [11] and Rodriguez [13]. The presence of singularities in all these

methods has motivated the development of alternative four parameter modeling schemes [11],

including Euler parameters [15]. Such formulations replace the three Euler angles with four

3Graduate research assistant
4Professor
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parameters and an algebraic constraint. This avoids the Euler angle singularities but leads

nominally to a system level model in differential-algebraic form.

In an attempt to avoid both singular equations of motion and differential-algebraic sys-

tems, several authors have presented reformulations of Euler parameter based models, for

use in three dimensional rigid body dynamics problems. Chang et al. [2], Nikravesh and

co-workers [7,8,9,10], and Vadali [17] present alternative formulations based on Lagrange’s

equations. Since Lagrange’s method defines the solution as a path in configuration space,

and since the Euler parameters are taken as generalized coordinates, this approach starts

with a differential system of order eight (four second order equations for the rotational dy-

namics of a single rigid body) augmented with a single algebraic constraint. Nikravesh and

co-workers begin from this starting point and proceed to find a closed form solution for the

Lagrange multiplier associated with the algebraic constraint, resulting in an unconstrained

formulation of order eight. They do not include a potential energy function in the system

Lagrangian. Similar results are obtained by Vadali. Proceeding in a different manner, Chang

et al. introduce as quasi-velocity variables the rigid body angular velocities in the body fixed

frame, and project the original order eight Lagrange equations onto an order seven subspace.

In the process they eliminate the unknown Lagrange multiplier.

As an alternative to Lagrange’s equations, a Hamiltonian formulation of rigid body dy-

namics with Euler parameters has been proposed by Morton [6]. However his final formula-

tion is of order eight, and includes a superfluous momentum variable as well as a ‘generally

arbitrary’ unspecified scalar parameter. It appears that no previous work has attempted to

revise or improve upon the Morton formulation.

The usefulness of formulations based on Hamilton’s canonical equations is well recognized

[3]. They offer an explicit state space description of system dynamics problems which is:

(a) convenient for numerical integration, (b) well suited for coupling to automatic control

system models, and (c) energy based and hence providing clear physical insight. Recognizing

these strengths, a revision and extension of existing Hamiltonian formulations for rigid body
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dynamics is of generic interest. The present paper presents such work, deriving unconstrained

Hamilton’s equations for the three dimensional dynamics of a rigid body in terms of Euler

parameters, and hence suitable for use in simulations involving arbitrary rotational motion.

The derivation avoids any requirement to determine the Lagrange multiplier associated with

the Euler parameter constraint. No arbitrary parameters are introduced, and the final

rotational formulation is of order seven. A general potential energy function and nonpotential

virtual work effects are included in the model. Validation and application of the method is

illustrated here in several three dimensional example problems.

KINEMATICS

This section defines the kinematic variables of interest, and recalls a number of well known

kinematic relations [1], for use in succeeding sections.

The position and orientation of an arbitrary rigid body is described here in terms of seven

generalized coordinates, namely the Cartesian components of the center of mass vector ( c )

and a four component vector of Euler parameters ( e )

c = [ c1 c2 c3 ]T , e = [ e0 e1 e2 e3 ]T (1)

Knowledge of the Euler parameters determines a (nonunique) set of Euler angles (φ, θ, ψ)

for the body, associated with a 3-1-3 rotation sequence, via the relations

φ = tan−1(
e3

e0

) + tan−1(
e2

e1

) (2)

ψ = tan−1(
e3

e0

) − tan−1(
e2

e1

) (3)

θ = 2 sin−1(
√

e1
2 + e2

2 ) (4)

The Euler parameters define an orthogonal rotation matrix (R) which relates the vector of

components (a) of a first order tensor described in a fixed Cartesian coordinate system to a

corresponding vector of components (â) described in a body fixed co-rotating frame, using

a = R â (5)
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where

R = E GT (6)

with

E =


 −e1 e0 −e3 e2

−e2 e3 e0 −e1

−e3 e2 e1 e0


 (7)

G =


 −e1 e0 e3 −e2

−e2 −e3 e0 e1

−e3 −e2 −e1 e0


 (8)

The four Euler parameters are not independent, and satisfy the constraint equation

e Te = 1 (9)

which then implies

G G T = I (10)

where I is an order three identity matrix. In addition, G and e and their time derivatives

satisfy the identities

G e = 0, G ė = − Ġ e (11)

The kinematic equations [1] which relate the time derivatives of the Euler parameters

to the components of the angular velocity vector ( ω ) of the rigid body, expressed in the

body-fixed co-rotating frame, are

ω = 2 G ė, ė =
1

2
GT ω (12)

Finally note that the skew-symmetric matrix Ω, with axial vector ω, which satisfies

Ωv = ω × v (13)

for any vector v, is related to the Euler parameters and their time derivatives by

Ω = 2 G ĠT = −2ĠGT (14)
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The next section defines kinetic and potential energy functions and hence the Hamiltonian

for the system of interest.

KINETIC AND POTENTIAL ENERGY

The complementary kinetic energy for the rigid body may be expressed as

T ∗ =
1

2
m ċ T ċ +

1

2
ω T J ω (15)

where m is the mass and J is a constant matrix of components for the moment of inertia

tensor of the body, referred to the co-rotating frame. In terms of the Euler parameters and

their time derivatives,

T ∗ =
1

2
m ċ T ċ + 2 ė TG TJ G ė (16)

which has the form T ∗ = T ∗ ( ċ, ė, e ). It follows that the generalized momenta are

p =
∂T ∗

∂ċ
= m ċ , g =

∂T ∗

∂ė
= 4 G TJ G ė (17)

Note that the identities (10) through (12) require

g = 2 GTJ ω, ω =
1

2
J−1G g (18)

Since the complimentary rotational kinetic energy may also be expressed, using equation

(11), as

T ∗
rot = 2 e T Ġ TJĠ e (19)

then the Euler parameter dependence of T ∗ defines the partial derivative

k =
∂T ∗

∂e
= 4 Ġ TJĠ e (20)

The kinetic energy of the body is defined via the Legendre transform

T = pT ċ + gT ė − T ∗ (21)

so that the preceding results lead to the canonical form T = T ( p,g, e ) which is

T =
1

2
m−1 p Tp +

1

8
gTGTJ−TG g (22)
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and require that (see the appendix)

−k =
∂T

∂e
(23)

For the mechanical systems considered here, the potential energy function has the general

form

V = V (c, e) (24)

and the system Hamiltonian is

H = T + V (25)

The next section introduces a virtual work expression, to account for nonpotential effects.

NONPOTENTIAL VIRTUAL WORK

The quasi-coordinates q associated with the co-rotating components of the angular veloc-

ity vector are defined by

q̇ = ω (26)

In terms of the latter coordinates, and the center of mass coordinates, the nonpotential

virtual work due to the imposed forces f(t) and torques T(t) is

δWnc = f(t)T δc + T(t)T δq (27)

Since

δq = 2 G δe (28)

the virtual work expression which defines the generalized nonpotential forces is

δWnc = f(t)T δc + 2
[
GTT(t)

]T
δe (29)

Note that damping effects may contribute additional terms to the nonpotential virtual work,

in which case the nonpotential forces may depend on the generalized coordinates and ve-

locities. In addition the presence of nonholonomic constraints may introduce terms which

depend on unknown Langrange multipliers. The last problem discussed in the examples

section illustrates the effects of both damping and nonholonomic constraints.
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The next section derives Hamilton’s equations for the system.

HAMILTON’S EQUATIONS

The system Hamiltonian has the form H = H ( p, c,g, e ) and the canonical Hamilton’s

equations are

ṗ = −∂H

∂c
+ fp, ċ =

∂H

∂p
(30)

and

ġ = −∂H

∂e
+ f g, ė =

∂H

∂g
(31)

where fp and f g are the nonpotential generalized forces associated with the virtual work and

any applied constraints. The Euler parameter constraint has the rate form

ėTe = 0 (32)

Introducing a Lagrange multiplier λ, the latter constraint combines with the virtual work

expression to yield

fp = f(t) (33)

f g = 2 GTT(t) + λe (34)

so that for the derived Hamiltonian the momentum balance equations are

ṗ = −∂V

∂c
+ f(t) (35)

ġ = −∂V

∂e
+ k + 2 GTT(t) + λe (36)

The last equation includes an unknown Lagrange multiplier and a superfluous momentum

variable. These variables are eliminated by introducing the three-momentum vector

h = J ω (37)

whose time derivative is

ḣ =
1

2
Gġ +

1

2
Ġg (38)
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With equations (11) and (36) this yields

ḣ =
1

2
Ġg +

1

2
Gk + T(t) − 1

2
G

∂V

∂e
(39)

or

ḣ = −1

2
Ωh +

1

2
Gk + T(t) − 1

2
G

∂V

∂e
(40)

which eliminates both λ and the four component momentum vector.

The final unconstrained Hamiltonian model is

ṗ = −∂V

∂c
+ f(t) (41)

ḣ = −Ωh − 1

2
G

∂V

∂e
+ T(t) (42)

ċ = m−1 p (43)

ė =
1

2
GTJ−1h (44)

Given a potential function and the virtual work, the preceding explicit equations may be

integrated to simulate the system response.

As outlined in the introduction, the rigid body dynamics formulation derived here com-

bines the advantages of Hamiltonian mechanics and Euler parameter kinematics. Hamilto-

nian and Lagrangian methods generally simplify the model formulation process, in particular

when geometric nonlinearities are important. Such nonlinearities arise for example when

large rotations or hyperelastic devices are of interest. As compared to Lagrangian meth-

ods, Hamiltonian methods offer an explicit state space description of the system dynamics,

normally most convenient for numerical integration. Euler parameters offer a singularity

free description of rotational displacements, and are therefore preferred over Euler angle

models in large rotation applications. The cost is of course the need to integrate an addi-

tional state equation for each rigid body, since the Euler parameters are a quaternion. The

present combination of Hamiltonian mechanics and Euler parameter kinematics is therefore

of most interest in the formulation and numerical integration of models for strongly nonlin-

ear mechanical systems. The model developed here is unique in its combination of features:
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unconstrained, free of singularities, incorporating a general potential energy function, em-

ploying a minimum set of momentum variables, and taking an explicit state space form

convenient for numerical implementation.

EXAMPLE PROBLEMS

Application of the Hamiltonian formulation developed here is illustrated in four examples.

The first example compares an Euler angle based model of a rotating disk problem to the

present Hamiltonian formulation, both to validate the present approach and to illustrate

in a simple case an Euler parameter description of rotational displacement. The second

example solves a classical rigid body dynamics problem for the three dimensional motion of

a torque-free body, for comparison to the published numerical solution of Morton [6] and to

the partial analytical solution of Thompson [16]. This problem again validates the present

approach, and compares a discontinuous Euler angle description of three dimensional rigid

body motion to the continuous Euler parameter characterization adopted here. The third

example models a spinning top in a uniform gravitational field, a problem described in many

advanced dynamics tests, and validates the present formulation in a three dimensional rigid

body motion involving both translation and rotation. Here a numerical solution for the last

cited problem is obtained using a time step identical to that employed by Simo and Wong

[14], but without resort to their symplectic integration algorithm. The last example considers

a problem of practical importance in the design of gyroscopic seekers, namely the motion of

a freely precessing body with a viscous ring nutation damper [2]. This example calls for the

application of nonholonomic constraints. Here we develop an explicit state space model, as

compared to the implicit Lagrangian formulation [2] of Chang et al.

The first example models the free vibration of a rigid circular disk of radius r, rotating

about a fixed point, and attached to a linear spring of stiffness k (see Figure 1). The potential

energy function is

V =
1

2
k y2

p =
1

2
k r2 [ 2e1e2 + 2e0e3 ]2 (45)
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where yp denotes the vertical displacement of the point of attachment of the spring, measured

in a Cartesian coordinate system whose origin lies at the center of the disk. Note that the

indicated Euler parameter dependence of the potential energy is obtained using equation

(5). Assuming the model parameters and initial conditions listed in Table 1, the motion was

simulated by integration of a Newtonian model based on the Euler angle φ

Jφ̈ +
1

2
k r sin(2φ) = 0 (46)

and by integration of the Hamiltonian relations (42) and (44). The two computed results for

the angular momentum are compared in Figure 2, showing excellent agreement of the Euler

angle based and Euler parameter based solutions. Figure 3 shows the computed variation of

the Euler parameters with time.

The second example models the torque free motion of a rigid body, for the inertial prop-

erties and initial conditions listed in Table 2. A partial analytical solution for this classic

problem is known and can be expressed in terms of elliptic functions [6,16]. Figures 4 and

5 shown the time variation of the angular momenta and Euler parameters computed using

the present Hamiltonian formulation. Figure 6 plots the implied Euler angles, emphasizing

the discontinuous nature of the latter variables. Table 3 shows excellent agreement of the

analytical and numerical solutions for the amplitudes and periods of the angular momenta,

in three dimensional motion.

The third example models the translational and rotational motion of a spinning top in

a uniform gravitational field. This problem is described in many advanced dynamics texts

[4], and is used by Simo and Wong [14] to evaluate their symplectic numerical integration

scheme. The potential energy for the system is

V = W zc (47)

where W is the weight of the top and zc is the vertical coordinate of the center of mass. The

simulation parameters and initial conditions for the problem are listed in Table 4. Figures 7
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and 8 show numerical results for the normalized angular momentum components and center

of mass coordinates, obtained by integration of Hamilton’s equations (41) through (44),

using a fourth order Runge-Kutta method. Table 5 compares an approximate analytical

estimate of the nutation and precession frequencies for the top, provided by Goldstein [4],

to the present numerical results. The present numerical results are identical to those plotted

by Simo and Wong [14], and are obtained using the same time step, but without resort to

their symplectic integration scheme.

The fourth example considers the rotational motion of a rigid rotor damped by a partially

filled mercury ring damper. The reader is referred to Chang et al. [2] for a detailed discussion

of this problem, and its application in the analysis of gyroscopic seekers. We focus here on

the formulation of a dynamic model for the system analyzed in reference [2]. The paragraphs

which follow develop an explicit Hamiltonian model for this system, an alternative to the

implicit Lagrangian model of Chang et al., adopting their stipulated assumptions on stored

energy functions, energy dissipation, and kinematic constraints.

The rotor is modeled as a rigid circular cylinder with a fixed center of mass located at

the origin of a global XYZ coordinate system. The partially filled mercury ring damper

is a cylinder of mean radius R, co-axial with and external to the rotor, with a centroid

displaced a distance L along the rotor axis from the rotor center of mass location. Body-

fixed coordinate systems for the rotor (xyz) and ring (uvz) are co-located at the centroid of

the damper, where the z direction is aligned with the rotor axis. The partial mercury ring is

free to rotate about the rotor axis, subject to a damping torque which is linear in the axial

angular velocity difference between the rotor and the ring, but is otherwise constrained to

move with the rotor. Hence the orientations of the body-fixed axes systems which co-rotate

with the rotor and the ring differ only by an angle β, which describes the axial rotation of

the ring with respect to the rotor.
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The assumed complimentary kinetic energy for the system is [2]

T ∗ =
1

2
ωTJT ω +

1

2
ωT

mJT
m ωm (48)

where ω and ωm are angular velocities for the rotor and ring and

J =


 J1 0 0

0 J2 0
0 0 J3


 , Jm =


 Jm1 0 −Jm4

0 Jm2 0
−Jm4 0 Jm3


 (49)

are constant moment of inertia matrices for the rotor and ring. All four quantities are

described in the respective rotor and ring body-fixed co-rotating coordinate systems.

The assumed potential energy for the system, due to the gravitational potential of the

mercury, is [2]

V = − m gc RT BT rc, rc = [R sin(γ/2)/(γ/2), 0, L]T (50)

where m is the mass of the mercury, gc is a constant gravity acceleration vector described

in the fixed XY Z frame, R is the rotation matrix of equation (6), whose Euler parameters

(e) refer to the rotor-fixed frame, rc is a constant vector which locates the mercury center

of mass, γ is the angle which subtends the mercury arc (symmetric about the u axis), and

B is an orthogonal matrix which defines the transformation of vector components from the

rotor-fixed to the ring-fixed frame

B =


 cos(β) sin(β) 0

−sin(β) cos(β) 0
0 0 1


 (51)

Note that V = V (e, β). The virtual work for the system, due to damping at the ring-rotor

interface, is [2]

δW = − Cd R2 β̇ δβ (52)

where Cd is an empirical dimensionless damping coefficient.

Given the preceding modeling assumptions, Hamilton’s equations for the rotor and ring
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system are

ḣ = −Ωh − 1

2
G

∂V

∂e
+ T (53)

ḣm = −Ωmhm + Tm (54)

ė =
1

2
GTJ−1h (55)

0 = −∂V

∂β
+ Tβ (56)

where h and hm are angular momenta for the rotor and ring

h = J ω, hm = Jm ωm (57)

and T, Tm, and Tβ are nonpotential forces due to damping and kinematic constraints. Note

that the degenerate form of Hamilton’s equation for β is due to the fact that the latter

generalized coordinate, which appears in the potential energy function, is not associated

with a corresponding generalized momentum variable. The kinematic constraints are [2]

ωm1 = cos(β) ω1 + sin(β) ω2, ωm2 = −sin(β) ω1 + cos(β) ω2, (58)

and

β̇ = ωm3 − ω3 (59)

They quantify the aforementioned modeling assumption that the ring moves relative to the

rotor only in axial rotation.

An explicit state space model may be obtained by application of the constraints, as follows.

Introducing a Lagrange multiplier µ for the constraint (59), and accounting for the virtual

work, requires

Tβ = µ − Cd R2 β̇, T = µ c, Tm = −µ c (60)

where c denotes the vector [0, 0, 1]T . The degenerate Hamilton’s equation for β therefore

determines the Lagrange multiplier as

µ = Cd R2 β̇ +
∂V

∂β
(61)
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Hamilton’s equation (54) for the ring angular momentum may now be written in the form

ω̇m = −J−1
m ΩmJmωm − µ J−1

m c (62)

Since the constraints specify both β̇ and the first two components of the ring angular velocity

vector as functions of the set (β, ω1, ω2, ωm3), the third of equations (62) is an evolution

relation for the unknown ωm3. Combining the third of equations (62) with the constraint

equation (59), the constitutive relations (57), and Hamilton’s equations (53) and (55), the

result is an explicit state space model of order nine for the ring-rotor system. The final state

equations are

ḣ = −Ωh − 1

2
G

∂V

∂e
+

[
Cd R2

(
ωm3 − h3

J3

)
+

∂V

∂β

]
c (63)

ė =
1

2
GTJ−1h (64)

β̇ = ωm3 − h3

J3

(65)

ω̇m3 = −cT
(
J−1

m ΩmJmωm

) −
[
Cd R2

(
ωm3 − h3

J3

)
+

∂V

∂β

]
cTJ−1

m c (66)

where

Ω = Ω(h), G = G(e), Ωm = Ωm(ωm) (67)

with

ωm1 = cos(β)
h1

J1

+ sin(β)
h2

J2

, ωm2 = −sin(β)
h1

J1

+ cos(β)
h2

J2

(68)

Note that implicit model of reference [2] is also of order nine but employs a different set of

state variables.

CONCLUSION

The present paper has derived and applied a new Hamiltonian formulation of rigid body

dynamics problems, based on Euler parameter kinematics. Euler parameter kinematics pro-

vide a singularity free description of three dimensional rigid body motion, accommodating

arbitrarily large rotations. When combined with Hamiltonian mechanics, the result is an
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energy based modeling approach well suited to address problems with complex geometric

nonlinearities. As compared to previous work, the formulation derived here offers a unique

combination of features. It avoids the introduction of algebraic constraints and unspecified

parameters, includes a general potential energy function, incorporates a minimum set of

momentum variables, and takes an explicit state space form convenient for use in control

related applications.
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APPENDIX

A complimentary kinetic energy expression (T ∗) with the functional form

T ∗ = T ∗(e, f), f = ė (69)

has the total differential

dT ∗ = gT df +
∂T ∗

∂e

T

de , g =
∂T ∗

∂f
(70)

The corresponding kinetic energy function (T ) is determined by the Legendre transform

T = gT f − T ∗ (71)

and has a total differential defined by

dT = gT df + fT dg − dT ∗ = fT dg − ∂T ∗

∂e

T

de (72)

as well as the canonical form

dT =
∂T

∂g

T

dg +
∂T

∂e

T

de (73)

It follows that

f =
∂T

∂g
,

∂T

∂e
= −∂T ∗

∂e
(74)
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Parameter value
Mass moment of inertia (kg m2) J = 2

Radius of the disk (m) r = 1
Stiffness of the spring (N/m) k = 10
Initial displacement (degrees) φ = 30

Initial momentum (kg m2rad/s) h = 0

Table 1: Model parameters and initial conditions for the first example problem

Parameter value
Mass moments of inertia (kg m2) J1 = 400, J2 = 307.808385, J3 = 200

Initial Euler parameters e0 = 1, e1 = e2 = e3 = 0
Initial momenta (kg m2 rad/s) h1 = 346.4101616, h2 = 0, h3 = −200

Table 2: Model parameters and initial conditions for the second example problem

Variable exact solution numerical solution
Magnitude of h1 (kg m2rad/s) 346.4102 346.38
Magnitude of h2 (kg m2rad/s) 365.447 365.44
Magnitude of h3 (kg m2rad/s) 200.0 199.975

Period of h1 (s) 9.3393 9.35
Period of h2 (s) 18.6786 18.68
Period of h2 (s) 18.6786 18.68

Minimum of h1 (kg m2rad/s) 162.6296 162.6342

Table 3: Exact versus numerical results for the second example problem
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Parameter value
Weight (kg m/s2) W = 20

Mass moment of inertia (kg m2) J1 = 5, J2 = 5, J3 = 1
Initial Euler parameters e0 = cos(0.15), e1 = sin(0.15), e3 = 0, e4 = 0

Initial angular momenta (kg m2rad/s) h1 = 0, h2 = 0, h3 = 50

Table 4: Simulation parameters and initial conditions for the third example problem

Variable analytical approximation numerical simulation
Nutation frequency (rad/s) 10.00 9.24
Precession frequency (rad/s) 0.40 0.4136

Table 5: Approximate analytical versus numerical results for the third example problem
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LIST OF FIGURES

Figure 1. First example problem, rotating disk with a translational spring suspension

Figure 2. First example problem, comparison of Euler angle based and Hamiltonian solu-

tions for the angular momenta versus time; the computed Hamiltonian component hz agrees

with the Euler angle solution (diamond symbols) obtained using equation (46), while the

Hamiltonian components hx and hy are identically zero

Figure 3. First example problem, numerical solution for the Euler parameters versus time;

note that the Euler parameters e1 and e2 are identically zero, and along with the computed

solutions for e0 and e3 determine the nonzero Euler angle in accordance with equation (2)

Figure 4. Second example problem, torque free motion of a rigid body, numerical solution

for the angular momenta versus time

Figure 5. Second example problem, torque free motion of a rigid body, numerical solution for

the Euler parameters versus time; note that the Euler parameters are continuous functions

Figure 6. Second example problem, torque free motion of a rigid body, computed Euler

angles versus time; note the discontinuities in the Euler angles

Figure 7. Third example problem, translation and rotation of a spinning top, numerical

solution for the normalized components of the angular momentum versus time

Figure 8. Third example problem, translation and rotation of a spinning top, numerical

solution for the center of mass position versus time
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Figure 1: First example problem, rotating disk with a translational spring suspension
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Figure 2: First example problem, comparison of Euler angle based and Hamiltonian solu-
tions for the angular momenta versus time; the computed Hamiltonian component hz agrees
with the Euler angle solution (diamond symbols) obtained using equation (46), while the
Hamiltonian components hx and hy are identically zero
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Figure 3: First example problem, numerical solution for the Euler parameters versus time;
note that the Euler parameters e1 and e2 are identically zero, and along with the computed
solutions for e0 and e3 determine the nonzero Euler angle in accordance with equation (2)
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Figure 4: Second example problem, torque free motion of a rigid body, numerical solution
for the angular momenta versus time
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Figure 5: Second example problem, torque free motion of a rigid body, numerical solution for
the Euler parameters versus time; note that the Euler parameters are continuous functions
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Figure 6: Second example problem, torque free motion of a rigid body, computed Euler
angles versus time; note the discontinuities in the Euler angles
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Figure 7: Third example problem, translation and rotation of a spinning top, numerical
solution for the normalized components of the angular momentum versus time
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A KERNEL FREE PARTICLE-FINITE ELEMENT

METHOD FOR HYPERVELOCITY IMPACT SIMULATION

Young-Keun Park3 and Eric P. Fahrenthold4

Department of Mechanical Engineering, 1 University Station C2200
University of Texas, Austin, TX 78712, USA

An improved hybrid particle-finite element method has been developed for the simulation of
hypervelocity impact problems. Unlike alternative methods, the revised formulation computes
the density without reference to any kernel or interpolation functions, for either the density
or the rate of dilatation. This simplifies the state space model and leads to a significant
reduction in computational cost. The improved method introduces internal energy variables
as generalized coordinates in a new formulation of the thermomechanical Lagrange equations.
Example problems show good agreement with exact solutions in one dimension and good
agreement with experimental data in a three dimensional simulation.

KEYWORDS: particle methods, finite element methods, impact simulation

INTRODUCTION

Studies of hypervelocity impact phenomena are motivated by a variety of science and en-

gineering applications [1]. Examples include scientific research on planetary impacts [2] and

equations of state [3] and engineering research on the design of spacecraft shielding [4] and

kinetic energy penetrators [5]. The proceedings of a recent international symposium [1] show

that the use of computer simulation in this field is increasing, as improvements in numerical

methods and computing power make it possible to address problems of greater complexity

and larger scale. Simulation is of particular importance, as an adjunct to experimental work,

when material costs are high [6] or when impact velocities beyond the range of light gas guns

are of interest [7].

Simulation work in this field has applied a number of different numerical methods, based

on continuum mechanics, particle dynamics, or mixed kinematic schemes. Continuum meth-

ods [8] employ either an Eulerian hydrodynamic [9,10] or a Lagrangian finite element [11]

3Graduate research assistant
4Professor, corresponding author, phone: (512) 471-3064, email: epfahren@mail.utexas.edu
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approach, or some Arbitrary Lagrangian-Eulerian (ALE) based generalization of these tech-

niques [12,13]. A large majority of particle codes employ a smooth particle hydrodynamics

(SPH) technique [14,15,16], although some alternative particle based methods have been

proposed [17]. Some disadvantages of pure continuum or pure particle based methods [18]

have motivated the development of mixed continuum-particle formulations [4,19,20]. The

most widely used mixed method is a coupled particle-finite element technique [19]. This

technique initializes distinct material regions with either SPH particles or or Lagrangian

finite elements, then quantifies subsequent material interactions using a particle-to-surface

contact-impact algorithm. The alternative coupled particle-element method of Johnson and

co-workers [20] maps damaged or failed elements into particles, and again quantifies particle-

element interaction using a special contact algorithm. Both these methods are subject to

tensile instability and numerical fracture problems.

The alternative mixed method of Fahrenthold and co-workers [21] is based on a hybrid

particle-finite element formulation. This method in not subject to tensile instability and

numerical fracture problems and eliminates the requirement for special treatment of particle-

to-element contact-impact. It avoids both the mass diffusion problems of Eulerian methods

and the mass and energy discard associated with Lagrangian element erosion algorithms. It is

labeled a hybrid (versus coupled) method since it introduces both elements and particles for

all material control volumes, then employs the elements and particles in tandem to represent

distinct physics. The particles model all inertia, contact-impact, and thermomechanical

response in compressed states, while the elements model tension and elastic-plastic shear.

The method incorporates both ellipsoidal particles and time varying particle volumes and as a

result can represent large density variations with relatively small neighbor counts. Previous

work employing nonspherical evolving kernels has been rather limited and most particle

simulations represent high densities using spherical particles, a fixed contact length, and

relatively large neighbor sets.

The preceding formulation combines a true Lagrangian description of material strength

74



effects with a general particle based model of contact-impact dynamics, and has been vali-

dated in simulations of impact experiments conducted at velocities ranging from one to ten

kilometers per second [22]. In the hypervelocity impact regime, where large strain plastic-

ity, perforation, fragmentation, melting, and complex multi-structure contact-impact effects

are often present, this formulation provides a particular combination of advantageous fea-

tures not offered by alternative numerical methods. The present paper describes an im-

proved hybrid particle-finite element method, modifying the formulation of Ravishankar

and Fahrenthold [21] in two respects. First, the density is determined by integrating non-

holonomic constraints imposed on the system level thermomechanical model. Second, the

entropy states used previously to model the thermal domain are replaced by particle inter-

nal energies. These modifications simplify the method, reduce its computational cost, and

incorporate equations of state expressed in standard functional form.

Unlike alternative methods, the revised formulation eliminates entirely the use of kernel

or interpolation functions to represent the density or rate of dilatation fields. The density

evolution equations are developed by direct reference to large deformation kinematics, avoid-

ing any requirement to specify the functional dependence of an interaction potential on the

particle coordinates. The latter task has proven to be quite difficult in an SPH context and is

a principal focus of the general particle dynamics literature. The revised method introduces

the use of internal energy variables as generalized coordinates in a new thermomechanical

formulation of the discrete Lagrange equations. This avoids the requirement to construct

Legendre transforms of the internal energy function, in order to express the dependence of

pressure and temperature on entropy.

The present paper is organized as follows. First the particle and element kinematics are

defined, followed by the kinetic co-energy and thermomechanical potential energy functions

for the particle-element system. Second the evolution equations for the density are developed,

followed by the evolution equations for the plastic and damage variables, all of these relations

representing nonholonomic constraints on the system level model. Third the numerical
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viscosity and numerical heat diffusion models are introduced, and evolution equations for

the internal energy state variables are described, the latter states serving as generalized

coordinates in a thermomechanical Lagrangian formulation. Fourth the discrete Lagrange

equations for the particle-element system are derived, taking an explicit state space form

convenient for numerical implementation. Finally application of the method is illustrated

in one dimensional problems with exact solutions and in three dimensional simulations of

representative hypervelocity impact problems.

PARTICLE KINEMATICS

The inertia of the modeled system is represented by a collection of n ellipsoidal particles,

with m(i) the mass of particle i and h
(j)
1 , h

(j)
2 , h

(j)
3 the half-lengths of its major axes. The

position and orientation of each particle is determined by its center of mass position vector

( c(i) ) and an Euler parameter [23,24] vector ( e(i) )

c(i) = [ c
(i)
1 c

(i)
2 c

(i)
3 ]T , e(i) = [ e

(i)
0 e

(i)
1 e

(i)
2 e

(i)
3 ]T (1)

where a superscript T denotes the transpose.

It is convenient to note here certain properties of Euler parameters, and to cite a number

of well known [23] kinematic relations associated with their use. The Euler parameters

provide a singularity free description of arbitrary particle rotations. They define a rotation

matrix (R(i)) for each particle

R(i) = A(i) G(i)T (2)

A(i) =


 −e

(i)
1 e

(i)
0 −e

(i)
3 e

(i)
2

−e
(i)
2 e

(i)
3 e

(i)
0 −e

(i)
1

−e
(i)
3 −e

(i)
2 e

(i)
1 e

(i)
0


 (3)

G(i) =


 −e

(i)
1 e

(i)
0 e

(i)
3 −e

(i)
2

−e
(i)
2 −e

(i)
3 e

(i)
0 e

(i)
1

−e
(i)
3 e

(i)
2 −e

(i)
1 e

(i)
0


 (4)
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which relates vector components v described in a fixed global Cartesian coordinate system

to corresponding components v̂ described in a co-rotating system aligned with the particle

major axes, using

v = R(i) v̂ (5)

The Euler parameters and their time derivatives are related to the angular velocity vector

of the particle ( ω(i) ), described in the co-rotating frame, by

ė(i) =
1

2
G(i)T ω(i) (6)

Similarly the antisymmetric matrix Ω(i) with axial vector ω(i), which satisfies

Ω(i)v = ω(i) × v (7)

for all vectors v, is related to the Euler parameters and their time derivatives by the relations

Ω(i) = 2 G(i) Ġ(i)T = −2 Ġ(i)G(i)T = R(i)T Ṙ(i) (8)

For ellipsoidal particles it is convenient to describe the separation distance of the mass

centers for particles i and j using the ellipsoidal coordinate

ζ(i,j) =
[ (

c(i) − c(j)
)T

Ĥ(j)
(
c(i) − c(j)

) ] 1
2

(9)

defined in the co-rotating system of particle j using

Ĥ(j) = R(j)H(j)R(j)T (10)

H(j) =


 2βh

(j)
1 0 0

0 2βh
(j)
2 0

0 0 2βh
(j)
3



−2

(11)

where the constant β allows for close packing at the reference density. The time derivative

of this ellipsoidal coordinate , defined for i �= j, is

ζ̇(i,j) =
1

ζ(i,j)

[ (
Ĥ(j)r(i,j)

)T

ṙ(i,j) +
(
H(j)r̂(i,j) × r̂(i,j)

)T
ω(j)

]
(12)
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where

r(i,j) = c(i) − c(j), r̂(i,j) = R(j)T r(i,j) (13)

and may be used to quantify the rate of compression for an array of ellipsoidal particles.

The preceding results will be used in later sections to account for rotational inertia and

particle kinematics not present in the vast majority of particle models, which assume a

spherical particle geometry.

FINITE ELEMENT KINEMATICS

This section describes the finite element kinematics employed in the present paper. The

elements used here are eight noded hexahedra, well known and described in detail by Hal-

lquist [11] and others. Since all inertia effects are represented by the particles, no mass

matrix is defined.

Each structure in the model is subdivided into uniform hexahedra with orthogonal faces,

with ellipsoidal particles located at each node and at the centroid of each element. The

center of mass coordinates for particles located at element vertices are also nodal coordi-

nates for the hexahedra, and are used to compute the shearing strain. The center of mass

coordinates for particles located at the element centroids are used, in combination with the

nodal coordinates, to define six subelements for each hexahedron. The volumes of these

subelements are used to compute interparticle tension forces.

The following Lagrangian finite strain deformation measures [25] are used in the stored

energy functions for the elements, associated with tension and shear, and in the plastic

constitutive relations. The shear strain for element j is

E
(j)

=
1

2

(
C

(j) − I
)

(14)

where

C
(j)

= F
(j)T

F
(j)

, F
(j)

=
(
det F(j)

)− 1
3 F(j) (15)

and F(j) is an element deformation gradient computed using one point integration [11]. The
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elastic shear strain is defined as

Ee(j) = E
(j) − Ep(j) (16)

where (Ep(j)) is a plastic stain tensor whose flow rule satisfies the isochoric plastic deformation

constraint

tr
(
Cp(j)−T Ċp(j)

)
= 0, Ep(j) =

1

2

(
Cp(j) − I

)
(17)

The subelement Jacobians are denoted by J (j,k), where the index k designates one of six

subelements for the jth hexahedron.

KINETIC CO-ENERGY AND POTENTIAL ENERGY

An energy method (Lagrange’s equations) is adopted here, to facilitate the systematic

integration of diverse particle and element based modeling concepts. The stored energy

functions considered here are a kinetic co-energy function for the particles, an internal energy

function for the particles, and element potential energy functions which account for tension

and shear. Damage variables are introduced to model element failure in a thermodynamically

consistent fashion. Constitutive assumptions different from those adopted here may be

introduced without change to the underlying methodology.

The system kinetic co-energy is the sum of the particle co-energies

T ∗ =
n∑

i = 1

T ∗(i) (18)

where T ∗(i) is the co-energy for particle i, due to translation and rotation

T ∗(i) =
1

2
m(i) ċ(i) T ċ(i) +

1

2
ω(i) T J(i) ω(i) (19)

with J(i) a constant moment of inertia matrix described in the co-rotating particle frame.

The system kinetic co-energy function defines the generalized momenta

p(i) =
∂T ∗

∂ċ(i)
= m(i) ċ(i) , h(i) =

∂T ∗

∂ω(i)
= J(i) ω(i) (20)

where p(i) and h(i) are translational and angular momentum vectors for the ith particle.
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The system potential energy has the general form

V =
n∑

i = 1

U (i) +
ne∑

j = 1

V e(j)
o ψ(j) +

ne∑
j = 1

ns∑
k = 1

V e(j,k)
o ψ(j,k) (21)

where U (i) is the total internal energy for particle i and the pressure (P (i)) and temperature

(θ(i)) are described by an equation of state [26] with functional form

P (i) = P (i)(ρ(i), u(i)), θ(i) = θ(i)(ρ(i), u(i)) (22)

with ρ(i) and u(i) the density and the internal energy per unit mass

u(i) =
U (i)

m(i)
(23)

The second term depends on the number of elements (ne), the reference volume (V
e(j)
o ) for

element j, and the strain energy per unit volume in shear (ψ(j)), here assumed to be

ψ(j) = (1 − d(j)) µ(j) tr
(
Ee(j)TEe(j)

)
(24)

where d(j) is a shear damage variable and µ(j) is a shear modulus. The third term depends

on the number of subelements per element (ns), the subelement reference volumes (V
e(j,k)
o ),

and the strain energy per unit volume in tension (ψ(j,k)), here assumed to be

ψ(j,k) =
1

2
(1 − D(j)) K(j) < J (j,k) − 1 >2 (25)

where D(j) is a normal damage variable, K(j) is a bulk modulus, < x > denotes the bracket

function

< x > = x û(x) (26)

and û denotes the unit step function. Since the subelement Jacobians and the shear strain

tensor depend on the particle center of mass coordinates

J (j,k) = J (j,k)
(
c(i)

)
, Ee(j) = Ee(j)

(
c(i),Ep(j)

)
(27)

it follows that the system potential energy has the general functional form

V = V
(
ρ(i), U (i), c(i), d(j), D(j),Ep(j)

)
(28)
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The system potential energy defines the generalized conservative forces

m(i) P
(i)

ρ(i)2
=

∂V

∂ρ(i)
, g(i) =

∂V

∂c(i)
, 1 =

∂V

∂U (i)
(29)

as well as the deviatoric stress

S(j) = − 1

V
e(j)
o

∂V

∂Ep(j)
(30)

and the strain energy release rates

ΓD(j) = − ∂V

∂D(j)
, Γd(j) = − ∂V

∂d(j)
(31)

due to damage evolution. Note that when the internal energy is introduced as a generalized

coordinate, the associated generalized forces are constant.

With the system Lagrangian now defined, the next four sections describe evolution equa-

tions for the internal state variables.

DENSITY EVOLUTION RELATIONS

This section derives density evolution relations for the particles, by extending certain

exact results for the deformation kinematics of a unit cell of spherical particles, arranged

in a body centered cubic packing scheme. For uniform compression of such a unit cell, in

isolation, the cell center density ρ(i) is related to the reference density ρo
(i), the center of

mass separation distances r(i,j) and particle radii h(j) for its eight neighbors by

ρ(i)

ρ
(i)
o

= 1 +
1

8

8∑
j = 1

[(
2βh(j)

r(i,j)

)3

− 1

]
(32)

If the particles are not spherical but ellipsoidal then

ρ(i)

ρ
(i)
o

= 1 +
1

8

8∑
j = 1

[(
1

ζ(i,j)

)3

− 1

]
(33)

This expression for an isolated cell may be extended to a cell array of arbitrary size by

describing the same kinematics in rate form. Taking the time derivative of the last equation
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and multiplying by a step function W (i,j) which allows for contact with near neighbors only

yields

ρ̇(i)

ρo
(i)

= −3

8

n∑
j = 1

ζ̇(i,j)

ζ(i,j)4
W (i,j) (34)

where the summation is now over all n particles. The coefficient W (i,j) must satisfy

W (i,j) =




0 if i = j

0 if i �= j and ζ(i,j)3 ≥ ρ
(i)
o

ρ(i)

1 if i �= j and ζ(i,j)3 < ρ
(i)
o

ρ(i)

in order to correctly reflect the dependence of particle contact distance on the local density.

Otherwise particles will contact remote neighbors through intervening matter. Hence

W (i,j) = (1 − δij) û

(
1 − ζ(i,j)

[
ρ(j)

ρo
(j)

]1/3
)

(35)

where δij denotes the Kronecker delta. Note that W (i,j) performs no interpolation. Intro-

ducing the kinematic relation for ζ̇(i,j), developed in an earlier section, yields

ρ̇(i) = −3

8

n∑
j = 1

ρo
(i)W

(i,j)

ζ(i,j)5

[ (
Ĥ(j)r(i,j)

)T

ṙ(i,j) +
(
H(j)r̂(i,j) × r̂(i,j)

)T
ω(j)

]
(36)

which is the constraint form of the density evolution relations. The coefficients of the particle

translational velocities and angular velocities in this expression will determine generalized

forces in the momentum balance (Lagrange) equations derived in a later section. When the

particle velocities in this expression are eliminated in favor of the particle momenta

ċ(i) = m(i)−1p(i), ω(i) = J(i)−1h(i) (37)

the density evolution equations take an explicit state space form convenient for use in nu-

merical simulation.

PLASTICITY AND DAMAGE MODELS

This section introduces evolution equations for the plastic and damage variables. As in the

case of the potential energy, alternative constitutive assumptions may be introduced without
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change to the basic modeling methodology. The plastic flow rule used here is adapted from

reference [27], and represents the simplest possible accommodation of the aforementioned

isochoric plastic deformation constraint. The flow rule is

Ėp(j) =
λ̇(j)

||Sp(j)|| Np(j) N Sp(j) (38)

where λ̇(j) is a positive proportionality coefficient, Sp(j) is an effective stress

Sp(j) = NT Np(j)T S(j) (39)

and the invariant operator is defined by

||T|| =

[
1

2
tr

(
TTT

)]1/2

(40)

for any second order tensor T. The fourth order tensor coefficients in the flow rule are

defined by

Np(j) T =
1

2 ||Cp(j)||(C
p(j) T + T Cp(j)) (41)

N T = T − 1

3
tr(T) I (42)

for any symmetric second order tensor T. The yield function is

f (j) = ||Sp(j)|| − Y (j) (43)

where Y (j) is the yield stress

Y (j) = Y (j)
o (1 − d(j)) (1 + κ(j)εp(j))α(j) (

1 − η(j)θH(j)
)

(44)

with εp(j) the effective plastic strain, κ(j) a strain hardening coefficient, α(j) a strain hardening

exponent, η(j) a thermal softening coefficient, and θH(j) the homologous temperature. The

effective plastic strain is determined by integrating the rate relation

ε̇p(j) = ||Ėp(j)|| (45)
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while the incremental plastic strain for a time step ∆t is computed using

∆λ(j) =
< ||Sp(j)|| − Y (j) >

(1 − d(j)) 2 µ(j)
(46)

The damage evolution equations applied here are adapted from reference [28], and dissi-

pate the strain energy stored in tension and shear over n̂ time steps, once an element meets

any stipulated material failure criteria. The evolution equations are

Ḋ(j) =
Λ(j)

n̂ ∆t
û(1 − D(j)), ḋ(j) =

Λ(j)

n̂ ∆t
û(1 − d(j)) (47)

where Λ(j) is initialized to zero, and is set to a value of one when the accumulated plastic

strain, temperature, or element compression reach corresponding critical values for the plastic

failure strain (ε
p(j)
f ), melt temperature (θ

(j)
m ), or maximum compression (J

(j)
c ). Other failure

criteria may of course be specified.

In general terms, the plastic and damage evolution equations are noholonomic constraints

of the form

Ėp(j) = Ėp(j)
(
ρ(i), U (i), c(i), d(j), D(j), εp(j),Ep(j)

)
(48)

ḋ(j) = ḋ(j)
(
ρ(i), U (i), c(i), d(j), D(j), εp(j),Ep(j)

)
(49)

Ḋ(j) = Ḋ(j)
(
ρ(i), U (i), c(i), d(j), D(j), εp(j),Ep(j)

)
(50)

on the system level Lagrangian model.

ARTIFICIAL VISCOSITY AND HEAT DIFFUSION

Shock physics codes of the continuum or particle type incorporate a numerical viscosity

and artificial heat diffusion. The forms used here are typical of particle codes, with one

exception. Since the ellipsoidal particles used here admit rotational degrees of freedom, a

viscous torque has been added which damps the relative rotation of neighboring particles.

A viscous force is introduced for converging particles only

f (i) =
n∑

j = 1

ν(i,j) max
(
0, v(i,j)

) (
c(i) − c(j)

)
| c(i) − c(j) | û(1 − ζ(i,j)) (51)
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where the relative normal velocity is

v(i,j) = − (
ċ(i) − ċ(j)

) ·
(
c(i) − c(j)

)
| c(i) − c(j) | (52)

and the viscosity coefficient is

ν(i,j) =
co

2

(
ρ(i)

o c(i)
s V (i)

o

2
3 + ρ(j)

o c(j)
s V (j)

o

2
3

) [
1 +

2 c1|v(i,j)|
(c

(i)
s + c

(j)
s )

]
(53)

with c
(i)
s and V

(i)
o a soundspeed and particle reference volume. The parameters co and c1 are

nondimensional linear and quadratic numerical viscosity coefficients.

Similarly the viscous torque is

M(i) =
n∑

j = 1

σ(i,j) R(i)T
(
R(i)ω(i) − R(j)ω(j)

)
û(1 − ζ(i,j)) (54)

where the torsional damping coefficient is

σ(i,j) =
co

2

(
ρ(i)

o c(i)
s V (i)

o

4
3 + ρ(j)

o c(j)
s V (j)

o

4
3

)
(55)

Finally the thermal power flow due to artificial heat diffusion is taken to be

Q̇con(i) =
n∑

j = 1

R(i,j) ( θ(i) − θ(j) ) û(1 − ζ(i,j)) (56)

where the heat transfer coefficient is

R(i,j) =
ko

2

(
ρ(i)

o c(i)
s c(i)

v V (i)
o

2
3 + ρ(j)

o c(j)
s c(j)

v V (j)
o

2
3

)
(57)

with c
(i)
v a specific heat and ko a numerical heat diffusion coefficient.

INTERNAL ENERGY EVOLUTION EQUATIONS

The last internal state variable to be considered is the internal energy. The introduction

of internal energy states as generalized coordinates allows the thermomechanical problem of

interest here to be solved using energy methods.

The internal energy evolution equations for particle i are

U̇ (i) = U̇wrk(i) + U̇ irr(i) − U̇ con(i) (58)
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where the first term accounts for mechanical work, the second term accounts for the effects

of irreversible entropy production, and the third term represents numerical heat diffusion.

The mechanical power flow for particle i is

U̇wrk(i) = m(i) P
(i)

ρ(i)2
ρ̇(i) (59)

The energy dissipation due to irreversible entropy production for particle i depends on the

viscous forces and torques, which act on the particles, and on the dissipation in the elements

U̇ irr(i) = f (i)T ċ(i) + M(i)T ω(i) +
n∑

j = 1

φ(i,j) Q̇irr(j) (60)

where Q̇irr(j) is a power flow due to damage evolution and plastic deformation in element j

Q̇irr(j) = ΓD(j)Ḋ(j) + Γd(j)ḋ(j) + V e(j)
o tr

(
S(j)T Ėp(j)

)
(61)

and φ(i,j) is the fraction of the dissipation in element j associated with particle i.

Finally the internal energy flows due to numerical heat diffusion are

U̇ con(i) = Q̇con(i) (62)

As in the case of the density evolution equations, a constraint form of the internal evolution

relations is used to identify the generalized forces which appear in the Lagrange equations

developed in the next section. For numerical implementation of the method, the generalized

velocities are eliminated by introducing the momentum states as well as evolution relations

for the density, plastic, and damage state variables. The resulting internal energy evolution

relations take an explicit state space form.

LAGRANGE’S EQUATIONS

The preceding sections defined stored energy functions and nonholonomic constraints for

the thermomechanical particle-element system. This section develops the final ODE model.

The results of Shivarama and Fahrenthold [21] allow in the present case Lagrange’s equations
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to take the canonical form

ṗ(i) = −g(i) + qc(i), ċ(i) = m(i)−1 p(i) (63)

ḣ(i) = −Ω(i)h(i) + Qc(i), ė(i) =
1

2
G(i)TJ(i)−1h(i) (64)

∂V

∂ρ(i)
= Qρ(i),

∂V

∂U (i)
= QU(i) (65)

∂V

∂d(j)
= Qd(j),

∂V

∂D(j)
= QD(j),

∂V

∂Ep(j)
= Qp(j) (66)

where qc(i), Qc(i), Qρ(i), QU(i), Qd(i), QD(i), and Qp(j) are generalized forces determined by

the nonholonomic constraints. The degenerate forms of the Lagrange equations for the

internal state variables are due to the fact that those variables are not associated with any

generalized momenta. Introducing Lagrange multipliers γρ(i), γU(i), γd(j), γD(j), and Xp(j)

for the constraints, the generalized forces are found to be

qc(i) = −γU(i) f (i) +
3

8

n∑
j = 1

[
γρ(i)ρ(i)

o

W (i,j)

ζ(i,j)5
Ĥ(j)r(i,j) − γρ(j)ρ(j)

o

W (j,i)

ζ(j,i)5
Ĥ(i)r(j,i)

]
(67)

Qc(i) = −γU(i) M(i) +
3

8

n∑
j = 1

γρ(j)ρ(j)
o

W (j,i)

ζ(j,i)5

(
H(i)r̂(j,i) × r̂(j,i)

)
(68)

Qρ(i) = γρ(i) (69)

QU(i) = γU(i) (70)

Qd(j) = γd(j) −
n∑

i = 1

γU(i) φ(i,j) Γd(j) (71)

QD(j) = γD(j) −
n∑

i = 1

γU(i) φ(i,j) ΓD(j) (72)

Qp(j) = Xp(j) −
n∑

i = 1

γU(i) φ(i,j) V (j)
o S(j) (73)
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These results allow the unknown Lagrange multipliers to be determined in closed form, so

that the final Lagrange equations are

ṗ(i) = −g(i) − f (i) + q(i) (74)

ḣ(i) = −Ω(i)h(i) − M(i) + Q(i) (75)

ċ(i) = m(i)−1 p(i) (76)

ė(i) =
1

2
G(i)TJ(i)−1h(i) (77)

where the generalized forces and torques due to particle interactions are

q(i) =
3

8

n∑
j = 1

(
V (i)

o

P (i)

ρ(i)2

W (i,j)

ζ(i,j)5
Ĥ(j) + V (j)

o

P (j)

ρ(j)2

W (j,i)

ζ(j,i)5
Ĥ(i)

)
r(i,j) (78)

Q(i) =
3

8

n∑
j = 1

V (j)
o

P (j)

ρ(j)2

W (j,i)

ζ(j,i)5

(
H(i)r̂(j,i) × r̂(j,i)

)
(79)

Supplemented by the evolution equations for density, internal energy, shear damage, normal

damage, and plastic strain, the result is an explicit first order ODE model for the thermo-

mechanical particle-element system.

EXAMPLE SIMULATIONS

This section describes four example problems which illustrate application of the improved

particle-element method developed in this paper. The first two examples involve one dimen-

sional test problems with known exact solutions. The third and fourth example problems

involve three dimensional simulations. The third example models a published experiment

while the fourth example measures the relative computational cost of the present method in

a hypervelocity impact application of current research interest.

The first example is the wall shock problem of Noh [31]. The simulations employ an ideal

gas equation of state

P = (γ − 1) ρ (u − uo), θ =
1

cv

(u − uo) (80)
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and the parameters shown in Table 1. This problem models the collision of a fluid stream

located initially in the region 0.0 < x < 0.5 with a rigid wall located at x = 0. The initial

conditions are ρ = ρo, u = uo, and v = −1. Figures 1 through 4 plot the simulation results for

velocity, density, pressure, and temperature at the stop time of 0.3, for a model composed of

200 particles. The numerical results show good agreement with the exact solution, although

better results have been obtained using finite difference and finite element methods [31,35].

Table 2 shows convergence of the simulation results, as the particle count is increased, in

terms of the velocity error norm

‖ e ‖v =

{
1

n

n∑
i = 1

[
v(i) − v̂(x(i))

]2

}1/2

(81)

and the temperature error norm

‖ e ‖θ =

{
1

n

n∑
i = 1

[
θ(i) − θ̂(x(i))

]2
}1/2

(82)

where v̂ and θ̂ denote the exact solutions for the velocity and temperature.

The second example is the bar impact problem of Kolsky [33]. The simulations employ a

linear isothermal equation of state

P = K (ρ/ρ0 − 1) (83)

and the parameters shown in Table 3. This problem models the one dimensional motion

of an elastic bar of length L subjected to a step tensile pressure loading of magnitude Pext,

applied at the end x = L at time t = 0. Figures 5 and 6 plot the simulation results for the

bar midpoint velocity versus time, to a stop time of 0.001 seconds, for two different particle

counts. The numerical results show good agreement with the exact solution. The results

shown in Figure 5 are quite similar to those reported by Lu et a. [34], at the same particle

count, employing an element-free Galerkin method with an explicit integration algorithm.

The third example problem models the oblique impact of a tungsten alloy (DX2HCMF)

rod on a steel (SIS 2541) plate, an experiment described in references [29] and [30]. The
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simulations employed a Mie-Gruneisen equation of state [32] and the material properties

[30,32] listed in Table 4. The cylindrical projectile has a diameter of 0.5 cm and a length

of 7.5 cm (L/D = 15). The simulation models a 1.5 km/s impact on a 0.5 cm thick plate

at a sixty degree obliquity, and was run at three different particle counts. Figures 7 and 8

show the initial configuration and the simulation results at 100 microseconds after impact,

while Figures 9 and 10 show sectioned views at 20 and 40 microseconds after impact. This

simulation illustrates the fact that the present method retains all material fragments and

models contact-impact of all intact and fragmented material. Table 5 provides simulation

results, at several particle counts, for the residual rod length and residual rod velocity,

showing good agreement with the corresponding experimental values (6.38 cm and 1.46

km/s). The simulation results shown here differ by less than three percent from those

reported by Lee and Yoo [30] for Lagrangian finite element methods.

The fourth example problem models the oblique impact of an aluminum sphere on a re-

inforced carbon-carbon plate. This example does not model a specific experiment; rather it

was used to measure the improved computational efficiency of the method described here,

in a hypervelocity impact application of current research interest [6,36]. The projectile ma-

terial, diameter (0.618 cm), and impact velocity (7 km/s) represent a typical orbital debris

impact threat [4], while the target plate thickness (0.47 cm) is characteristic of reinforced

carbon-carbon components of the Space Shuttle thermal protection system [6]. Experimen-

tal studies of the mechanical properties of reinforced carbon-carbon are in progress; the

material properties used in the simulations are listed in Table 6. A total of six simulations

were performed, at three different particle counts, to measure the the computational cost

of density calculations made using interpolations kernels, as compared to the nonholonomic

formulation developed in the present paper. Each simulation was run to a stop time of ten

microseconds, sufficient to perforate the target and include the shock loading and fragmen-

tation processes of central interest in hypervelocity impact applications. Figures 10 through

15 show representative simulation results. Table 7 lists the wall clock times and processor
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counts for the simulations, run on a Linux cluster composed of dual processor (3 GHz) nodes.

The results show the relatively high computational cost of kernel based density calculations,

in the present hybrid particle finite element context. Wall clock times are increased for all

three problem sizes and associated processor counts, by an average factor of one third. This

result is not surprising, since the finite element related portion of the computation is rela-

tively inexpensive [22], while most of the particle related computations are performed in two

sequential routines: one loops over all neighbor particles to determine the density, the second

loops again over all neighbor particles to compute the particle interaction forces. The effect

of introducing the nonholonomic density calculation developed here is to eliminate the first

of these two routines. Considering the very high computational costs of three dimensional

shock physics problems, the measured reduction in wall clock time is significant.

CONCLUSION

The present paper has formulated a new kernel free particle-finite element method and

demonstrated its application in three dimensional hypervelocity impact simulations. Unlike

alternative methods, the formulation is derived without reference to any weighting or in-

terpolation functions for either the density or the rate of dilatation. The improved method

introduces a new formulation of the thermomechanical Lagrange equations, one which em-

ploys internal energies as generalized coordinates. This avoids the requirement to perform

certain Legendre transforms, in order to express the dependence of the pressure and tem-

perature on entropy, and hence allows for the use of equations of state in standard form. As

compared to the previous formulation, the revised method is both simplified and computa-

tionally more efficient. Applications work in progress is focused on the simulation of orbital

debris impact effects on spacecraft thermal protection materials [6].
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Table 1. Simulation parameters for the wall shock problem

Ratio of specific heats (γ) 5
3

Specific heat (cv) 1.0
Reference internal energy (eo) 1.0

Reference density (ρo) 1.0
Reference temperature (θo) 1.0

Numerical viscosity coefficient (co) 1.0
Numerical viscosity coefficient (c1) 0.0

Numerical conduction coefficient (ko) 0.1

Table 2. Error norms for the wall shock problem

Number of particles Velocity error norm Temperature error norm
100 0.17116 0.08594
200 0.12141 0.06075
400 0.08635 0.04325
800 0.06081 0.03032

Table 3. Simulation parameters for the bar impact problem

Length of the bar (L, in) 100
Bulk modulus (K, psi) 30.0 × 106

Applied end loading (Pext, psi) 50.0 × 103

Reference density (ρo, pci) 0.73 × 10−3

Numerical viscosity coefficient (co) 1.0
Numerical viscosity coefficient (c1) 0.0
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Table 4. Material properties used in the long rod impact simulations

Material property Projectile Target
Reference density (g/cc) 17.6 7.87
Shear modulus (Mbar) 1.45 0.801

Reference yield stress (Mbar) 0.0075 0.0105
Strain hardening coefficient 1.15 0.177
Strain hardening exponent 0.49 0.12

Thermal softening coefficient 1.0 1.0
Melt temperature (deg K) 1,700 1,723

Specific heat (Mbar-cm3 per g-deg K) 0.143e-5 0.448e-5
Plastic failure strain 1.0 1.0

Table 5. Simulation results for the long rod impact problem

Number of particles Residual length Residual velocity
(cm) (km/s)

35,992 6.08 1.42
92,498 6.47 1.42
187,826 6.59 1.42

Table 6. Material properties used in the plate impact simulations

Material property Projectile Target
Reference density (g/cc) 2.70 1.58
Shear modulus (Mbar) 0.271 0.0718

Reference yield stress (Mbar) 0.0029 0.000771
Strain hardening coefficient 125.0 2.0
Strain hardening exponent 0.10 1.0

Thermal softening coefficient 0.567 -1.0
Melt temperature (deg K) 1,220 3,840

Specific heat (Mbar-cm3 per g-deg K) 0.884e-5 0.712e-5
Plastic failure strain 1.0 0.5
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Table 7. Relative computational costs for the plate impact simulations

Particles Density calculation Processors Wall clock hours Relative cost
21,334 nonholonomic 4 1.2611 1.000
21,334 kernel 4 1.7581 1.394
63,253 nonholonomic 6 4.5047 1.000
63,253 kernel 6 5.8078 1.289
140,070 nonholonomic 8 28.8933 1.000
140,070 kernel 8 38.1411 1.320
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Figure 1: Wall shock problem, velocity versus position at t = 0.3.
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Figure 2: Wall shock problem, density versus position at t = 0.3.
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Figure 5: Bar impact problem, midpoint velocity versus time for 51 particles.
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Figure 6: Bar impact problem, midpoint velocity versus time for 101 particles.
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Figure 7: Long rod impact problem, element plot of the initial configuration.
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Figure 8: Long rod impact problem, particle-element plot at 100 microseconds after impact.
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Figure 9: Long rod impact problem, sectioned particle-element plot at 20 microseconds after
impact, color on temperature.
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Figure 10: Long rod impact problem, sectioned particle-element plot at 40 microseconds
after impact, color on temperature.
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Figure 11: Plate impact problem, element plot of the initial configuration.
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Figure 12: Plate impact problem, particle-element plot at 10 microseconds after impact.
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Figure 13: Plate impact problem, element plot at 10 microseconds after impact.
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Figure 14: Plate impact problem, sectioned particle-element plot at 10 microseconds after
impact, color on temperature.
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Figure 15: Plate impact problem, sectioned element plot at 10 microseconds after impact,
color on effective plastic strain.
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INTRODUCTION

Advanced orbital debris shield designs often incorporate a multi-plate geometry and are

fabricated of composite materials. An example is the aluminum-Nextel-Kevlar shields de-

veloped by NASA [1] for application on the International Space Station (ISS). Simulation

of hypervelocity impact effects on these shielding designs is difficult, due both to their ge-

ometry and their material composition. Since multi-plate shields distribute the allocated

shielding mass over more than one bumper, they reduce the minimum bumper thickness and

in general increase the computational cost of the simulation. The extensive use of composite

materials in advanced shielding designs complicates the simulation problem for two basic

reasons: (a) the requirement to consider nonhomogeneous or anisotropic media increases the

number of internal state variables which must be evolved in any numerical simulation, and

(b) the thermomechanical response of such materials, generally more complex than that of

aluminum or other metals, may be only partially described by the existing material property

data base. In spite of these complications, simulation of the hypervelocity impact response

of multi-plate metal-composite debris shields is of strong engineering interest, due to their

proven effectiveness as components of spacecraft protection systems [2]. The present work

describes numerical implementation of a rate dependent material model for Kevlar [3,4], and

the conduct of several three dimensional simulations, performed to investigate the hyper-

3Professor, corresponding author, phone: (512) 471-3064, email: epfahren@mail.utexas.edu
4Graduate research assistant
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velocity impact response of aluminum-Nextel-Kevlar debris shields like those deployed on

the ISS. The simulations employed a hybrid-particle finite element method and a parallel

computer code specifically developed to address the orbital debris shielding design problem.

Simulation work appears to conservatively estimate the protection afforded by multi-layered

aluminum-Nextel-Kevlar shielding.

COMPOSITE DEBRIS SHIELDING

Kevlar aramid fiber, introduced by the Du Pont Company in 1972, has been used in a

variety of impact protection applications. The woven cloth Nextel (manufactured by 3M

corporation) is made from alumina, a ceramic shown to provide effective impact protection

when applied as a component of composite armor systems. These materials are used in

the design of the multiplate orbital debris shielding deployed on some modules of the ISS.

The latter shielding consists of three material layers, arranged in the sequence: aluminum,

Nextel, Kevlar. The outer aluminum bumper is located approximately eleven centimeters

from the pressurized module, a multilayer stack of Nextel cloth is located approximately

halfway between the aluminum bumper and the pressure wall, and a multilayer stack of

Kevlar cloth is located directly behind the Nextel. Nextel is manufactured in various grades.

A number of different grades of Kevlar are also manufactured, with Kevlar 29 (all purpose

yarn), Kevlar 49 (high modulus yarn), and Kevlar 129 (high tenacity yarn) used in composite

armor applications. Tables 1 and 2 list mechanical properties of these three grades of Kevlar

and compare some important material properties of high performance Nextel and Kevlar

fibers.

IMPACT SIMULATIONS

Experimental work has demonstrated that aluminum-Nextel-Kevlar shields perform much

better than weight equivalent Whipple shield designs. Hence the development of a validated

computer aided design tool for use in future composite shielding design studies is of consid-

erable interest. Fahrenthold and Shivarama [9] described some initial work on the use of a
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hybrid particle-finite element method for composite shield impact simulations. The latter

work used a rather coarse three dimensional model of less the 0.5 million particles, and a

simulation time of less than 55 microseconds. The simulations discussed here involved an

order of magnitude increase in particle count and a three-fold increase in simulation time.

Related work using SPH and finite element methods has been reported by Hiermaier et al.

[10] and Palmieri [11], although the latter efforts have focused on the use of Kevlar-epoxy

plates [12], in lieu of the cloth Kevlar material modeled here. Three of the four simula-

tions described in the present chapter modeled an experiment performed by Grosch [13],

test number SwRI 7139-24, in which a 1.07 gram inhibited shaped charge (ISC) projectile

struck a two-thirds scale model composite orbital debris shield similar to that deployed on

the ISS. Parameters of the experiment are detailed in Table 3. The impact velocity is 11

kilometers per second, and the impact obliquity is 45 degrees. The first simulation reported

here modeled the ISC projectile used in the experiment. A second simulation was performed

using a spherical projectile with the same mass as the experimental (ISC) projectile, in or-

der to investigate the effect of projectile shape [14] on the simulation results. A concern in

the conduct of any hypervelocity impact simulation is the use of an appropriate equation

of state. However there is no validated Mie-Gruneisen or tabular equation of state data

for either Nextel cloth or Kevlar cloth. The aforementioned work of Hiermaier et al. [10]

developed an equation of state and an orthotropic elastic model for Kevlar-epoxy, as well as

a compaction equation of state for Nextel. The Kevlar layer modeled here does not include

epoxy, and a compaction model for Nextel may not be appropriate for use in the present

application. Hence the first and second simulations presented here used a linear equation of

state and the material properties listed in Table 4. The first simulation represented the ISC

projectile as a hollow aluminum cylinder, with dimensions estimated from the experimen-

tal radiographs. The exact mass and geometry of ISC projectiles is somewhat uncertain.

Both simulations employed approximately 6 million particles, and required approximately

252 wall clock hours to complete, in parallel execution on 16 processors of an IBM Regatta.
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The enclosed Figures 1 and 2 show an element plot of the first case at the simulation start

time, and a particle plot of the simulation results at 100 microseconds after impact. Figures

3 and 4 show element plots of the damage at each level of the multi-plate structure, again at

100 microseconds. The simulation results underestimate the composite shield performance,

since the experimental results showed a bulged but not perforated wall plate. A comparison

of the first and second simulations, involving mass equivalent spherical and ISC projectiles,

is provided by the wall plate plot of Figure 5, showing the results of the spherical projectile

impact simulation, at 150 microseconds after impact. The results suggest that projectile

geometry effects are significant even at the upper end of the orbital debris velocity regime.

COMPOSITE MATERIAL MODELS

The preceding simulation results underestimate the protection afforded by composite

shielding materials. To investigate the effects of changes in the composite material mod-

els on the predicted shielding performance, both the Nextel and Kevlar equations of state

were modified, and a rate-dependent strength model was introduced for the Kevlar. Two

additional simulations were then conducted using the modified composite material models.

The modified equations of state for Nextel and Kevlar used a Mie-Gruneisen functional form

and the estimated material properties listed in the enclosed table, with the Gruneisen gamma

for Nextel and Kevlar approximated using the formula of Anderson [17]

Γ = βκ/ρC (1)

where β is the thermal expansion coefficient, κ is the bulk modulus, C is the specific heat,

and ρ is the density. The engineering application discussed here involves very high strain

rate loading, hence any variation of material properties with strain rate is of considerable

interest. Two recent papers [3,4] describe a significant strain rate dependence in the measured

mechanical response of Kevlar 49, as summarized in Table 5, for experiments conducted over

a large strain rate regime. The parameters listed refer to the (apparent) Young’s modulus,

the maximum engineering stress, and the engineering strain at maximum engineering stress,
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as measured under uniaxial loading conditions. There is no data showing a similar strain

rate dependence for Nextel. For use in later impact simulation work, the maximum stress

versus strain rate data were fit to the function

σ

σ0

= g(ε̇) (2)

where

g(ε̇) = 1 ε̇ ≤ ε̇0 (3)

and

g(ε̇) = 1 + a

[
ln

ε̇

ε̇0

]m

ε̇ > ε̇0 (4)

As indicated in Figure 6, for Kevlar 49

a = 0.0064, m = 1.4 (5)

where the reference values of stress and strain rate are

σ0 = 2340 MPa, ε̇0 = 0.0001 s−1 (6)

To investigate the effects of rate dependence on predicted Kevlar impact response, the

plasticity model of Fahrenthold and Horbon [5] was modified, as described in the equations

which follow, and used in the two simulations discussed next. Note that the plasticity

model outlined here incorporates large strain kinematics and an isochoric plastic deformation

constraint. The nonassociated flow rule for the plastic strain rate (Ė
p
) is

Ėp = λ̇ (CpW + WCp) (7)

where λ̇ is a scalar multiplier and

W = CpSeff + SeffCp − 1

3
tr

[
CpSeff + SeffCp

]
I (8)

118



with the effective stress tensor and plastic Cauchy-Green strain tensor defined by

Seff =
(1 − d)2µ0E

e

g(ε̇)
, Cp = I + 2Ep (9)

where ε̇ is the effective strain rate, Ee is the elastic deviatoric strain, d is the deviatoric

damage, and µ0 is the shear modulus. The yield condition is

f = τ − Y, τ =

{
1

2
tr

[
SeffT

Seff
]}1/2

(10)

where τ is the second invariant of the effective stress. The yield stress Y is

Y =
1

2
(1 − d) Y0 {1 − γθ} (11)

where Y0 is the reference yield stress, γ is a thermal softening modulus, and θ is the homolo-

gous temperature. The plastic strain increment at each time step is determined using a one

step iteration procedure with

∆λ =
(τ − Y ) Λ (τ − Y )

(1 − d) 2µ0 ω g(ε̇)
(12)

where Λ denotes the unit step function and

ω =

{
1

2
tr

[
WTW

]}1/2

(13)

The preceding modified material models were used in two additional three dimensional

simulations of hypervelocity impact effects on aluminum-Nextel-Kevlar shielding. The first

simulated a published light gas gun experiment [1], while the second again considered the

ISC experiment discussed in the last section. The light gas gun experiment was JSC test

B536, and involved the oblique (15 degree) impact of a 1.0 gram aluminum sphere on a full

scale aluminum-Nextel-Kevlar shield, at a velocity of 6.86 km/s. Parameters of the experi-

ment are listed in Table 5. The simulation employed 1.18 million particles and required 63.2

wall clock hours to complete on 16 processors of an IBM Regatta. The simulation results

(Figures 7 and 8) indicate at 150 microseconds a slightly deformed but not perforated wall
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plate. The experiment showed a “slight dish,” indicating that the simulation results provide

an accurate estimate of the wall plate damage. Since simulation of this light gas gun test

showed good agreement with the corresponding experiment, simulation of the ISC projectile

test SwRI 7139-24 was repeated with a relatively high resolution model and the modified

material models discussed in this section. The simulation employed 15.6 million particles

and required 305 wall clock hours to complete on 512 processors of an SGI Origin. The sim-

ulation results (Figures 9 and 10) indicate at 75 microseconds a perforated wall plate. The

effect of introducing nonlinear equations of state for the composites and a rate dependent

Kevlar model appears in this case to be rather small, with the simulation again overestimat-

ing the wall plate damage. The results reported here suggest that the hybrid particle-element

method used in the simulations is numerically robust and captures important basic features

of multi-plate impact experiments. For example, the intermediate composite shields are

perforated, not fluidized, by the debris cloud impact. However the results also suggest that

modeling improvements are needed, in order to better represent the available experimental

impact data. The present study suggests possibilities for future work in both the model-

ing and experimental areas. First, the modeling of damage induced anisotropy, commonly

encountered for example in ceramic media, may be investigated to determine its effect on

predicted shield performance. Second, impact experiments using a simpler target geometry

might be conducted, with a primary goal of materials characterization in mind.

CONCLUSION

The hybrid numerical method utilized here has been applied with some success to model

the impact of metal projectiles and targets, over a wide range of velocities. The present

work has described development of a rate dependent material model for Kevlar and three

dimensional simulation work aimed at extending the formulation, for use in the computer

aided design of multi-plate composite orbital debris shields. Both the geometry and the ma-

terial composition of such shields complicate the simulation problem. The simulation results
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conservatively estimate the protection afforded by multi-layered aluminum-Nextel-Kevlar

shielding. Additional material modeling work, guided by impact tests focused on materials

characterization issues, is expected to improve upon current simulation capabilities. The

rather high computational cost of three dimensional multi-plate shield impact simulations

emphasizes the importance of developing efficient parallel numerical implementations.
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Yarn properties Kevlar 29 Kevlar 49 Kevlar 129
Tensile Strength (Kpsi) 420 420 485

Initial Modulus 10.3 17.4 14
Elongation (%) 3.6 2.8 3.3
Density (lb/ft3) 89.9 90.5 90.5

Table 1: Mechanical properties of Kevlar aramid fibers

Fiber type Density Strength Modulus Elongation Fiber diameter
(g/cm3) (GPa) (GPa) (%) (µm)

Kevlar 129 1.45 3.4 99 3.3 12
Nextel 2.5 1.72 152 2 13

Table 2: Comparison of mechanical properties for Kevlar 129 and Nextel

Projectile mass (aluminum, L/D = 1) 1.07 g
Bumper thickness (aluminum) 0.127 cm

Nextel areal density 0.400 g/cm2

Kevlar areal density 0.128 g/cm2

Wall plate thickness (aluminum) 0.3175 cm
Total standoff 7.62 cm

Projectile velocity 11.25 km/s
Impact obliquity 45 degrees

Table 3: Parameters of SwRI test number 7139-24
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Material property Aluminum Nextel Kevlar
Shear modulus (Mbar) 0.271 0.164 0.100

Reference density (g/cc) 2.7 2.7 1.45
Reference sound speed (cm/µsec) 0.524 0.4968 0.5352

Reference yield stress (Mbar) 0.0029 0.0172 0.034
Strain hardening exponent 0.1 0.0 0.0
Strain hardening modulus 125.0 0.0 0.0

Melt temperature (degrees Kelvin) 1,220 1,220 700
Specific heat

(Mbar-cm3 per g-kilodegrees Kelvin) 0.00884 0.00884 0.00142
Spall stress (Mbar) 0.012 0.100 0.100
Plastic failure strain 1.0 1.0 1.0

Thermal expansion coefficient
(per kilodegrees Kelvin) 0.0216 0.009 0.038
Mie-Gruneisen gamma 1.97 0.2513 0.7666

Mie-Gruneisen slope coefficient 1.4 1.0 1.0

Table 4: Material properties used in the simulation

Strain rate 0.0001 s−1 0.01 s−1 140 s−1 440 s−1 1350 s−1

E (GPa) 97 100 112 119 125
σmax (GPa) 2.34 2.47 2.94 3.02 3.08

εm (%) 3.29 3.33 3.54 3.64 3.86

Table 5: Mechanical properties of Kevlar 49 versus strain rate

Projectile mass (aluminum sphere) 1.0 g
Bumper thickness (aluminum) 0.16 cm

Nextel areal density 0.600 g/cm2

Kevlar areal density 0.192 g/cm2

Wall plate thickness (aluminum) 0.48 cm
Total standoff 11.4 cm

Projectile velocity 6.86 km/s
Impact obliquity 15 degrees

Table 6: Parameters of JSC test number B536
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Figure 1: Element plot of the initial configuration
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Figure 2: Particle plot of the simulation results at 100 microseconds after impact
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Figure 3: Element plot of the simulation results at 100 microseconds after impact
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Figure 4: Element plot of the Kevlar shield and wall plate at 100 microseconds after impact
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Figure 5: Element plot of the wall plate damage, spherical projectile

130



10
0

10
2

10
4

10
6

10
8

10
10

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Normalized strain rate

N
o
rm

a
liz

e
d
 t
e
n
s
ile

 s
tr

e
n
g
th

Figure 6: Strain rate dependence of tensile strength of Kevlar 49
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Figure 7: Element plot of the initial configuration
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Figure 8: Element plot of the Kevlar shield and wall plate at 150 microseconds after impact
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Figure 9: Element plot of the simulation results at 75 microseconds after impact (front view)
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Figure 10: Element plot of the simulation results at 75 microseconds after impact (rear view)
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ABSTRACT

Spacecraft operating in low earth orbit face a significant orbital debris impact hazard.

Of particular concern, in the case of the Space Shuttle, are impacts on critical components

of the thermal protection system. Recent research has formulated a new material model

of reinforced carbon-carbon, for use in the analysis of hypervelocity impact effects on the

Space Shuttle wing leading edge. The material model has been validated in simulations

of published impact experiments and applied to model orbital debris impacts at velocities

beyond the range of current experimental methods. The results suggest that momentum

scaling may be used to extrapolate the available experimental data base, in order to predict

the size of wing leading edge perforations at impact velocities as high as 13 km/s.

NOMENCLATURE

d, shear damage variable δij, Kronecker delta

D, projectile diameter L, velocity gradient tensor

Dp, perforation diameter Ne, number of elements

Dc, coating spall diameter R, rotation matrix

D, rate of deformation tensor S, deviatoric stress tensor

e, Euler parameter vector Sp, effective stress tensor

E, deviatoric strain tensor s, entropy density

Ee, elastic strain tensor v, impact velocity

Ep, plastic strain tensor Y , yield stress

εp, effective plastic strain ψ, strain energy density

ε̇, deviatoric strain rate θ, temperature

F, deformation gradient tensor φ, impact obliquity
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INTRODUCTION

Carbon-carbon composites offer an unusual combination of thermal and mechanical prop-

erties.1 Their light weight and high temperature strength satisfy some very stringent design

requirements for reusable orbital vehicles.2 The wing leading edge of the Space Shuttle,

subject to severe thermal re-entry loads, is constructed of reinforced carbon-carbon (RCC)

panels, coated in silicon carbide to prevent oxidation.3 Although the thermal properties of

RCC composites are well understood,4 much less is known about their dynamic mechanical

properties. The loss of the Space Shuttle Columbia,5 apparently due to impact damage on

the wing leading edge, has motivated recent experimental6 and computational7 work aimed

at developing a better understanding of the impact response of thermal protection materials.

The wing leading edge damage to Columbia was unexpected, the result of a relatively

low velocity impact by a relatively low density projectile.8 Another impact damage hazard,

due to space debris in low earth orbit, has long been recognized. This threat involves

projectiles of very low mass, but much higher density, and impact velocities as high 15 km/s.

The debris shielding on the International Space Station is designed to defeat centimeter

sized aluminum projectiles. Although the likelihood of such a projectile striking the Space

Shuttle is quite low, orbital debris damage by much smaller projectiles is routinely observed

during post-mission inspections of the vehicle. As a result previous experimental research

has investigated the response of Space Shuttle thermal protection materials to orbital debris

impact by spherical aluminum projectiles as large as 0.628 cm in diameter.9

Due to the high cost of carbon-carbon composites and the long fabrication lead times

associated with the preparation of test samples, impact testing of RCC materials has been

limited. In addition, the limitations of current experimental technology preclude hyperveloc-

ity impact testing over the entire projectile mass and kinetic energy range of interest. As a

result, numerical simulation can serve as an important complement to experimental studies

of the impact response of RCC materials. Numerical models validated by comparison with
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experiment at velocities below 8 km/s can be used to extrapolate results into a higher veloc-

ity impact regime. A coordinated experimental and computational approach to the study of

RCC response to insulating foam impacts has proven to be productive;10 the present paper

extends the latter computational work, to projectiles and impact velocities associated with

orbital debris impact. In particular it develops a new anisotropic, rate-dependent material

model for reinforced carbon-carbon, validates that model in three dimensional simulations of

published hypervelocity impact experiments, and applies the validated formulation in simu-

lations of impacts at velocities beyond the experimental range. The results indicate that a

momentum scaling approach used to correlate the available experimental impact data may

be extrapolated to describe RCC perforation by hypervelocity projectiles at velocities as

high as 13 km/s.

The present paper is organized as follows. The first section outlines the hybrid particle-

finite element method used in the present study, including the imbedded large deformation

kinematics and general functional forms for the associated constitutive relations. The second

section discusses published experimental results on the properties of RCC. The third section

develops an RCC constitutive model, formulated for use in hypervelocity impact applica-

tions and reflecting important mechanical characteristics described in the material testing

literature. The fourth section validates and applies the developed model in a series of three

dimensional impact simulations. The last section presents conclusions and suggestions for

related future work.

NUMERICAL METHOD

The material model described in this paper was developed for application in a specific

numerical framework, the hybrid particle-finite element formulation of references 11 and

12. In order to provide appropriate context, this section summarizes the latter numerical

formulation, details certain element level kinematics, and provides functional forms for the
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required constitutive relations. The kinematic and constitutive modeling framework assumed

here has wide scope, so that the material model described in the present paper may be

adapted for use in shock physics codes which are based on alternative numerical modeling

schemes.13

The hybrid particle-finite element model employed here takes an explicit state space form.

The state equations consist of evolution equations for the following variables:

• translational and rotational momentum vectors for the three dimensional motion of

ellipsoidal particles,

• center of mass position vectors and Euler parameters for the particles, the latter pro-

viding a singularity free description of particle rotations,

• density and entropy for each particle, and

• damage and plastic internal state variables for each finite element.

The state equations are derived using a thermomechanical formulation of the Lagrange equa-

tions. All inertia effects are modeled using the particles, whose mass centers are also nodal

coordinates for the finite elements. The volumetric thermomechanical response of the mod-

eled medium is described by an equation of state for the particles, which may take either an

analytic or tabular form.

The material modeling work described in the present paper develops two specific compo-

nents of the general numerical formulation:

• a strain energy density in shear, one part of the thermomechanical Lagrangian for the

modeled particle-element system, and

• a plasticity model which specifies evolution equations for the plastic internal state

variables, equations which serve as nonholonomic constraints on the system level model.
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The strain energy density in shear takes the general functional form

ψ = ψ(d, e,E,Ep) (1)

where d is a shear damage variable, E is the total deviatoric strain, Ep is the plastic strain,

and e is a vector of Euler parameters which relates a material reference frame for each

element to a single global Cartesian reference frame. The evolution equations for the plastic

strain components take the general functional form

Ėp = Ėp(s, d, εp, ε̇, J, e,E,Ep) (2)

where s is an entropy density, εp is the effective plastic strain, ε̇ is a deviatoric strain rate,

and

J = det(F) (3)

where F is the deformation gradient tensor.

The strain and strain rate variables which appear in the preceding functional forms are

defined by the following large deformation kinematics.14 The deviatoric strain is

E =
1

2

(
C − I

)
(4)

where

C = F
T
F, F = (det F)−

1
3 F (5)

The elastic shear strain is defined as

Ee = E − Ep (6)

where the flow rule for the plastic stain tensor must satisfy the isochoric plastic deformation

constraint

tr
(
Cp−T Ċp

)
= 0, Cp = I + 2 Ep (7)
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The effective plastic strain is determined by integrating the rate relation

ε̇p = ||Ėp|| (8)

with the indicated invariant operator defined by

||T|| =
[
1

2
tr

(
TTT

)]1/2

(9)

for any second order tensor T. The deviatoric strain rate is

ε̇ = ||D′||, D′ = D − 1

3
tr(D) I (10)

where D is the rate of deformation tensor

D =
1

2

(
L + LT

)
, L = Ḟ F−1 (11)

with L the velocity gradient tensor.

In the case of anisotropic materials, the constitutive response is described in a material

reference frame. Here an Euler parameter vector

e = [e0 e1 e2 e3]
T , eTe = 1 (12)

is used to define a rotation matrix (R) for each element

R = A GT (13)

A =



−e1 e0 −e3 e2

−e2 e3 e0 −e1

−e3 −e2 e1 e0


 (14)

G =



−e1 e0 e3 −e2

−e2 −e3 e0 e1

−e3 e2 −e1 e0


 (15)

which relates a material reference frame in each element to the global Cartesian system used

in the numerical simulations. The rotation matrix relates vector components p in the global
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coordinate system to corresponding components q described in the material reference frame,

using

p = R q (16)

The corresponding transformation relation for second order tensors is

P = R Q RT (17)

where the components P refer to the global frame and the components Q refer to the material

reference frame.

REINFORCED CARBON-CARBON

The published material property data base for carbon-carbon composites is limited by

material costs and proprietary considerations. On the other hand, the complex nature of

both the material and the application of interest here means that a rather wide range of

experiments are needed to fully characterize its constitutive response. This section discusses

some properties of RCC of particular significance in hypervelocity impact applications.

The most directly relevant experimental results are those of Lu et al.,6 who performed

tests at Sandia National Laboratories on samples taken from Space Shuttle wing leading edge

panels, in support of the Columbia accident investigation. They provide data on elastic mod-

uli as well as strength measurements obtained from tension, bending, and compression tests.

Although the elastic moduli measured in tension and compression were similar, strength in

compression was approximately double that in tension. In addition they reported a strain

rate dependence of the tensile strength, observing a fifteen percent increase in strength as

the loading rate increased from 1 to 200 sec−1. Finally they noted that removal of the silicon

carbide coating from the tested samples showed little effect on the measured mechanical

properties.
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Several different authors have reported results of shear tests performed on carbon-carbon

composites.15−20 In the case of the RCC, interlaminar shear strength and stiffness is of

interest, since oblique hypervelocity impacts will in general lead to multi-axial loading. The

published shear test data show that interlaminar shear stiffness and strength can differ by

factors of approximately two and four respectively, from their in-plane counterparts.

Perhaps the most unusual property of RCC is its increase in strength with tempera-

ture,17,21 by as much as a factor of two, as compared to the thermal softening response

observed in metals. The high temperature strength of RCC is important in hypervelocity

impact applications, due to the adiabatic heating typically associated with shock loading.

The preceding references, along with the equation of state literature22 and published data

on the thermal properties of RCC,4,23 were used to estimate the material parameters used

in the simulations reported in a later section. Although additional tests on Space Shuttle

wing leading edge panels, like those reported by Lu at al., are needed, the cited references

represent the best data available to the authors at the time the simulations were conducted.

MATERIAL MODEL

Composite materials are used in structural,24 orbital debris shielding,25 and thermal

protection4 applications on a variety of spacecraft, hence their response to hypervelocity

impact effects has been analyzed in a number of previous experimental26 and computa-

tional27 studies. Previous material modeling work has considered both micromechanical28

and anisotropic continuum models. The present paper employs an anisotropic continuum

approach, since the high computational cost of micromechanical models normally precludes

their use in structural scale simulations. Large deformation, anisotropic continuum models of

composite materials29,30 normally address shock physics problems by extending small strain

formulations originally developed for applications in structural mechanics. In an alternative

approach, the present work starts with the finite strain, hybrid particle-element kinematics
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discussed in an earlier section, and then formulates: (1) an anisotropic strain energy den-

sity function which depends on a general deviatoric Lagrangian strain tensor, and (2) an

anisotropic, temperature and rate dependent plastic flow rule which depends on an effective

stress31 and satisfies a general isochoric deformation constraint. Both the strain energy den-

sity function and the plastic flow rule: (1) account for differences in material response under

tension and compression, (2) account for material reference frame dependence under large

deformations, and (3) satisfy first and second law thermodynamic constraints. The approach

used here has been applied with success to model isotropic materials.32 It is motivated by a

focus on hypervelocity problems, where large deformation dynamics are of central interest,

and by the kinematic form of the hybrid numerical method used in the present paper. As

indicated in the later section on simulations, this material modeling approach provides an

accurate description of hypervelocity impact effects in reinforced carbon-carbon. Potential

application of the formulation to model impact in other composites, such as graphite-epoxy

or Kevlar-epoxy, is of interest for future work.

In the case of an orthotropic material, with distinct elastic moduli in tension and com-

pression, the shear strain energy density per unit reference volume is

ψ = (1 − d) µo
1

2

3∑
i = 1

µii [(1 + γi) + (1 − γi) sgn(Eem
ii )] (Eem

ii )2 +

(1 − d) µo

3∑
i = 1

3∑
j = 1

(1 − δij) µij (Eem
ij )2 (18)

where δij is the Kronecker delta, µo is a reference elastic modulus, and the parameters

µij = µji are dimensionless constants. The parameters γi are the ratios of the elastic moduli

in compression to those in tension, while the Eem
ij are the components of the elastic shearing

strain, expressed in a material reference frame. Note that this function is analytic, since

a change in modulus from tension to compression occurs when the corresponding material

strain component is zero.

A plastic flow rule for an anisotropic, rate dependent material, which satisfies the afore-
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mentioned isochoric plastic deformation constraint, may be obtained by extending a large

strain Lagrangian formulation previously developed for use in hypervelocity impact applica-

tions.32,33 The flow rule is

Ėp =
λ̇

||Sp|| Np N M Mp Sp (19)

where λ̇ is a positive proportionality coefficient, Sp is the effective stress,

Sp = MpT MT NT NpT S (20)

and S is the deviatoric stress tensor

S =
∂ψ

∂Ee
(21)

The first two coefficients in the flow rule impose the isochoric plastic deformation constraint,

and are defined by

Np T =
1

2 ||Cp||(C
p T + T Cp) (22)

and

N T = T − 1

3
tr(T) I (23)

for any symmetric second order tensor T. The third coefficient performs a component

transformation from a material reference frame to a fixed global frame, and is defined by

MT T = RT T R (24)

for any symmetric second order tensor T. The last coefficient in the flow rule defines an

effective stress transformation, in a material reference frame, using

MpT P = Q (25)

for symmetric second order tensors P and Q, with component forms

Qii =
2 αii Pii

(1 + βii) + (1 − βii) sgn(Eem
ii )

, i = 1, 2, 3 (26)
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and

Qij =
2 αij Pij

(1 + βij) + (1 − βij) sgn(J − 1)
, i �= j (27)

The parameter αij = αji is the ratio of a reference yield stress to the yield stress for the ijth

stress component, while the parameter βij = βji is the ratio of the strength in compression

to that in tension for the ijth stress component.

The rate dependent, strain hardening, thermal softening yield function is

f = ||Sp|| − Y (28)

where Y is the yield stress

Y =
1

2
(1 − d) Yo

(
1 − κ θH

)
(1 + η εp)n

[
1 + ζ log

(
ε̇

ε̇o

)]m

(29)

with Yo the reference yield stress, η a strain hardening coefficient, n a strain hardening

exponent, ζ a strain rate hardening coefficient, m a strain rate hardening exponent, ε̇o a

reference strain rate, κ a thermal softening coefficient, and θH the homologous temperature

θH =
θ − θo

θm − θo

(30)

where θo and θm are reference and melt temperatures.

In a numerical implementation, the aforementioned plastic flow rule is expressed in in-

cremental form. That is the incremental plastic strain at each time step is computed using

the incremental proportionality coefficient

∆λ = max

(
0 ,

||Sp|| − Y

(1 − d) 2 µo

)
(31)

The shear damage variable (d) models the transition from an intact to a failed medium,

evolving from an initial value of 0 to a final value of 1 over a fixed number of time steps34 when

any stipulated element failure criterion is satisfied. The simulations discussed in the next

section incorporate accumulated plastic strain, melt temperature, and maximum compression

failure criteria, although other criteria may be accommodated.

147



IMPACT SIMULATIONS

The material model just described was applied in a series of three dimensional simulations

of hypervelocity impacts on reinforced carbon-carbon. The simulations employed a hybrid

particle-finite element method and the material properties listed in Tables 1 and 2. An

initial set of simulations was used to validate the material model, compare results obtained

using analytic (Mie Gruneisen) and tabular35 (SESAME 3715) equations of state, and check

numerical convergence of the simulation results. A second series of simulations was then

performed to estimate orbital debris impact effects at velocities beyond the range of current

experimental methods.

The first set of eight simulations modeled NASA JSC experiments B1028 and B1040,9

which involved oblique impacts of aluminum spheres on reinforced carbon-carbon target

plates at a velocity of seven kilometers per second. The target plates were 0.63 cm in

thickness, including upper and lower surface coatings composed of silicon carbide, each

0.08 cm in thickness. Table 3 lists the simulation parameters, including projectile diameter

(D), impact velocity (v), impact obliquity (φ, with zero degrees a normal impact), number

of elements spanning the target thickness (Ne), and the equation of state used to model

the aluminum projectile. Tabular equation of state data was not available for the target

materials.

Figures 1 through 4 show example plots for a simulation of experiment B1028. Figure

1 shows the initial configuration while Figures 2 through 4 show the simulation results at

50 microseconds after impact. The sectioned plot in Figure 4 depicts plate perforation

and coating spall similar to that observed in the corresponding experiment. Table 3 lists

simulation results for the diameter of the RCC perforation (Dp) and the average diameter

of the target region over which the silicon carbide coating was removed (Dc). The results of

the validation simulations suggest the following conclusions:
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• the material model developed here can provide good estimates of both the RCC per-

foration diameter and the extent of the spalled coating region, for oblique impacts at

seven kilometers per second,

• accurate estimates of the RCC perforation diameter require a mesh resolution sufficient

to place 8 elements across the target plate,

• accurate estimates of the diameter of the spalled coating region require a mesh resolu-

tion sufficient to place 16 elements across the target plate, and

• the simulation results are not sensitive to the choice of projectile equation of state.

Table 4 shows the relative computational cost of simulations of experiments B1028 and

B1040 run at three different mesh densities. As is well known, in three dimensional models

the particle count increases with the cube of the increase in resolution, while the time step

decreases linearly with the increase in resolution, so that the total computational cost of

high resolution models is considerable.

A second set of twelve simulations was performed to investigate orbital debris impact

effects at velocities beyond the current experimental range. The simulations involved spher-

ical aluminum projectiles, at three different projectile diameters, an impact obliquity of 30

degrees and impact velocities of 7, 10, and 13 km/s. In the case of the largest projectile,

simulations were performed using both an analytic and a tabular equation of state. The

target assumed in these simulations was identical to that involved in the aforementioned ex-

periments. In the target mesh 8 elements spanned the plate thickness, so that the resolution

level was sufficient to estimate the diameter of the RCC perforations, but not the extent of

the region of coating spall. Figure 5 shows simulation results for the diameters of the RCC

perforations, as a function of projectile diameter, impact velocity, and projectile equation

of state. In Figure 5, MG denotes the Mie Gruneisen analytic equation of state, while SES
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denotes the SESAME tabular equation of state. The results of these simulations suggest the

following conclusions, for the impact velocity range and impact obliquity considered:

• perforation diameters increase with both projectile size and impact velocity, over the

full range of the simulations,

• for a fixed projectile size, perforation diameters increase with impact velocity at an

approximately linear rate,

• for a fixed impact velocity, perforation diameters increase with projectile size, but at

a declining rate, and

• the simulation results are not sensitive to the choice of projectile equation of state.

Note that Figure 5 is not a ballistic limit plot; rather it plots perforation diameter versus

impact velocity, so that the indicated trends are not unexpected.

Although the preceding results are informative, they consider only a limited rage of

projectile size and obliquity. Hence the scaling of the simulation results, as compared to the

available experimental data, is of considerable interest. Figure 6 shows a plot of perforation

diameter versus normal impact momentum for the 11 different projectile size and impact

velocity combinations modeled in the present computational study, as well as corresponding

data for 15 published experiments.9,36 The experiments involved projectile diameters ranging

from 0.039 to 0.628 cm, impact velocities ranging from 2.49 to 7.32 km/s, and impact

obliquities ranging from 0 to 80 degrees. The simulations involved a more limited range

of projectile diameters (0.123 to 0.360 cm) and obliquities (30 to 45 degrees), but a much

higher range of impact velocities (7 to 13 km/s). All of the simulations and experiments

of course involved the same target configuration. The data in Figure 6 suggests that the

experimental and simulation results for the diameters of RCC perforations scale with normal

impact momentum in a similar fashion. Although these results do not establish a universal
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scaling relation for the problem of interest, they do suggest that the scaling of perforation size

with normal impact momentum observed in experiments below 8 km/s may be extrapolated

to much of the velocity range of interest in orbital debris impact applications.

CONCLUSION

The present paper has formulated an anisotropic, rate dependent material model for use in

the simulation of hypervelocity impact problems. The material model was developed to study

orbital debris impact effects on reinforced carbon-carbon materials, and has been validated in

simulations of hypervelocity impact experiments conducted at 7 km/s. The validated model

was applied to simulate impacts at velocities beyond the experimental range. The results

indicate that momentum scaling analysis, used to correlate a wide range of experiments

below 8 km/s, has application in predicting perforation diameters for reinforced carbon-

carbon targets at velocities as high as 13 km/s. The ability of reinforced carbon-carbon

to retain its strength at high temperatures suggests that accurate strength models of this

material are important in simulations of impact effects over the entire orbital debris velocity

range.

Some conclusions relevant to future work are suggested:

• additional high resolution simulations are needed in order to investigate the spallation

of silicon carbide coating at velocities above the current experimental range,

• additional mechanical properties testing is needed, at elevated temperatures and high

strain rates, to support the development and validation of improved strength models

for reinforced carbon-carbon,

• additional equation of state research is needed, to provide tabular data applicable to

reinforced carbon-carbon materials over a wide range of impact velocities, and
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• the development of advanced thermal protection materials should in the future include

experimental work aimed at detailed characterization of their mechanical as well as

their thermal properties.

The use of composite materials in spacecraft applications complicates both experimental

and computational studies of impact effects. High cost materials with long fabrication lead

times, such as reinforced carbon-carbon, and the limitations of current experimental impact

techniques motivate the increased use of computer simulation in the design of spacecraft for

micrometeoroid and orbital debris impact effects.
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Table 1. Material properties

Material property Aluminum Silicon Carbide RCC

Reference bulk modulus (Mbar) 0.784 2.21 0.0576
Reference shear modulus (Mbar) 0.271 0.240 0.0718

Reference soundspeed (cm µsec−1) 0.539 0.829 0.191
Mie-Gruneisen gamma 1.97 0.95 0.24
Mie-Gruneisen slope 1.34 1.21 1.33

Reference density (g cm−3) 2.70 3.21 1.58
Reference yield stress (kbar) 2.90 0.771 0.771

Specific heat (bar cm3 g−1 ◦K−1) 8.84 7.12 7.12
Strain hardening coefficient 125 10 2
Strain hardening exponent 0.1 1.0 1.0

Strain rate hardening coefficient 0.0 0.0 0.1
Strain rate hardening exponent 0.0 0.0 1.0
Reference strain rate (sec−1) 0 0 0.01
Thermal softening coefficient 0.567 0.0 -1.0

Melt temperature (◦K) 1,220 3,840 3,840
Maximum compression 100 100 100
Plastic failure strain 1.00 0.10 0.50

Table 2. Material model parameters

Parameters Silicon Carbide Reinforced carbon-carbon

γ1 = γ2 = γ3 0.10 1.00
µ11 = µ22 = µ33 = µ13 1.00 1.00

µ12 = µ23 1.00 0.50
α11 = α22 = α33 = α13 1.00 1.00

α12 = α23 1.00 3.73
β11 = β22 = β33 2.00 2.00
β12 = β13 = β23 2.00 2.00
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Table 3. Numerical results, simulations of NASA JSC experiments B1028 and B1040

Test D v φ Ne Equation Dp Error Dc Error
number (cm) (km/s) (deg) of state (cm) (%) (cm) (%)

B1028 0.628 7.01 45 8 Mie Gruneisen 2.60 10.3 3.74 15.0
8 SESAME 3715 2.65 8.6 3.60 18.2

16 Mie Gruneisen 2.66 8.3 4.05 8.0
24 Mie Gruneisen 2.67 7.9 4.08 7.3

B1040 0.478 6.96 30 8 Mie Gruneisen 2.12 3.6 2.95 21.3
8 SESAME 3715 1.97 10.5 2.95 21.3

16 Mie Gruneisen 2.00 10.0 3.38 9.9
24 Mie Gruneisen 2.10 4.5 3.48 7.2

Table 4. Computer resource requirements, simulations of NASA JSC experiments

Test Ne Total Total Number of Wall clock
number particles elements processors hours

(million) (million)

B1028 8 0.078 0.036 16 14
16 0.572 0.275 64 65
24 1.857 0.905 64 340

B1040 8 0.078 0.036 32 5
16 0.572 0.275 64 74
24 1.856 0.905 64 347
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Figure 1. Initial configuration, simulation of NASA JSC experiment B1028.
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Figure 2. Particle-element plot of the simulation results at 50 microseconds after impact.
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Figure 3. Element plot of the simulation results at 50 microseconds after impact.
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Figure 4. Sectioned element plot of the simulation results at 50 microseconds after impact.
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ABSTRACT

A series of three dimensional simulations has been performed to investigate analytically the effect of

insulating foam impacts on ceramic tile and reinforced carbon-carbon components of the Space Shuttle

thermal protection system. The simulations employed a hybrid particle-finite element method and a parallel

code developed for use in spacecraft design applications. The conclusions suggested by the numerical study

are in general consistent with experiment. The results emphasize the need for additional material testing

work on the dynamic mechanical response of thermal protection system materials, and additional impact

experiments for use in validating computational models of impact effects.

NOMENCLATURE

c particle center of mass position vector

d element shear damage variable

D element normal damage variable

Ep element plastic strain tensor

f particle damping force

m particle mass

p particle translational momentum vector

S particle entropy

V thermomechanical potential energy function

INTRODUCTION

The report of the Columbia Accident Investigation Board1 concluded that the effects of foam impact on

the wing leading edge of the Space Shuttle was the most likely cause for the loss of the Orbiter Columbia.

Strong evidence in support of this conclusion is provided by a recent series of impact experiments conducted

at Southwest Research Institute (SwRI) by a NASA-SwRI-industry team.2 The current consensus regarding

the cause of the accident was not present in the early stages of the investigation, since little experimental data

relevant to the accident conditions was available, and since significant lead times were required to prepare

and conduct the necessary impact experiments.
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Soon after the loss of Columbia an impact analysis team was assembled3 whose purpose was to investigate

analytically the effects of foam impact on components of the Space Shuttle thermal protection system, and

to support the conduct of experiments designed to duplicate the impact events observed during launch

of the vehicle. This group included NASA, industry, national laboratory, and university participation and

employed a variety of numerical methods4 and computer codes5 to simulate the impact events of interest. The

present paper describes simulations performed using a hybrid particle-finite element method6 and a parallel

computer code7 to model the impact of foam blocks on both ceramic tile and reinforced carbon-carbon

(RCC) components of the Space Shuttle thermal protection system. The simulations described here were

performed in advance of the aforementioned experiments and employed the best available material property

data for foam, tile, and RCC. The conclusions suggested by the simulations are in general consistent with the

results of later experiments, although additional material testing, material modeling, and simulation work

is needed to develop a validated computational approach to impact damage assessment for future Space

Shuttle applications.

The sections which follow describe the numerical method used in the simulations, the structural and

material models assumed for the foam projectiles and the ceramic tile or RCC targets, the computational

costs of the simulations, and the results of the numerical study, including suggestions for future research.

NUMERICAL METHOD

In recent research focused on the design of orbital debris shielding, a new numerical method and parallel

computer code have been developed for use in spacecraft design applications. This hybrid numerical method

employs in tandem nondeforming Lagrangian particles and large strain finite element kinematics,8 to simulate

impact problems involving shock loading, large deformation plasticity, and complex fragmentation dynamics.

The method has been implemented in a three dimensional code and validated by comparison with published

experiments at impact velocities ranging from one to eleven kilometers per second.9

The hybrid method combines the general contact-impact modeling capabilities of particle methods with

a true Lagrangian description of strength effects, the latter offered by finite element techniques. It avoids
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the tensile instability problems which have hindered the effective use of some particle techniques, as well as

the mass and energy discard normally associated with Lagrangian finite element models of material failure.

No particle to element mapping is required, since both particles and elements are used throughout the

calculation, but to represent distinct physical effects. The particles model all inertia and all contact-impact

as well as volumetric thermomechanical response in compressed states, while the elements model tension and

elastic-plastic shear. Material failure is represented by the loss of element cohesion, after which particles not

associated with any intact element are free to flow under general contact-impact loads.

In the case of spherical particles, the state space model for the particle-element system8 consists of

evolution equations for the particle translational momenta (p(i)) and center of mass position vectors (c(i))

ṗ(i) = − ∂V

∂c(i)
− f (i) , ċ(i) = m(i)−1 p(i) (1)

augmented by evolution equations for the internal state variables

Ṡ(i) = Ṡ(i)(p(i), c(i), S(i), d(j),D(j),Ep(j)) (2)

ḋ(j) = ḋ(j)(p(i), c(i), S(i), d(j),D(j),Ep(j)) (3)

Ḋ(j) = Ḋ(j)(p(i), c(i), S(i), d(j),D(j),Ep(j)) (4)

Ėp(j) = Ėp(j)(p(i), c(i), S(i), d(j),D(j),Ep(j)) (5)

where f (i) is a damping force, m(i) is a particle mass, S(i) is a particle entropy, d(j) and D(j) are element

shear and normal damage variables, Ep(j) is a plastic strain tensor, i is a particle index, j is an element

index, and V is a thermomechanical potential

V = V (c(i), S(i), d(j),D(j),Ep(j)) (6)

The specific functional forms of the thermomechanical potential and the internal state evolution equations

depend upon the constitutive assumptions as well as the adopted interpolations for the density and displace-

ment fields. The present work investigated for the first time the application of this method to a relatively low

velocity impact regime, in problems which nonetheless involved complex contact-impact, material failure,

and fragmentation phenomena difficult to simulate using structural finite element codes.
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MATERIAL MODELS

The simulations described here employed simple material models for the foam, tile, felt strain isolation

pad (SIP), and RCC, with material properties estimated using the available experimental data. All materials

were assumed to be isotropic elastic-perfectly plastic,10 with an accumulated a plastic strain criterion applied

to initiate element failure. The available material data base may be summarized as follows. In support of

the Columbia accident investigation, Glenn Research Center11 and Sandia National Laboratories (SNL)12

performed mechanical property tests on foam, tile, and reinforced carbon-carbon. Mechanical property

tests previously performed on SIP and on SIP-tile combinations are described by Sawyer13 and Cooper

and Sawyer14 respectively. The relevant thermal properties for polyurethane, tile, SIP, and carbon-carbon

materials are provided by Oertel,15 Banas et al.,16 Myers et al.,17 Ohlhorst et al.,18 and the commercial

literature.19

Table 1 lists estimated properties for the materials of interest. These values were used (except in the case

of the SIP) to perform the simulations described in this paper. The present analysis adopted a yield strength

for the tile corresponding to the lowest experimental measurements of Lu et al.12 In the case of the RCC,

the present analysis assumed a yield strength equal to the bending strength measured by Lu et al.,12 since

the failure mode for the RCC panels was expected to be flexure of the panel surface under the foam impact

load. At the time the present analysis was performed, the data available to the authors on SIP properties

was very limited. As a result the SIP density was underestimated by a factor of 2.3, and the single layer of

SIP elements used in the numerical model was assigned the same stiffness properties as the tile. The effect

of the underestimating the SIP density was to slightly underestimate the target areal density, and in the

present analysis is not considered to be significant. The experiments of Cooper and Sawyer14 suggest that

the stiff SIP elements used here would tend to overestimate the tile damage produced by the foam impact

load.

More general models of the dynamic mechanical deformation and failure of the foam, tile, felt, and

reinforced carbon-carbon materials are needed. The authors and others are currently engaged in work to

develop improved material models, with anisotropy and strain rate dependence significant in some if not all
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of these materials.

TILE IMPACT MODEL

Analysis of launch videos, supplemented by computational fluid dynamics studies, suggested that ceramic

tiles located on the lower surface of Columbia might have been struck by a block of insulating foam shed from

the vehicle’s external tank. A series of experiments was therefore planned to measure the impact damage

produced by highly oblique foam block impacts on tile arrays similar to those covering the lower surface of

the Orbiter wing. Simulations were run in advance of these experiments, to estimate the impact damage.

The simulation parameters are listed in Table 2.

In each simulation the target model was composed of a 2 x 4 foot array of tiles, each tile having an areal

extent of 6 x 6 inches. The uniform tile thickness matched that in the suspected impact areas, over the main

landing gear door and in the nearby wing acreage. In the simulations the tile array was supported by an

aluminum plate, whose lower surface was fixed along a circumferential edge strip, the latter with a width

of one inch. The strain isolation pad (SIP) which separates the tile and the aluminum wing structure was

modeled with a single layer of finite elements, however similar (gap filler) material often interposed between

the individual tiles was not modeled. The foam projectile was modeled as a homogeneous hexahedral block.

The dimensions, obliquity, and orientation of the foam block at impact were varied between simulations,

due to uncertainties in the interpretation of the launch videos, a dependence of the impact obliquity on the

vehicle impact location, and a desire to investigate the effect of projectile orientation (roll angle) on impact

damage.

Computer resource requirements and some limitations of the research code and preprocessor used here

made it necessary to introduce certain geometric approximations. Since available commercial preprocessors

do not generate hybrid particle-finite element models, a special preprocessor was employed. The latter code

generates solid models composed of uniform hexahedra, and associated ellipsoidal particles, so that an element

and particle deletion process was used to introduce the gaps between the tiles. As a result the width of these

gaps was overestimated. Combined with the aforementioned neglect of gap fillers, the assumed geometric
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model approximates conservatively the structural strength of the actual tile array. A second approximation

was introduced in modeling the individual tiles, whose external surfaces are coated in a borosilicate layer, to a

depth approximately five percent of the tile thickness. Computer resource requirements precluded modeling

of features with such small dimensions, so the tiles were taken to be monolithic with material properties

derived from the published strength and stiffness properties of an individual tile.

TILE IMPACT SIMULATIONS

The four tile impact simulations were performed on systems operated by NASA Ames Research Center,

and required between three and five wall clock days on 128 or 192 processors of an SGI Origin. The models

were composed of over one million particles, with the simulations extending over five or six milliseconds of

physical time.

The first two simulations differed only with respect to projectile orientation (roll angle), and modeled the

impact of a 1.06 pound block of foam, at a velocity of 700 feet per second, on a tile array similar to those

which cover the main landing gear doors. Impact obliquity was five degrees. The simulations showed 12.0

cubic inches of material (0.178 tile volumes) eroded by the long edge impact and 19.6 cubic inches of material

(0.290 tile volumes) eroded by the short edge impact. Figures 1 and 2 show the simulation results, including

views of the predicted tile erosion. In both these simulations the maximum predicted depth of penetration

was approximately one half of the tile thickness. Since the short edge impact appeared to be more damaging

under the postulated impact conditions, subsequent simulations (and later experiments) involved foam blocks

rotated so as to strike the tile array along the projectile’s short edge. Experiments which approximately

correspond to these two simulations were later performed by Kerr et al.2 The first experiment produced

three craters with a total volume of approximately 0.1 cubic inches, although much of this damage may have

been caused by the unintended impact of a Mylar burst disc used in the compressed air gun which launched

the projectile. The second experiment produced no impact craters. Since the aforementioned numerical

modeling assumptions minimized both tile strength and tile lateral support while maximizing the stiffness

of the SIP layer, the tile impact damage was overestimated. However the eroded volume error was less than

171



one third of one tile volume, with the damage distributed among several tiles.

The third and fourth simulations considered somewhat more severe impact conditions. The third case

assumed a 2.24 pound projectile and a slightly reduced tile thickness (tile thickness varies with position

over the lower surface of the Orbiter). The result was an increase in eroded material, to 48.2 cubic inches

(0.789 tile volumes) and an increase in the maximum depth of penetration, to three quarters of the tile

thickness. These simulation results are depicted in Figure 3. Finally the fourth case considered a lower

mass projectile (1.53 pounds), but a slightly higher impact velocity (720 fps) and a more direct impact, with

the impact obliquity taken to be thirteen degrees. The tile thickness in the target was increased in order

to represent a wing acreage area away from the main landing gear door. The simulation results, shown in

Figure 4, predicted erosion of 70.6 cubic inches of material (0.785 tile volumes) and a maximum depth of

penetration to the level of the SIP, in one small area. Experiments which approximately correspond to these

two simulations were later performed by Kerr et al.2 The first experiment produced no impact craters. The

second experiment produced four craters, each with an areal extent of less than 1.0 square inches (depth not

provided). It appears that the aforementioned numerical modeling assumptions again caused the tile impact

damage to be overestimated. The eroded volume error was less than one tile volume, with the damage

distributed among multiple tiles.

In summary the pretest simulations predicted in the worst case the removal of less than one tile volume of

ceramic material, under modeling assumptions which conservatively approximated tile strength properties,

the lateral support provided in the tile gap region, and the compliance of the SIP layer. Subsequent testing

showed that none of the impact configurations considered here produced significant damage to the target

tile array.

RCC IMPACT MODEL

As in the case of the underwing tiles, analysis of launch videos and complimentary computational fluid

dynamics work suggested the possibility that Columbia’s wing leading edge was subjected to a highly oblique

foam block impact. A series of experiments on reinforced carbon-carbon panels was therefore planned to
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investigate the effects of such impacts, for panel geometries representative of the leading edge region most

likely involved. Prior to these experiments, two simulations were run to estimate the impact damage. The

simulation parameters are listed in Table 3.

The target model used in the simulations represented the geometry of wing leading edge panel number

six. The limitations of the preprocessor used here again led to certain approximations. A profile for the

model cross section was obtained by fitting coordinate data extracted from a CAD model of the actual

panel, and assuming a constant RCC wall thickness. This cross section was then extended an axial distance

equal to the total panel length, with stiffening ribs added at both ends, similar to those found on the actual

part. The upper and lower edges of the panel were held fixed in the simulations. This target model was

considered to be generally representative of the strength and stiffness of the actual structure. The simulations

assumed that in the RCC elements failure would occur at a plastic strain of 0.01, a relatively brittle failure

criterion. The thin silicon carbide coating present on the actual part was not modeled, again due to the

high computational cost of simulations which resolve very small scale features. As discussed in a preceding

section, the particle-element preprocessor used here produced models composed of uniform hexahedra, so

that the curved surface of the RCC panel model was represented with a stairstep geometry.

The starting conditions for the two simulations differed only with respect to projectile orientation (roll

angle), one objective of the analysis being to determine the relative severity of impact damage caused by edge

and corner impacts. The specified impact point was located a distance of 18.1 inches from the panel edge,

measured along the panel arc, and the impact obliquity (14.6 degrees) was specified as the angle between

the target surface normal at the impact point and the projectile velocity vector, the latter aligned with the

long axis of the foam block. The pitch, roll, and yaw of the projectile were computed so as to match these

specifications.

RCC IMPACT SIMULATIONS

The RCC panel impact simulations were performed on SGI Origin systems at NASA Ames Research

Center, and required between three and four wall clock days on 128 or 256 processors. The models were
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composed of approximately two million particles, with the simulations extending over no more than two

milliseconds of physical time. The simulation results are depicted in Figure 5 (corner impact case) and

Figure 6 (edge impact case). The first simulation modeled a corner impact and resulted in failure of the

panel, with a crack approximately six inches in length developing along the panel surface, normal to the

leading edge stagnation line. The second simulation modeled an edge impact and showed greater panel

damage, in this case multiple cracks, the largest extending along half the length of the panel and aligned

parallel to the stagnation line.

Although the scope of the RCC impact simulation work described here was limited, the results indicate

failure of the panel under the postulated foam impact loads. These results are in general consistent with

later experiments conducted on Space Shuttle wing leading edge panels. Experiments which approximately

correspond to these two simulations were performed by Kerr et al.2 In the first experiment, a corner impact

test conducted on a panel six target at a twenty-one degree obliquity resulted in a crack of length 5.5 inches

located at the panel edge and oriented parallel to the stagnation line. In the second experiment, an edge

impact test conducted on a panel eight target at a twenty-five degree obliquity resulted in gross failure of the

panel surface, producing a 17 inch by 16 inch hole in the panel surface. Comparison of the experiments and

simulations is complicated by differences in target geometry and impact obliquity. Since the experiments

involved higher impact obliquities, they would be expected to produce more damage than is depicted in the

simulations. The first simulation showed a crack similar in size to that observed in the first experiment,

although the predicted location and orientation were not correct. The second simulation showed large cracks

in the panel surface, at an impact obliquity ten degrees less than that which resulted in gross panel failure in

the second experiment. In general the numerical modeling work, which incorporated best case assumptions

with regard to RCC strength and ductility, appears to provide good estimates of panel impact damage.

CONCLUSION

The present paper has described a series of pre-test simulations performed to estimate damage produced

by external foam strikes on thermal protection system components of the Space Shuttle. The simulations
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employed a hybrid particle-finite element technique and a parallel computer code developed for use in space-

craft design applications. The simulation results are in general consistent with experimental results available

for this class of problems, and indicate that the numerical method used here is suitable for application in

a relatively low velocity regime. The application of this numerical technique to future impact problems

would be facilitated by further methods and interface development work, aimed at accommodating complex

structural geometries described by a standard CAD data base or a commercial finite element preprocessor.

Several conclusions specific to the operation of the Space Shuttle and the design of future aerospace planes

are suggested: (1) additional material testing and constitutive modeling research describing the deformation

and failure of thermal protection system materials is needed, (2) numerical methods and code development

work is needed to provide a validated computer simulation capability for impact damage assessment, (3)

additional, higher resolution simulations should be performed, to investigate the effects of any simplifying

assumptions made in the areas of material modeling and structural geometry, and (4) additional impact

testing should be conducted, over a wider range of impact conditions, to validate proposed computational

analysis techniques.

Research in the suggested areas is already in progress. The authors are currently engaged in work which

will allow the hybrid particle-finite element technique used here to model impact on any structural geometry

described by a general hexahedral finite element mesh.
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Table 1. Material properties

Material property Foam Tile SIP RCC

Young’s modulus (psi) 1,360 9,022 220 2.21×106

Shear modulus (psi) 529 3,510 110 1.04×106

Reference density (lb/ft3) 2.15 9.00 12.3 98.6
Yield stress (psi) 42.2 23.9 27.4 14.0×103

Specific heat (Btu/lbm-degree F) 0.454 0.151 0.315 0.171
Thermal expansion coefficient (1/degree F) 0 2.25×10−7 1.00×10−5 7.28×10−7

Plastic failure strain 1.0 1.0 1.0 0.01

Table 2. Parameters of the tile impact simulations

Parameter MLGD 1 MLGD 2 MLGD 3 Wing Acreage

Projectile velocity (fps) 700 700 700 720
Impact obliquity (degrees) 5 5 5 13
Projectile roll (degrees) 90 0 0 0

Projectile cross section (in) 3.5×11.5 3.5×11.5 5.5×11.5 5.5×11.5
Projectile length (in) 21.25 21.25 28.5 19.0
Tile thickness (in) 1.875 1.875 1.700 2.450

Aluminum plate thickness (in) 0.1875 0.1875 0.2689 0.2720
Simulation time (milliseconds) 5.0 5.0 6.0 5.0
Number of particles (millions) 1.10 1.10 1.42 1.48

Number of processors (SGI Origin) 128 128 192 192
Wall clock time (hours) 76.5 90.1 127 102

Table 3. Parameters of the wing leading edge impact simulations

Parameter Corner impact case Edge impact case

Projectile velocity (fps) 775 775
Projectile dimensions (in) 5.5×11.5×22.8 5.5×11.5×22.8

Projectile roll, pitch, yaw (degrees) 0.0, 17.5, 6.32 30.0, 17.5, 6.32
Impact obliquity (degrees) 14.6 14.6

Panel dimensions (in) 20.5×38.4×21.3 20.5×38.4×21.3
Panel thickness (in) 0.25 0.25

Simulation time (milliseconds) 1.635 2.000
Number of particles (millions) 1.90 1.90

Number of processors (SGI Origin) 128 256
Wall clock time (hours) 96 74
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Figure 1. Simulation results for case MLGD 1.
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Figure 2. Simulation results for case MLGD 2.
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Figure 3. Simulation results for case MLGD 3.
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Figure 4. Simulation results for the wing acreage impact case.
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Figure 5. Simulation results for the RCC corner impact case.
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Figure 6. Simulation results for the RCC edge impact case.
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CONCLUSIONS

The design of manned spacecraft for future space exploration missions will require con-

sideration of micrometeoroid and orbital debris impact effects. The debris environment in

low earth orbit presents a significant hazard, and has mandated the development of hy-

pervelocity impact shielding for the International Space Station. Although exposure times

for the Space Shuttle are much less than that for the space station, the shuttle routinely

suffers limited orbital debris impact damage. Hence next generation spacecraft intended to

operate, even for limited periods, in low earth orbit must be designed with the orbital de-

bris impact threat in mind. For operations beyond earth orbit, the principal impact threat

is due to micrometeoroids. Micrometeoroid impacts typically involve lower particle masses

and densities, but higher impact velocities, than those associated with man-made debris in

low earth orbit. As a result, shielding designed for low earth orbit projectiles may not be

optimal to address the significant micrometeoroid hazard. Although considerable previous

work has focused on the hypervelocity impact shielding problem, the development of next

generation spacecraft is likely to require significant new experimental and computational re-

search efforts. There are two principal reasons. The first is that the current knowledge base

is focused heavily on projectiles, shielding, and spacecraft structures composed of metals.

The second is that current experimental methods are not able to address the full impact

velocity and kinetic energy range of interest. Although previous experimental and compu-

tational studies of debris shielding have involved composites, work to date has served to

highlight the increased complexity and cost of experimental and computational impact work

involving advanced materials. The research described here on hypervelocity impact effects

in reinforced carbon-carbon illustrates a design methodology likely to apply in future devel-

opment of manned vehicles for space exploration missions. Coordinated experimental and

computational efforts will likely be required to address orbital debris and micrometeoroid

related design requirements for new space exploration systems.
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APPENDIX 1

Simulation Data for Reinforced Carbon-Carbon

Simulation D v φ Ne Equation Dp Error Dc Error
number (cm) (km/s) (deg) of state (cm) (%) (cm) (%)

200 0.628 7.01 45 8 Mie Gruneisen 2.60 10.3 3.74 15.0
219 8 SESAME 3715 2.65 8.6 3.60 18.2
211 16 Mie Gruneisen 2.66 8.3 4.05 8.0
218 24 Mie Gruneisen 2.67 7.9 4.08 7.3

201 0.478 6.96 30 8 Mie Gruneisen 2.12 3.6 2.95 21.3
220 8 SESAME 3715 1.97 10.5 2.95 21.3
212 16 Mie Gruneisen 2.00 10.0 3.38 9.9
221 24 Mie Gruneisen 2.10 4.5 3.48 7.2

191 0.123 7 30 8 Mie Gruneisen 0.159 na nr na
192 10 8 Mie Gruneisen 0.390 na nr na
193 13 8 Mie Gruneisen 0.536 na nr na

188 0.240 7 30 8 Mie Gruneisen 0.95 na nr na
189 10 8 Mie Gruneisen 1.21 na nr na
190 13 8 Mie Gruneisen 1.54 na nr na

185 0.360 7 30 8 Mie Gruneisen 1.41 na nr na
186 10 8 Mie Gruneisen 1.84 na nr na
187 13 8 Mie Gruneisen 2.22 na nr na

224 0.360 7 30 8 SESAME 3715 1.50 na 2.00 na
223 10 8 SESAME 3715 1.83 na 2.75 na
222 13 8 SESAME 3715 2.33 na 3.17 na

na = not available (no corresponding experiment)

nr = not recorded (accurate coating spall results require Ne = 16)

D = projectile diameter (aluminum sphere)

v = impact velocity; φ = impact obliquity (normal impact is zero degrees)

Ne = number of elements across the target plate

Dp = perforation diameter; Dc = diameter of the spalled coating region
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