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NATTONAL ADVISCRY COMMITTEE FOR AEROMAUTICS

MEMO !
A COMPARISON OF THREE THEORTTICAL METHODS OF CALCULATING
SPAN LOAD DISTRIBUTION ON SWEPT WINGS

By Hicholas H. Van Dorn and Johr DeYoung

SUMMARY

Three methods for calculating spen lozd distributlion, those
developed by V.M. Falkner, Wm. Mutterperl, end J. Welssingst have
been applied to flve swept wings. The angles of sweop rengod fram
~45° to +450, These methods were examined to estcblish their
relative eccuracy and case of application. Experimentally dotermined
loadings were used as s basis for Judging eccuracy. For the
convenionce of the readers the computing forms znd gll informetion
requisite to their application are included in sppendixes.

From the anelysis 1t wag found that the Weissinger mothod
would be bost suited to an over—ell study of the effects of plan
form on the span loading and assoclcted choaractoristice of wings.
The method gave good, but not best, zceurcey and Involved by far
the least compubting effort. The Felkner method gave thoe best
accuracy but ot 2 considoroble exponso In computing effort and
honce appoecred to be most useful for o dotaliled study of o spocific
wing. The Mutterperl mothod offercd no advantages in cccurcey or
Pacllity over elther of tho other methods and hence 1s not recommuended
for usmo.

INTRODUCTION

In an effort to roach higher flight specds, deslgners are
turning to widely divorsifiod types of plan forms the asrodynamic
charecteristics of which are as yolt unknown. Since the multipliciiy
of such doslgns precludos an oxporimenitel Investlgation of occh,
conslderable attention has bcen directod toword moons of obiaining those
charecteristlics theoretically. Usually the basis for such theoretical
Investigations is span loading. While the precise span loading
iteelf mey not be consldered of msjor importance, 1t is bslieved
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that any method giving reasonsbly accurate predictions of span
loading would be amoenable to simple extonsjions which would give
reasonably accurato values of such characteristics as lift-curve
slopec, spanwige conter of progsure position, downwash at arbitrary
locations, dnd rolling moments due to sideslip or rolling.

A number of methods have boen doveloped for predicting the
span loadling of swept wings of arbitrary tapor and aspect ratio,
but very few attomptes have beon mado to compare, for soverel methods,
predicted and exporimentally measured loadings on identical wings.
The investigation reported herein was undertaken to provide such a
comparison of prodicted and measured span loadings. The thoorotical
mothods have been evaluated in terms of rolativo accuracy, mannor
and consistoncy of orror, and tedlousnoss of application.

The mothods developed by V.M. Falkner (reference 1), Wm, Muttorporl

(reference 2), and J. Welssinger (roferonce 3) have been apvlied to

ive wings produced by swoeplng the wing panels of an asirplanc through
a rango of -45% to +45° (vreferencc 4). The span load distributions
80 calculated have been compared with those cbtained cxperlimontally
at the time of the investigation of referonce 4. In addition, tho
lift-curve slopes and aspanwlse centor-of—prossure pogltion prodictod
for cach wing by the soveral methods have bacn cumparod witn thosc
values obtalned cxperimentally.

Throughout the calculations a chock was made of the timo
roquired for oach mothod and for tho verlous parts of cach method.
From thoso obsorvations a comparison was-made of tho relative
todiousnees of oach method, and indications wore obtalnod as to
which parts might be rendered less dlfficult end time consuming.

Finally, in order to enable immediate application of the methods,
all necesssry tables, computation forms, and step-by-step compuite—
tion instructions for sach are included in the eppendixes. It is
believed that with these alds a computing staff could undertaks the
computation of swept-wing charecteristics with llttle edditional
supervision. In addition, for the convenience of the reader, there
are included in the appendixes any mathematical derivations or
developments not lmmedistely obtalnable from the references.
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SYMBOLS
Gensral

S wing area, squere feet

b effectivel wing span, feet

AR effective aspect ratio (b2/s)

8 semispan (b/2), feet

c wing chord, feet

Co root chord, feet

Cav average chord (S/b}, feet

p N tapsr ratio, tip chord divided by root chord {ci/co)

A aweep angle of gquarter-chord line positive for swespback,

degrees
(-4 gocmetric angle of athtack of wing measured from angle fo

zorc 1ift, degrees . '
oy geometric angle of attack of wing root section, degrees

®local local geometric angle of attack, degrees

x longitudinal coordlnets of downwash polint positive
forward, feet

hd latergl coordlngte of downwash polnt positive to
right, feet

1 dimensionless lateral coordinzte of downwash

point (r/e)

1Tn a1l instances except the umswept wing, the actual tip chord was
not parellel to the wind strsam. An effectlve tip chord that
was parellel was therefore asswmmed such thet the wilng area
remained confttant. The effectlve spen is the span to this
effsctive tip.
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longitudinal coordinate of vortex olement positive
forward, feot

latoral coordinate of vortex element positive to
right, feet

dimensionless lateral coordinato of vorteox element (F/s)
chord at spanwise station 7, feet

donslty of air, slugs per cublc foot

ailr—gtream veloclty, feol per second

alr-strean dynamic pressure (%ﬁ?a), pounds per square foot
1ift, pounds

11ft coefficlent (L/qS)

gection 1ift cosfficient

vorticity, feet per second

clrculetion, feet squared per second

spanvlse center of pressures position

differential pressure between upper and lower surfacos
of wing, pounds per sguare foot

statlic pressure, pounds per squarc foot

froe—etroem statlc prossure, pounds por square foot
pressure coefficient{(p—py)/ql

induced vertlcal velocity or downwash, feet per second

downwasll anglo, the ratio of downwash to free—gircam
velocity

spenwlse position In clrcular coordinates (cos*ln
or cos™ %)
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Symbols Pertaining to the Falkner Method

Yv semispan of horsoshoo vortox (s/20), foot

x*! dimonsionless longltudinel coordinato (x/yv)

x* dimonsionleoss longitudinal coordinate of control point
relative to vortex

x! longitudinal coordinate referred to 0.5¢ line, foet

e circular longitudinal coordinate (cos™ 2x'/c)

y*t dimensionless lateral coordinste (y/vv)

7* dimonsionless lateral coordinoto of control polnt relative
to vortex

em,n unknowns in distributlon series
M number of vortices In chordwise direction
v dagignates which of M vortices In chordwise diroction

A,B,C functlions used In development

I“ 283 circulation incroment of vortex in two-dimensional flow,
v,B; feet squarcd por second

Tv,c

Gv,A: ‘

G-‘,: : dimensionless circulation factors (Fy, A/AV;rV’B/BV’;

Gy, g Ty,c/cV) |

Ty total circulation of voritex in two—dimensional flow,
feet squared per second (Fy,a + Ty, + Ty, c)

1 dimensionless lateral coordinete of midpoint of

gpecific vortex (¥/s)

Tv,u circulation of specific vorbtex in three-dimonsionsl
flow, foet squared. per second
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sweep anglo of leading cdge, positivo for sweepbeck,
dogroes
Symbols Pertalning to the Muttorperl Mothod
dimensionloss spen along tho 0.25¢ line (b/co cos A)
dimensionless semispan along the 0.25¢ line (b'/2)

dimensionless coordinate of control point along
line parsllel to 0.25c line (y/co cos A)

dimensionless coordinate of vortex element along
0.250c line (F/co cos A)

perpendicular distance from 0.25¢ lline to control point
divided by co

distance along 0.25¢c line from center section to base
of perpendicular to control point divided by co

AR - ¥!

cog™2 ;'r'/s'

RCIC

ATEGHT

L BT

'BR

Symbols Pertaining to the Weissinger Method
local aspect ratio (b/c)

dimensionless circulation (T(¥)/bV) a continuous
function of ¥



NACA RM No. ATC3L 7

m number of gtations at whick sgpecific circulstion
is to ve debermined and at which downwash is
surmed
M number of stations at which f, ,, and IA(V,n)
is to bs determined
n denotes at which of m points specific circulation
ordinzte occurs
v . denotes st vhich of m points downwash is summed
B denotes &t which of M points £, or F,, or
La{v,us ordinate occurs
ey denotes which of m teorms in Intermolation function
P circnlar coordinate of point n {(na/m+l = cos™ )
v circuls» coordinate of point V (Va/m+l = cos™t 7))
Pu circular coordinate of point u (un/M+l = cos™ 7)
Gp dimensionless clxrculation at spanwise station op
Gy dimenelionless circulation at spanwise station
Pn =Py
Cy chord at spanwles station oy
ary gpecific local aspect ratio (b/cy)
Ta(Vou) influence function

By,n;B*y,n;B¥y;
b b +h*; .

v,nidy, v iP%y,ns R .
b*Vib*V,uiS‘v,ni functionas used in ma.th_ema.uical d_evelr_-pment

&v38y iy vi
t;’T(tYf;K ?

fn,us¥n,n interpolation function used in mathematical solution

BV l/arv
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DESCRIPTION OF WINGS INVESTIGATED

The flve wings to which the methods have been applied are
described in reference 4. Brlefly, they were produced by sweeping
the wing panels from an existing airplane to five angles of sweep.
Each wing then consisted of a center section, the two mein panels,
and the two tlp sections. The alrfoil sections of the root and
tip were generated by dlrect sxtension of the surface of the panels.
The geometric charvacteristics of the wings are as follows:

A » (effggtive) 8
-45.2° |0.376 2.99 335.5 £t2
~29,6° o5 b.45 282.3 £12

.9° .542 L. h7 201.8 72
31.0° Ak 4 .66 5 288.4 £12

L6 4° | .48 3.45 E 309.5 £t2

In alli applications presented herein 1t was assumed that all
section lift-curve slopes were (0.103 per degree, the average value
of this parameter for the scctions st the ende of the unsweplt wing
panel. Actually, the local ssction slope varied from root to tip;
howsver, beceuse of the nature of the sections gonerated by
extending the wing panels, exact valucs of thig function could not
be determined. Corrections to the theoretical methods to account
for such & varistlon were amitted from the computatlons, although
the effects of such an ocmission are discussed later.

The levading on a wing can be seperated into the baslc loading
(that oxisting at zero over—all 1lift) which is a function of twist,
cambor, flap deflection, and plan form; and additional loading,
which 1is a function of plan form and angle of attack, For purposes
of analysie in this report, attention has boon directed solely
towards the additloral loading. The wings experimentelly investlgated

270 agroo with tho definitlon of sweep used In the theoretical
methods of spen loeding prediction, swcep has bcen roforred to
the swoep of tho line joining the guarter—chord polnts at root
and tip. In referonce 4 the swoep was deflnod somewhat
differontly.
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wore essentially devoid of any camber or twist. Any evidence of
bagic loading shown by experimont was romoved from the losding
curves used as a basles of comparison. Thus, for purposes of anslysls,
the wing was roplacod by & flot plate end local engles of attack
become synonymous with over—ell engles of atteck. Tiie chareciteor—
istics of wings having cembor or twist the verlation of which is
froo from discontinulties, howover, could be determined equally
well by any of the methods simply by using the true locel angle
of attack (as meesurcd from the angle of zero 1ift) ot each poind
consldersd. Further discussion of this problem is given in the
appond.ixea.

FROCEDURES

A11 methods described heroin sro extensions of gimplified
wing theory and so arc subject to the seme assumptions. :

l. The fluid is incompressible.
2. The flow is pobontlal.

3. The circulation is such that, afbter Eutte—Joukowskl, the
stegnation point occure at the trailing esdge of the sirfoil.

4., The wing is represcnted by a thin vortex sheet in the chord
plane having = plan form ldenticel to the wing plen form,

5. 411 vertical displacements can be lgnored. Thile nmcans,
for instance, that (a) when camber is introduced, the chordwise
angular verlation is considercd but not the chordwise vertical
displacement; (b) whon sngle of aitack is considered no vertical
chordwise displacements are considored; and (c) the trailing vortox
sheot llss always in the seome horizontal plane as the wing. This
asgumption strictly limite the analysis to uncombered wings at
zorc angle of attack; such linitatlons, however, can bo nmoderately
oxcecdsd.

In roplacing the wing by o vortex sheot, the strongth of the
vorticlty y ot any point is rolated to the differcntial pressurc
Ap ot that point by

[

Ap = oVy
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Tho problom of obtaining the loading, or dlstribution of Ap,
over the wing 1s thus rosolvod into that of obtaining the strength
of vorticity ¥ within the plan form. The control condition which
is enforcod to obtain the distribution of ¥ 1is that no flow can
occur through the vorticity sheet, or in other words, that tho
downwash produced by the vorticliy is proportional to the slope of
the sheet at any point within 1ts limits. The detormination of ¥
would be exact 1f 1ts distribution were considered contlinucus and
if the foregoing condition wero enforced at an infinite numbor of
pointe. Such an exact determination 1s Impractical; consequently,
gimplifying approximotions must be Introduced. The simplifications
generally used arc those cf (1) concentrating or restricting the
continuous vorticity chordwisc and/or spanwise in order to make
the determination of 1ts distribution amenable to mathomatical
treatment; and (2) representing the distribution of vorticlty or
of circulation by a mathematical expression, usually a serios,
containing a finlte number of unknown coefficients where an Infinito
number are genorslly required for oxactness; and (3) limiting the
number of control polnts at which the condition of no flow through
the shoet ls satlisficd. The differences in the vairious mothods
developod for predicting the distribution of vorticity arise,
therofore, from (1) the menner of concentrating or revstricting the
vorticity; (2) tho difforences in tho form of the mathometical
oxpressions used to describe tho vorticity distributions; and
(3) the choice in numbor and locatlon of tho control points and the
procise mathomatical procedure used to obiailn a solution.

The Falknor Method
The wing is firet conesidored as a-continuous sheot of

vorticity whose strongth dlstribution 1s expressed by tho double
sorics:

¥y = &ﬁ—zéiﬁn—ﬁ',/l-ﬂ2 [ cot % (20,0 + Tao,1+T2 20,2+ ++)
+ 8in @ {a1,0 + Mo, + 8z1,e...)
+ sin 26(ez,0 + Tog,1 + ?1'232,2...)
+ aes Bpyp T Mnma] (1)

in which ¥ =% end 6 = cos™? ﬁé
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Evaluation of the unknowns ap s,n 18 performed in the follow—
ing manncr by

1. Concontrating the voriticity both chordwlse and spanwise
into a system of 8k finite horseshoe vortices (fig. 1(z))

2. Expressing the clrculaticn of these vortlces in torms
of the unknowns in equation (1) (appendix A)

3. Suming at a number of control points on the wing the
downwash produced by all the vortices of the subject
system and computed by mecns of ths Blot-Savart law

L, Bquating tho downwash anglo thus determined to the slope
of the plate at those points thereby forming equations
involving the unknown coofficlents

5. Solving these equatlions simulteneously to evaluate the
coofficients &p,n

Substitution of theso valucs in cquation (1) glves the desired
oxpresgion for the load distribution.

The Mutterperl Msthod

Mutterperl considsred only spanwise distributicn of vortlclity.
In such an approach the chordwise distribution of vorticity is
concentrated into the circulastion of a lifting line. (See fig. 1(b).)
The distribution of this circulation along the line 1is then repre—
sented by the Fourler series

0

I' = kaVe, 8in o Z aznt+r 8in (Cntl) @ (2)
n=0

The unknowns to be evalusted to obtain the distribution of T
are the coefficients &gn4+1. The downwash produced at points on
the wing by the 1lifting line and its tralling vortex system can be
expressed in terms of these unknowne by application of the Biot—-SBavart
law to this equation. (Ses appendix B.) Eguebing the expression
for downwash angle to the slopes of the mean camber lines at these
polnte produces a set of equations which contain the unknowns appia;
gimultanecus solution of these equations evaluates the coeffliclents,
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The Welssinger Method

From exbtensions of the Multhop procedures, Welssinger developed
two methods of obtaining span loading, one based on lifting surface
concepts, the other on lifting line. The lifting surface method, however,
apounted to llttle mors than a substitution of the theoretical
edditlcnal chordwise loading, represented by 7 = consbant X V cot %,
for the concentrated load of the Llifting-lline method., According
to Welselnger the surface method proved tc be considorably longer,
and gave results with an accuracy only slightly superior to thoge of
the line method. For this resson, only the latter is described
herein.

As in the Mutterperl methed, the continuous chordwise distri-~
bution of vortlcity is concentrated Into the circulatlion of e
1ifting line. (See figure 1l{c)}.) The distribution of this circula—
tion is then spocifled by

m
Ej gin Ui1@n Sin M1 (3)

2
G(cp)=z—ﬁ—fz o )
Ri=1

=1

The circulation I'(F) is represented nondimensionally as G(9)

in this expresslon and the unknowns to be evalusted are Gp, the
clirculations at specliled locetione along the linc. The downwash
produced at points wlthin the plan foxm by the lifting line and

its tralling vortex system can be coxpressed in teirms of these
unknowns through application of the Biot-Savart law to equation (3).
(See appendix C.) Equating the expressions for downwash angle so
obtained to the slopes of the mean camber lines at these points
»esults In a set of equations with unknovms Gp. Simulisneous
golution of these equations evalunates the unknowns.

EXPERTMENTAL DATA

Pressure data were teken at a tummel speed of 90 miles per
hour which corresponds to a Reynolds number of approximately
9,000,000, Date were teken over an angle~of—attack range —3° to
9Y. Plots of the chordwise dlstribution of pressure coefficient
P =(p-P,)/a at several spenwise stations were drawn and integrated
to obtain the local 1ift at these stations. These valusa of local
Lift were then plotted againet angle of attack, and the resulting
local lift~curve slopes were used to obtain the curvee of the spanwise
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distribution of additionzl load and of additional 1ift coefficient
shovm hereln, The maxlimm error In any local lift-curve slope as
the result of scatter, etc., 1s estimated to be 0.00Z per degreo.
Such en orror would produce a varistion of the distribution curves
of about ome-half to one—third the magnitude of the discrepancy
between the theorstically computed and the experimsentally obtainecd
curves.

RESULTS AND DISCUSSION

Comparable spanwise distributions of the loadlng coefficient
cien/CLcav as calculated by the three methods and as detorminod
from the experimental surveys are prosented In figurs 2. Similar
prosentations of local 1lift coefficient 01/01_', are pressnted in
figure 3., The theoretically predicted values of lift-curve slope
d.CL/dm and spanwise center of pressurs poq:ition for the different
winge are presented in table I. :

From flgures 2 and 3 it 1s spparent that all the theorcticsl
methods tend to predict higher loadings at the center and lower
loadings at the tip than wers measursd. In geneoral, the Falknexr
method errs less in this respect than do the others. Mubterperl
distribution representations for the swepb-back and unswept wings
ars only sllightly less accurate than those of Felknsr. On the
othor hend, for the swept—forward wings the Muttorporl distribu—
tions departed from the experimental disitributions to the extent
that they must be considored unussble. Weissinger distribution
representations were equally accurate for swepbt-back and sweopt—
forward wings. The average accuracy for this mothod was only
slightly lese than that of the Falknor method.

In rogard tc the center of pressure position and l1ift—curve
Blops, the closest preodictions In all instancos were those made by
the Falkner mothod. The Mutterperl method, in tho range in which
its applications may be considorsd usaeblse, was alsc gulte accurate.
The Welssinger method gave good center—of—pressure positlons in all
ingtances and accurate values of lift—curve slopes in all Instances

except for the +h50 swep'b wlng. e Y2 @rect Srewm & el

LPANTE N s
The time studies of tho calculations indicate that the Falkner
method takes from 24 to 32 hours. The greator part of this time,
16 to 20 hours, is consumed in determining the valucs of the down—
wash factor F for the difforont vortices. The major part of the
remainder is needed for the solution of the simulitanccous equetions,
which often prove to be 11l conditioned. The Mutterporl method

HE
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takes from 20 to 28 hours, the greater part of the time being
consumed in the Simpscn rule integration of the factors Fg' to Fgf.
The Welseinger method uslng m =M = 7, +takes only 2% to 3 hours,
in which there is no phase that consumes an outsitanding amount of
tims. YA piinds pn semi-Sean

It has been stated previously that the section lift-curve
slope ¢3 of all sections on all five wings was assumed to- be
0.1030C per degree. The thickness variations from root to tip,
however, indicate that variations in o¢3, probebly exist for each
wing. Unfortunately, the distortioms of the sections resuliing
from the mammer 1n which the wings were constructed preclude an
exactdetermination of what the veristion might be for all but the
unawept wing. For thils reason, the readily appliceble correctlon
to theory (see appendixes) for a variation in c3, was not
included in the computations. While this correction would
account at least in part for the aforementioned discrepanciles
between theoretical and experimental loading distributions, it
should not alter the relative evaluation of the three methods.

In considering the three methods it should be notsd thet two
of them, those of Welssinger and Mutterperl, have identical aero-
dynamic approaches and differ. only in the mathematical procedure.
It would be expected, therefore, if no compromise were made In the
mathematical accuracy (i.e., if a large number cf terms were used
in the seriles)., idsntical resulits would be obtained. Further, if
similar limitetions were Ilmpressed upon the twe methods it might
well be agssumed that results of comparabio accuracy would bs
cbtained. The failure of the Mutterperl method to predict
acceptable loadings on the swepi~forward wings is inexplicable on
these grounds and, as s result, must be attributed to an inconsist-
ency introduced in the mathematicsl development. An additional
aedvantage of the Weilssinger method is that 1t lends itself to the
pretabulation of e number of constents which are applicable to the
solution for any plan form. It 1s because of this that the Weilssinger
method proved less time consuming than that of Muttorperl which
cannot be handled in this mannsr. In general, then, 1t is apparent
that the Welssinger method offers several advanisges over the
Mutterperl method, which, however, stem entirely from the mathematlcal
phase of the solution. Inaofar as the asrocdymamic concepts are
concerned neither method should be expected to be suporior.
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The Falkner mesthod offers a definite aerodynamic advantage in
that the wing 1s represented by a lifting surface rather than a
l1ifting line. From a considoration of only the spanwise distribu—~
tion of loading, the time rcqulred to use the Falkner method appears
axcesslive when the very minor Impiovement in accuracy 1is recognized.
BHowever, if surface loading or chordwlise loading were deslrsd, the
method would undoubtedly show marked supericrity. The relatively
long period of time required to obtaln a solution by this method
ig in grest measure & result of the largs numbser of purely mechanical
functions inherent in the method. It can be expected that such
processses are amsnable to handiing by mechanicel means If gufficient
uge ls to be made of the method to warrant their construction. Ons
such aid of relatively simple form has been applied in other span-—
loading computations using the Falkner method and resulted In cutting
the computing time by 30 percent with no sericus loaa In cccuracy. It
coneisted of constructing a large-scals contour chart of the down-—
wash field around s horssshoe vortex and using this in conjunction
with an appropriately scaled drawing of the wing to resd directly
the downwash at the various control polnts.

A further sdvantage of the Fallmer method over the liftiné—iine
methods can be seen 1n the Incrsased flexlbility resulting fram the
system of finite vorticos which permit application of thismethod to
a varlety of plen forms beyond the scope of the other methods the
lifting line patbtern and control-point posltions of which are
falrly rigidly specified. In this regard, Falkner has successfully
applied the method to a pterodzctyl wing (reference 5) end to a
wing with a parabolic 0.25¢c line (reference 6)}. It should be
remembseresd, however, that should ths plan form be of such a nabure
as to regulre a modification of the vortex lattice, the work
involved will be considerably increased.

CONCIUSIONS

From the resulis of the subject investigation the following
conclusiona have been drawn:

1. Where an over-all study of the offucts of sweep and plan
form on spen loading, lift-eurve slope, etc., is desired and
whore good accuracy is desired for minimum effort, ths Welssingsr
method is most useful.
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2. Where a detailed study of a speciflc wing 1s desired and
utmost accuracy 1s Important even at the oxponse of canslderable
computing effort, the Falkner method should be usad.

3. The Muttorperl method offered no advanteges over the othor
mothods elther in terms of accuracy or Lacility and hence la not
secammendod for use.

Amos Aeronautical Laboratory,
Natlonal Advisory Cormittee for Aeronautics,
Moffett Field, Callif.

Nicholes H., Van Dorn,
Mechanical Engineor.
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TABLE I.— COMPARISON OF THEORETICAL AND EXPERTMENTAL VALUES
Of LIFI-CUERVE SLOPE AWND SPANWISE CENTER OF FRESSURE

Wing parameters

Lift—curve slope dor/de (deg ™)

Mutterperl | Weissinger| Experiment

A | AR ! A\ . Falkner

5.2 12.99! 0.3761 0.0k19 0.04005 | 0,0450 0.0ko2
-29.6 l;.h5i Los5) L0573 LO0b56)0f L0585 .0580
.o (hAT! .sk2| 0633 | 063 | .06ho-|  .0660
31.0 4.66: Lhay 0638+ 0615 .063L . 0668
46 .k 3.&5; L8 L0509+ .0k95 "\:Of.??. ~—r0338
Wing vpasrsmeters Spanwise center of pressure, Men '
A AR A Fallner|{ Mutterperl | Welgsinger| Experiment
~45.2 {2.99] 0.376] 0.398 0.385 0.399 0.401
—29.6 [k.45| .ho5| .ko8 387 403 520
9 th 7 skl ket Lo6 425 h33
31.0 [Lk.66 ] .Bh2} k39 L3k Ao Llh
k6,4 i3.h5 L8 6 -} 438 | Jy2 450

1357,

aryer
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APPENDIX A.— PERTINENT INFORMATION AND COMPUTING PROCEDURES
FOR USE WITH THE FAIRWER METHOD

Solection of the Vortex Patterm

Tho rolative strongth cof the circulation of the vortices in &
network, as expresssd in terms of tho unknowns in the soriss
equation (1), depends upon ths vortex pabttern end tho torms in the
seriea only, not upon wing shape. -Tablaes of such circulatiocns
can bo set up for use with eny spocified patiern. Felkner, on the
basis of his applications, selocted the pattern of 8k vortices
shown in figure 1(a) as suiteble for most winzs. While 1t ia
recognized that other patterns might produce moro accuratoe resulis
in perticuler instences, the advantsges of this regular pattern
in reducing tho computaetional work are groat and hence it was
uged for all applications included herocin.

Limitations of the Serles

The nuinber of +tsrms in oquaticn (1)} required to obtain a good
approximation of the load distribution depends on the rapidity with
which the sories convergoes for cach application. For tho calculation
of symmotricel loading, Falkmor concludod thet a minimum of throe
chordwise and throe spanwiso torma (ninc unknowns) should be uscd
for all swept wings, while & minimum of two spenwise and threc chord—
wise torms (six unknowns) should be used for stralght wings.

It should be roccgnizoed that, @s it is given, this serios
wlll not converge whon attempting to approximate a surface loading
whore discontinuities exist suck as thoso rosulting from partial
span fleps. A slight modification to the scries, howovor, will
enable 1t to gpproximate the loading whoro such a discontinulty
occurs. Fallmer hag dotormined tho necossary modificaticn in his
Investigation of wings with flszps end silercoms defloctosd. (Sce
roforonco T.)

Dotormination of Circulation of Network Vortices

Once the vortex pattern and number of terms in the boslic
serics have been ostoblishod, the clrculation of the vortices as
expressed in torms of the unknowns in equation (1) can be determined
by replacing tho continuous vorticity chordwlse and spanwise of
equation (1} with the concentrated steppod loeding of the lattice.
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The chordwise concentration of the load ls dstermined by the
condition that, at points located midway between the loeds (at
one—quarter, one-half, snd three—quartsr chord), the dcwnwash
produced by the four chordwiss loads I'y be the same as would be
produced by the comtinuous chordwise losding in two~dimensional
Plow, and the limitation that the sum of the isclated loads be
equal to the lntegral of the continuous losd.

Vhen only the first term in the chordwise series of equation
(1) is considered,

b=
—

7=§§Y__étﬂl__Q/l_ﬁ“§ 2_0 ﬁﬂao’n cob (A1)
=

D

or, since only chordwlse loeding ie being concidereéd, all factors
which are not a function of the chordwise variable 6 can be put
into & constant A where

A = 8s ten m«ﬁi—n > (a2)

r

then =0
7 = %l cot % (23)

Then 1t can be shown that if the flow 1s considered two dimensionsal
the downwash angle at any point elomg the chord is

=L
2

o

X
v

and.

n
~
&
n
B
Q
g
no

,_coseae=1€%‘1 (Ak)
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The following four oquations mey theroforc be obtainod:

ya+Taa+ Top+lop=%va (a) 3
&F1,r - 85,4 —‘%PS,A -'%ré,n =n Vi (b) E

\ 45)
%FI,A +'8r2,A "BTS,A %T = VA {(c) i (45
8p, 2 +8poa +8p - 8r -z VA (e.)J
5 L1, 3+ 25d 3,4 4 ,h

vhere equation (a) equates the integral of the conbtinuous loading
toc the sum of the circulations of the separats loads, and cquetions
(v), (c), and (d) equate the downwash at the three pivotal points
a8 prcduced by the continuous loading to that produced by the four
loads of I'y. A aimultaneous sclution of these equations glves the
increments of circulation of the four chordwlse vortices which ore
equivalont to the continuous loading represented by term 1 of
equation (1).

A sinllar solution when

¥ %F- sin & (86}

where
o
= 8s 'bancc. ?1'2 Z Q140 (A-T)
n=
gives the clrculation—-increment distribution which is cquivalent

to the continuous lozding oxpressed by the second chordwlse term
of equation (1), and so forth.
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The circulation of a specific vortex may then be expressed by

Ty =Ty, +Tygelygs ... (88)

be
S
[

= AViGy n, Ty p = BVaGy 5, Ty o = CViG,, ¢

é‘.‘!
I

= AViGy p + BVGy g + CVnGy o ... (49)

The subgtitution into this equation of the values of A, B, etc.,
introduces the spanwise variable 1.

Ty, = BnsV tan o J1-9~ [Gv,A (ao,o + 7 ap,1 + 72 30,2,,,)
+Gv,p (a1,0 + a1,y + T 2a1,2 + ...)

+ Gy, ¢ (aa,o + 7 az,1 + TF ap,2 + cel)

+ ... (410)

Since the clrculation of specific horseshoe vortices is now
being coneldsred, the circulation no longer varies continuously
along the gpan but remains constant throughout the length of the
bounded lines. This is equivalent to the assumption that the
continuous loading is stepped at intervals egual to the length
of the bounded lines of the network verticeas. The continucus
variable T of equation (1) or equation (AlO) is therefore replaced
in a new equation by specific valusg p of 7 which indicate the
midpoints of these lines. Thils new equation which sxpresses the
circulation of any network vortex is then

eEhe valuen of Gv,A Gv,p and Gv,c presented by Falkner in
reference 1 wore found to be in error. Under the direction
of Mr. Arthur Jones these values were recomputed at Ames,
and the values so obtained are presented in table Al.
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- 2
Ty,u = 8rsV tan o/ 1-u [Gv,A (8, + M 8y, + B2 8, o + eoe)
P=4
+ Gy p (al,o tHay . tHRa ot eve)
2
+ Gy g (az,o +pa, . +ua, ,+ cee)

F oeee ] (a21)
or for a symmetrically loadsd wing

Fyu = 8neV tan a¥ 112 [Gy, 8 (ag,0 + B2 do,p + U¥ 8a,q + +0s)

2 a
-+ G'V,B (al,o + IJ- El,a + !J. 8.1,4 L ---)

2 <
-+ G’V:C (8.2’0 + 5.2,2 + i 5-2’4_ + o-o)

+ eeel ) ‘ (a12)

Examination of this equation will show that, as has previously been
indicated, the known parts of the equation u, Gy,a, Gv,B, etc.,

are independent of wing shape. The products of tﬁsse factors

u®/IZ Gv,A, uRSI-2 Gy,B, etc., have been tabulated for use in

any application in which the Sl-—vortex pattern is used. (See table AII.)

Selsection of Control Points

Since one equation 1is formesd at each roint and since there
should be the sams number of equations as there are unknowns, the
total number of points sslected is determined by the total numbsr of
unknowne retained in the series equation. Further, the spanwlise and
chordwise distribution of control points must correspond to the
number of spanwlse and chordwise terms retained in ths series. The
locations of the points chordwise and spanwise are limited to posi-
tions midway between or on the center line of the vorticses. A4slde
fram these limitatlons, the exact choice of location remains a matter
of expsrience. Falkmer found that for a calculation of symmetrical
loading the arrangement presented in figure l(e) resulted in good
accuracy for wings with swsep. This arrangemeni has been ussd in
all the calculations presented hersin.
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Determination of thse Downwash

The downwash produced by a simple horseshos vortex of circula~
tion I’ is expressed by (refsrence 8)

7 mri;;‘v— F (A23)
where
o7 s ) o GRDE
x* (y*+1) x*(y*-1)

The downwash produced by a network vortexr is then from equations (A11) »
(A13), and (All['):

-%-{ = 40 tan le—uz [GV_,A (a0,0 + U 8o, 1 "')
+ Gy 3 (a'l,o tREBy Y wee)
+ Gy,0 (8o, + b 8z, #+e)

4+ «es ] F (a15)
or for a symmetrical wing

¥ =40 tan aw/1-12[ Gy 5 (ag o + B2 8g p + ovt)

<

+GVJB (al’o+ “.2 al,2+ .o.)
2
+G‘v,c (8.2,0"' 'J- 8.2,2"‘ -..)
+ ee.] F (A16)
The coordinates x*, y*, and consequently the factor F can be
deotermined readlly from wing geometry. In this regard, plote of the

function F versus x¥ from O to 20 have been prepared at valusse
of y*¥ =0, 2, bk, 6 ... 4O; however because of their size those
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charts as such have not been included in the repori, but the tabular

data necessary for thelr constructlion are given in table ATIT. In

addition, examination of (Alh) will reveal that if y* 1is constant
F (—x*) = F3 + Fao.— F (x*) (a17)

wheye Fi + Fz 1is a function of y* only

2 2
iy o = —— A18
1+ P2 = omm =y (A18)

For this reason table AIIY contains only positive values of x*,
and the function ¥; + Fz 1s presented in table AIV.

Summatlion of the downwash at eny control point now results in
an expression containing the unknowns &, ., and their mmsrical
coafficients which are products of the tabulated values plt 12,

Gy a, Gy and F. In this regard it should be noted that in
thd" Bummd ions gor a symmetrical (about root chord) wing, the down—

wash factorse F ror symmetrically located vortices may be added
together prior to the mulitiplication of these factoras by the circula-
tions of the vortices, since in this instance ths circulation of sueh
a palr of vortices will be 1ldentical.

‘Solution for Additional Losding

To obtaln ths additionsl losding, the wing is considersd = flat
plate the slope at which any point is tan o = ¥, Substitution of
" this value into the downwash expressions, as eveluated at the
several control points, results in & set of equations with unknowns
am,n. Simultaneous sclution of thsse equations evaluates the -
owns which can then be'introduced into squation (1) to produce
the desired expression for-asdditional loading. :

The following expressions can now be derived readily from
equation (1):

aC;, AR 2

do 16

(1624 ,o+851,o+1¥5-o:2+25- 1;2"'230,4-'*‘&-1,4) (a19)

¢y _ (1) 16 VA-TR [2ag oty o+T2 (28, 48, o)+t (28, .48, , )]

Cn  w [1-{1-MT ] (3beg,t8e,,othe,, 402, , +0a,  +a, )

(220)
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cy cn _ 32417 [2&0.o+&1.o+'ﬂ'2(2&o.2"'&1.2)"'#(2&0#121,& (a21)
C1, cav #(16ac,0+881,0+ka0,2+221 ,2+280 4481 ,4)

.3 [35(2aojo+@;.o)+lh(2ao_g+az 2)+8(2a5 4 +ay g)l 400
Nep 105:t(l6ao’o+8a1’0+1}ao’2+ 2:3.1,2+220,4+a1'4) (a22)

into which the cosfficlents 8m,n> must be substitulted to cobtain
the quantities Indicated. .

Solution for Baslc Loading

The determination of the basic loading on a wing with camber
and twist can be accamplished in several waya. The simplest of these
is to calculate tho total loading, basic plus additionel, at some
finite 1ift cosfficient and then to subtroct from this ths additional
loading as calculated for that 1ift coefficient. A solutlon for the
total loading on a cambered and twisted wing is identical with that
of a flat~plate wing up to the formation of the slmultanecus egquations.
For the flat-plate wing all local geometric angles of atiack were
identical to the wing goometric engle of atteck; in this inetcnce
local geomctrical angles of attack are in addition a functlon of
the camber and twist,

If the midwing sectlion of the wing is choscn as a refercnce cnd
set arbitrarily at some angle oy, theon the local geometrical
angles of attock at the various control points are known exactly;
Lowever, the sngle o of tho reference from the zoro 1ift sngle of
the wing is not known. To obtain a solution undor these circumstonces
the volues tan @locgl @nd ton ag ero substituted for w/¥ ond
ten o, respectively, in the downwash expressions, and o solution far
the coofficlents ap,yn 1s obtalned in which, however, those cooffl-
cients will be In error by the factor tan oftan ag. If these coeffi~
cients and tho factor +tan a are thon introduced inte the oxprossion
for 1ift coefficiont.

= 12 -
cL = Tféﬁ ton a(l6ao, 82 1,gba o #2021 #20, oy ) (423)
the 1ift coofficlont for tho angle of attack o will bo obtained,
since tho ervor introduced by using og will bo negatod by tho corror

in tho coefficients am,n. In other words, the rosult is the somo
as 1f tho correct valuos of apm,n end ten & had been insorted into
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equation (A23). Similarly introduction of tan ag and the incorrect
values of &m,n into the following:

Cy0y = Lrs tan a v/ 1-R [2ag o+a1’04ﬁ2(2a ey 2)+114(2a.o 4+a1,4)]

{a2k)
wlll result in the values of the ordinates of the total loading
curve for tan o Now if a soclution ie effected for the additional
loading, as previously described, and the valus of the lift-curve slope
dCr,/de.  thue obtained from squation (419) is divided into the valde
of Cf obtalned from equation (A23), the correct value of the wing
angle of attack tan o will result. If this value and the cosffi-
olents em,n of the additional loading are then substltuted into
expression (A24), the ordinates of the additional loading curve will
be obtained. Subtraction of these from the ordinates of the total
loading curve will result in the ordinates of the desired basic
loading curve. '

Correction for Ssction Lift-Curve Slope

Through the general dsvelopment of the method all section lift—
curve slopes were assumsd to be the theoretical 2x per radians
(0.1096 per deg). As this assumptlion is not valid for all sections
the final expression for vorticity will be in error unless a correc—
tion is applied. If the section lift-curve slope ls the sams at gll
sections of the wing, the error may be corrected by simply multiply—
ing each coefficient &, n by the ratlio of actuzal section 11ft—
curve slops to theoretical section llft-curve slope. A varying
section lift—curve slope can be accommodated aimost as easily;
however, in this instance the corrsction must be Introduced into
equation (1)} as a function of the spanwise varisble N

Canmputing Instructions

The following instructiones apply to unyawed straight tapered
swept wings without cember or twist.

The coordinastes x*' and y*' vrvelabing all vortices and
control points to the cember ssction leading edge of the wing are
calculated on form A(l) using ths relations
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¥t =20 p

2+t = 20 fu tan &- Ti%%v)ﬁ? [L— (1-2) |u]] (a25)
for the vortices, =nd

y*t =207

x*t = 20 |%| ten A — ’("i%%\)iﬁ [1 - (3-%) |7]] (826)

for the control points. Since the wing is symmetrical x*' will be
the sams for similarly locatsd vortices on each wing half, and the
values of y*' Tfor the left wing will be the sams as thoss for the
right wing, although of opposite sign. For this reason these values
only need be computed for positlive valuss of % or u.

The values of x¥ and y¥* rslating a control point to sach of
the vortices are obtainsd by subtracting the values of x*' and
g+*! of the vortices from those of the control peint, column 9 or 3,
form A(1l) from a value in colum 18 or 12, form A(l), respectively;
x* and y* =are then tabulated on a form A(2), using e separate
faorm for each control point. It should be notod thet since the
coordinates of the vortices at p = 0.6625 are based upon a unit
length y, one-quarter normal size, x* and yg¥ for these
vortices are four times the normelly calculated values. Lzastly, by
virtue of symmetry of plan form, the coordinates can be tabulated
80 that two velues yp* and yp¥ exist for every valuo of x*.

These coordinates are now used to enter cherts of the downwash
function F as prepersd from the values in tablo ATIII. The values
obtained for the vortices at p = 0.9625 should bo multiplied by
four. Becesuss of symmetry of loadlng, Fp and ¥ can be and are
addod together. T

The' simultansous oquations set up in tabuler form in form A(3)
are now obtained asg follows: Considering the first squation or

column 1, tho second number, the numbrical coefficlent of oo,0,
18 obtained by multiplying the values of Fr + Fr, 1n colum 7

fornm A(2) as determinsd for control point 1 by the values listed
under aq ,0 in tablo AII and summing the products. Similerly,
the third’number in column 1, the numoricel coefficisnt of 81,07
is obtainsed by multiplying tha values in column T by the valuoh
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listed under 23,0 in table AIT and surming the product. The process
is repestsd using the values listed under 25,57 89,23 etc., until
the entire eguation is cbtained.

The second eguation, column 2, form A(3), is set up in the same
manner except that the values in form A(2) as determined for a
seccnd control point are used. The procedurs is then repeczted until
the nine required equations are formed.

The constent numbers, row 1 of Form A(3), are obtained as
follows: Ths downwash at control volnt 1 1s

¥ = 40 tan a X colum 1, form A(3)
or
w/vm\} () = colum 1, form A(3)

Equeting % to the slope of the plate, tan a,

L = 0.0250 = column 1, form A(3)

In like mammer the constants for the othsr aquatlions ars slso 0.0250.

The equationg are set up in thls manner to facilitate their
solution by the msthod outlined in reference 9. Of the verious
methods for solving a large number of simulitasnsous equations which
were tried, ths nethod of raferencs 9 was found to be most rapid and
straightforward whare only standardi computing machinss were avallable.
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TABLE AT.~ CHORDWISE FACTORS
PATTERY UTILIZING FOUR CHGRDWISE VORTIGCES

FOR VORTEX

v Cyv,a Gy,B Gy,c
0.125 0.27337 C.049C2 0.€7282
<375 .11680 . 07598 03823
<625 . 06947 .07598 -.03823
875 .04036 . 04902 _=.07282
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TAELE AII.- PRODUCT OF CHORDWISE AKD SFANWISE FACTORS FOR anm,n TO BB
USED WITH THE 84~-VORTEX PATTERW SYMMETRIOAL LOADIRG

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

éﬁ 142 .z-u! u’ﬁ-u! rss‘.é-u5 :’.ﬁ-u’ wh T ptfia® AT
¥, A »B

XGy,p X0y |XGv,a X Qvio [ XGvn X Qvp | X Ov,c

v [ for for for for for for for for

25,0 &0 23,0 2q,2 2,2 3.2 85,4 1,4 2.4

0,125 o] 0.27337 |0.04002 | O,07282 0 o o [+] 5] 0
ol 227200 o OAB7T «07248. 1 00R7L «00049 « 00072 « 00003 [») «00001

2 2268785 «04803 +07T135 | 01072 «00182 «002886 «00044 «00008 «00012
3 26077 + 04676 «0884T | 02348 | 00421 «00628 «00210 « 00038 « 00068
ok «26064 « 01453 «08674 | 04008 « 00719 «01068 « 00642 «00115 «0017L
b «23674 «04246 | 05308 | .05918 «0lo8l «015677 «01479 «00258 «00394
] +21870 203822 «05826 | .O7873 «01412 «02087 «02835 «00508 «00766
o7 16621 «03B0L «05200 | 09665 «01715 « 02548 «04888 +00841 «01249
8 16402 20294) «04369 | 10457 «0l882 «02798 «06729 «01205 +01780
o9 -11916 « 02137 «03174 | .0265% «01731 +0257L «07818 «01402 «02083
«9625 «07417 +01330 «01978 | 08670 «01232 «018350 « 08364 01141 «01895
«376 0 «11680 «07598 «03582% 0 o 0 0 0
ol 11622 «07T560 «035804 | 00116 «00075 «00038 « 00001 «0000% 0
2 ll444 « 07445 «O3748 | 00468 +00298 «00160 «00019 +00012 «00006
3 11142 «07248 +O3E4T f 01005 « 00663 «00328 «C0080 «00069 «000286
ot 10706 «06984 <03504 | 01712 «01114 « 00560 «00274 «00179 «00080
oE «10115 208580 «03311 § .02529 «01645 «00828 « 00632 «00411 «00207
o6 « 09344 +06078 «05058 | 03364 02188 «01101 «0]1211 «00788 « 00586
o7 «08341 «0B426 «02730 | 04087 ~02659 «01338 « 02003 « 01303 «00586

8 «07008 «04569 «02284 | 04486 «02618 «01468 «02871 «01888 +00540

13 +08051 +03312 01888 | 04124 «02685 «01350 «05340 «02173 «01083

« 9626 +03169 «02061 «01037 | 02554 +01509 «00961 «02708 «0176% «00890
«625 4] +06547 «07698 § «.05823 c 0 o [+) 0 [+]
01 206912 «07560 = 03804 «00089 «00076 =s 00038 « 00001 - 00001 s}

2 « 06807 «07445 | -.03748 } 00272 «00288 } =4+00150 «0001L 200012 | =.00008

3 «068827 07248 | =.05647 | »00697 «00663 | -.00328 « 00068 +00068 | =.00029
o4 «06367 «08964 | =.03504& | .01018 «0l114 I =,00580 «00163 «00179 | =+00020
.5 006016 06580 -e 03311 +01504 «0lE45 =.00828 «00376 «00411 ~-« 00207
«6 +05558 «06078 | «.035068 | 02001 +02188 | ~,01201 «00720 «00788 | =-.003588
o7 04961 06426 | =,02730 | 02431 «02669 § =.01338 «01281 «01305 | =.00658
«8 «04168 +04559 | -.02294 | .02668 «02618 | =.01468 «01708 +01868 | =.00940
%) «03028 03312 | =.01666 | +02453 +02683 | =-.01380 201587 «02173 | =.01083
.9525 ¢01885 -02061 -001037 «01748 .01909 -¢00961 «01617 . 01769 -+ 00890
875 0 «04036 204902 § =~.07282 (v} o] [} [+] Q 0
.1 .04018 « 04877 -.01246 .00040 « 00044 - 00072 ) 0 =e 00001
2 03954 «04808 | =+07135 | 00158 «00192 §{ =,00285 00008 «00008 | -,00012
3 «03850 o0468768 | =<06847 | 00347 «00221 | =.00625 «00031 «00038 | =«00066
ol «03699 04493 ! «,06674 | 00582 «00719 | -.01088 «00086 «00115 | =,00171
5 «03495 «04245 | ~.06306 | 00874 «01061 | =,01877 «00218 «00266 | -.00394
«8 005229 .08922 - 05826 -01162 001412 - 02067 00419 «00508 =+ 00755
o7 02882 .05501 -005200 .01412 +01715 -e 02548 «00892 «00841 =,01249
o8 « 02422 «02841 | ~-.04368 | 016560 «01882 1 =.027568 «00992 «01205 | -.01780
8 .01759 .&137 -00317‘ -01‘.25 001751 -.CBS?I -01154 0014& - 02083
9625 «01086 «01330 | =,01l976 { 01014 «01232 | -,01830 «00840 +0114F | ~01655




TABLE AITI.— DOWNWASH FACTOR F IN THE FIELD OF A HORSESHOE VORTEX
[At positivo

valucs of x*¥ only]

o F o+ (2/x) F
yr=0 | y* =2 y*=U 6 8 10 12 14 16 18 20
0[2.00000 |—.66667|-.13333 | ~.0571k |~,03175 |~.02020 |-,01399 | -,01025 |-.00785 |-.00619 |-.00502
.111.90020 |-.62234 —.12976 | ~.05616 |=—,03135 | =—.01.999 |-.01387 | —.01.018 |~.00780 |~.00616 |-.00499
.2{1.80200 |~-.57875| ~.12625 | ~,05519 |-~.03093 |-.01980 |-.01375 | ~.010L1 |~.007T4 |~.00612 |—.00k97
3L, 706hT | ~.53652] —. 12271 | —~, 05421 |-.03053 | —.01959 !—.01364 | ~.01003 [—.00770 [-.00609 |-.00493
JHL,60088 1= 49621) —.11920 | ~,05326 |~,0301L | ~.01938 |--.01352 [ —.00996 |~.00765 |~.00605 [~.00491
5(1.,52788 | -.45819) -.11573 | ~.05226 | ~,02973 | ~.01919 |~.01340 | —.00988 |-—,00760 |-~.00602 |-.00489
6]1.4h603 | —.42269) 11228 | --,05130 | -,0293k4 | —,01897 |—.01329 | ~.0098L |~.00755 [~.00599 |—.00486
LT11.36954 |—.38981| ~.10889 | ~.0503% |~.02893 | ~,01878 |~,01317 | ~.009T4 |{—~.00750 |-.00595 |-,00484
Bl1.2084h -{-~.35957] ~.10555 | ~.04938 |-,0285% | ~.01857 |~.01305 | ~.00967 |~,00745 1-,00592 |-.00481
.9|1.23254 |-.33186) ~.10227 | ~,04843 |~,0281%4 | -.01838 |[~-.01293 | ~.00959 |~,00740 |~.00589 |-.00478
1.0{1,17158 {~.30655{ —.09904 | —. 04750 |—,0277h | —.00817 |~.01282 | —,00952 | ~,00736 1-.0058L4 |—.00476
1.5] .92963 |—.22017| —.08400 | ~,04292 |{~,02581 | ~,01718 |~.0L22% | ~,00915 |~,0071L |~.00568 |~.0046%
2.0 .76393 |~.1h956|-.0T7093 | —.03863 |—.0239% | —,01620 |~,0L167 | —.00880 |—-.00686 |—.00551 |-.00k51,
2.5 .64k |~.11032| —,05986 | ~,03468 |—,02214 | ~.01526 |—.01112 | —.008h4)} |--.00663 |~.00534 {~.00439
3.0| .55849 |~.08398|~,05066 | ~.03107 |~.02045 | —~,0L435 |~,01057 | -,00810 |-.00639 {-.005L7 |—.00427
4 43845 [~.05255) —.03683 | —.02492 |—,01739 | —.0126k |—,00953 | —, 00743 |{~.00593 |~.00485 |-—.00403
6| .305T% |~.02555|~.02100 | —.01632 |=,01255 | —.009T4 |-—.00770 | ~.00620 |~.00508 '-,00423 |-.00357
8! .234h4h |-.01489{~,01318 | —,01112 {-.00918 | —~.00752 |~.00620 | ~,00515 | ~.00%433 |~.00367 |~.0031k
10{ .19012 |~.00969]-,00893 | ~-,00791 |-.,00685 | ~,00587 |~-.00500 | ~,00428 |-,0036 {-.00318 {--,00277
15] ,12889 |—.00438{~.00422 | ~,00397 |~.00368 | —.00335 |=—.00305 |~.002Th |~.00247 !-,00223 |-.00200
20 .09750 |-.00248| -.00243 | ~,00234 |~.00223 | —,00211 |~.00199 | —.00185 {~.00LTL |~.00157 |—.00L48
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TABLE AIII.~ Conecluded.
F
x* |
y* 22 24 26 28 30 32 34 36 38 40

0 =~e00413 | =a00348] =e00296 { ~e 00256 | =4 00222 | ~. 00196 | ~.00173 | ~o 00154 | ~o 00139} ~-.00125
ol | =, 00412 | =, 00346 «+00295| ~.00255{ ~.00221 } -.00195{ -.00172 | -s00154 ) ~,00139| ~-.00125
02 | =400410 | ~s00345| ~.00294 | =400254 | =.00220| ~o00195| ~+00172 | ~,00154| -.001L38 | ~.00124
03 ".00409 "'10034:5 "000293 "'000253 "000219 "000194 "'000171 —-00153 bt 00138 --0012‘1
od | 000407 | ~e00342| ~a00291 | =a00252| =400218| «a00L93 | =4 00171 | =, 001563 ] ~+001L37 | ~.00123
.5 "|00405 "000340 ".00290 "'100251 -.00218 --00192 --00170 "000152 "¢00157 “'.00125
06 ".00405 "'00338 "'000289 --00250 —.00217 e 00192 "000170 “-00152 "‘u00137 "'.00123
o7 | = 0040) | ~400337| -.00288| ~,00249| ~.00217| ~,00191| -.00170| -,001L51} ~,00136 | -.00122
o8] -e 00400 | -, 00336 -«00287 ! ~.00248| ~.00216| -+Q0LO0| ~. 00169 | =,0015) | ~.00L36 | -+ 00122
«9 | =e00398 | = 00334 -4,00286| ~.00247| ~.00215| ~.00190| ~»001.68 | ~a 00150} -,00L36 | -.00122
1e0 | 400396 | ~s00333| -+00285 { =+002468| =+00215{ ~.00190! ~.0QL68 [ -, 00160{ ~.00135 | ~.00L22
le5 | =200387 | =o00325| ~+00279| =~ 00242} ~+00211 | ~,00186| ~.00166 | ~,00148| ~.00134 | -~«00120
2.0 =e00377 | = 00318| ~+00273 | =+ 00237 | 400208 | ~sQ0LB3 | =e 00163 | =4 00L46| ~.00132 | -4 00118
2.5 —.00368 "'000311 "000268 "'000233 "‘l00204 --00180 "".00161 "'.00144 e 00130 "000117
3¢0 | = 00358 | =e00304| =e00263 | ~4+00228{ ~+00200| ~+00177 | ~+00158 | ~+00142 | ~+00128 | ~s 00115
4| 00339 { =+0029)| =o0025L| =200219} =.00193| =.00172 | ~s00153 | ~.00L37| =-.00124 | -.00113
6| =.00305 | ~»00263] ~+00230) ~¢00201| ~s00179| ~aQ0L60| ~s00L43 | ~s00129| =4 00117 | =4 00LO6
81 =+00273 | -a 00237 ~e00209}| ~400186| ~s00185| ~s 00148 | ~200L33 | ~,00121}| -+ 00L10| ~+ 00101
10| ~e00242 | =e00214| ~400190] =400170| =¢00152 | =e00L37 | =400124 | =,00113] =«00L03 | ~+ 00095
15 | =, 00180 | ~a00164| ~+00148| ~400134| ~.00123 | ~. 00113 | =s 00103 | ~e00095| =» 00088 | —« 00081
20| -+00L35 |~400125] ~o00116| ~s00106| ~+00099| =« 00002 | ~40COB6 | »s 00079 | =« 00074 | ~40006Y

TEQLY *ON WY VOV
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TABLE ATIV.~- AUXILIARY FUNCTICN F. + F» FOR DETERMINING
DOWKNWASH FUNCTION F AT NEGATIVE VALUES OF x*

[Flaxd = P, 4+ Fy ~ Plaxx) ] .

¥ F,+ F, y* Fi+ Fg
o 4.0C00 24 -0, COT0
2 ~1.3333 26 -+ 0009
4 -+2 667 28 -«0051
6 ~e1143 30 -, 0044
8 ~+ 0635 32 -+ 0039
10 -, 0404 34 -+ 0035
12 ~.,0280 13 -.02381
14 ~.0205 37 -. 00292
18 ~. 0157 81 -, 00108
18 ~.0124 93 -+ G004 6
20 -.0100 117 -+ 00029
a2 -+ 0083 141 -« 0C020
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APPENDIX B.— PERTINENT INFORMATION AND COMPUTING
PROCEDURES FCR USE WITH THE MUTTERFPERL METHOD

A 1lifting line used to repressent a wing 1s placed in o posi-
tlon corresponding to the gquartor—chord line of the wing. The
distribution of circulation along the lifting line is eXxpressed by
equation (2)}.

No generalization can bs mede as to the number of terms which
nust be retainsd in the serlies to ensure accepiable eccuracy.
Mutterperl impliee thalt four are sufficient ond utilizes thls number
in all applications. It should be notsd that all losdings predicted
by the saries as it stands will be symmotrical. In addition,
equation (2) cannot satiefactorily approximate a curve containing
discontinuities such zoa would bhe produced by flaps or aileroms.
Mutterperl made no commont as to additions or alterstions to the
saries which would ensble circumvention of these limitations. As
a result, whils 1%t is belisved that such modifications could be
included, it is not known to what extent they would lncrease the
complexity of the mothemsticzal evalustion.

Since 1t can be shown that in = theoretlical approsch using a
lifting line at the quarter—chord line, the downwash angle at the
threc—guarter—chord lins most closgly approximetes the true angle
of ettack of the wing, the control points wers placed along this
line. The number of points required is dictatsd by the number of
unknown coefficients retained in equation (3). The location of
those points sponwise’'is epperently arbitrary; howsvser, since
Matterperl plaoced them on the gight wing half at 1 = 0.17k, 0.500,
0.766, 0.9%0 (¥ = 80°, 60°, , 20°), this arrangement has been
followpd in all appl*cations prusented.herein.

Daterminstion of Downwash

The exprossion for downwessh ot a control polnt, =as dstermined
through ths Blot-Savert relation, is
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rt_! ]n AR _ AT, N\
SJ;]_& = 3 (&1‘*’1)&213‘!'1 121’.!."'1 BRI\/W Br. ;/I L+§ L)
n=
N T sin !2n+l!}}; 8! fﬂfgwju
8' cosA sin ¥ B?Jo
—B-i-ta.nAf cos (2n+l)95(9 1 +—B:-—-tan!s.
BR \Br \ )
/2008 (2n+l)°?\ cos ‘P"v +28 )dq’
X [Kzn-l-l - E/LX : .}
\BR F(C+F)

B21, /g

-1 M&w BL( m*")fﬂ/ ._.e_L@J-.).QQ-.Q

A IAL—:V ) tan AN\ P2 cos (2n+1)edp)
+5.1< )f COSQJ-]-BT(}__[' (Bl)

Equation (Bl) may be reduced to a simple expression, centain—
ing only the unknowns 2zon+: and their numerical coefficients
simply by the infroduction of wing gecmetry and the geometry of a
control point. Such a rednction should thersfore be carried out
at each of the points.

Solution for Additional Loading

Since for gush a2 solution the wing is congidered a flet plate,
all geometiric smgles of atback become sin o eand the constant
factors in equation (Bl) become cne. Simultansous solution of
these equations then evaluates the unknowns agp+i, which are
subsequently introduced into squetion {(2) to produce the desired
expression for additicnal loeding.. The unknowns can also be in'bro—
duced into the following expressions derived from equation {2),
obtain the values iIndlceted.
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aCr, _ 2n2hCq _ hy2a,
P Y'Y (22)
€l _ 2(1+0) - o
R S iy p— (a1 sin @ + a3 sin 3p+as sin SQ+er sin TQ)
(B3)
cicn Iy .
CL Cav TMai (e, sin gptaz sin 3p+eg sin S@+a, sin To) (B4)
-k ( Jea __ 85 ar >
02 =35\ Bar T Tan * Tom (25)

Solution for Basgic Loading

As in Falkner, tke basic loading on a twisted and/or cambered
airfoll can hest bs calculated by determining the total end addi-
tional loasding at some finlte 1ift coefflicient and subtracting the
latter from the former. The precedures involved ere parallel to
thoge of the Falkner method as well., An arbitrary engls of attack
g can be selected for the root section of the wing, from which
all local angles of attack can be measured. Substitution of
8in ajocal for w/V and sin ag for sin o« in the expression (Bl)
will result in & set of equations which may be solved simultaneocusly
for the values of the coefficlents agn+;. If a3 and sin og are
are then introduced into the following, the corrsct value of the
1ift coefficlent for the wing at the described attltude o will
result

cr, = ixZay sin o (B6)
1+A

In addition, 1f the values of &azm4+: and eln ag are substituted
into the following, an equatbtion for the crdinates of the curve of
total loading on the wing at o« results.

cicy (a1 sin @taa sin 3p+es sin Sp+ary sin T79) (B7)

- aib
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If the values of coefficients obtained for a solution for the addi-
Tlonal loading are then substituted Into this expressicn, the addi-~
tionel loading at this ccofficient will resuit. Subtrection of the
ordinates of this last from those of the total loading curve will
give those of the desired beslc loading curve.

Correction for cig

As in the mothod of Felinmer, the error introduced into the
solution by the assumption that zll sectlon lift——curve slopes Cle
were 2r cen be readily eliminsted. If the actual c3, doss
not vary ecross the wing, the coefficients agpi should be multi-
plied by the ratio of actual ciy, to 2n. If the actual value does
vary along the span, this ratio should be included in eguation (3)
as a function of the spenwiss varlable .

Computing Imstructions

These instructions apply only to wnyawed wings devold of camber
and/or twist.

If the locel angle of attack 8in a 1s introducsd into
expressicn {Bl) in place of the downwash ratio W/V, this expres—
sion can bo written

Z (en+l)azn+y (;.:1+F2 F Ty 1T, F, '+FsFy 14 Fg 147, P 14FgFg ') (B8)

=0
where

- Fs ()7 _sR _ A, )
2n+l \BRoAPRSBER  BL APL*BAL

Fp = —L — gin (2n7l (B9)
g! cos A sin ¥
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Computing form B(1) is used to calculate all factors which remain
constant throughout the summations for any one comtrol polnt: &g,

BRr, AL, B, 8!, C, Fg, ¥y, Fx, Fg, F;, Fg. The compubation form

for those factors, which vary with n only throughout the surmations
for any one control point, is presented in form B(2). Computing form
B(3) is used to apply Simpson's rule to the integration of Fa!, ®. 1,
Fgt, Fg!', F;! end Fe!. The factor Kgpni:, which is independent of.
wing shape and so can be applied to all winge, was calculated from the
relation

Konsa 7@3{ _cos(2n4l) dp (B10)
(o]

cos ¢ — cos ¥

and is presented in the following table:

Control | I

point i Kzn+1

1 2.54928
8.26392
8.87752
6.10976
2.47976
i .586kh0

~1.909kh

-1 .63656
2.33120 |
0.k7920

—3.47696
3.39775
2.00112

-1.92340
1.38068

~0.53112 ;

——

——

WMOHOWNRFROWNPDHOWMPE O

The results of the integratiom are presented in form B(3).
Form B(4) is the form in which the components F are multiplied
together and the results are swmmed producing four equations,
one for each control point. Lastly, the foxm for the simultaneous
solution of these equations (reference 9) and the resulting values
of the unknowns are presented in form B(5).
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A= ~L5'.l§' tanAs ~4207° stn AF ~7095T cosAr . 20763 sin2 A~ 511798 cosp N =—,00628
A= 376 (- A= .62¢ AR 239 s’ %—é—:—}% = Y6039
| 1213 1415|6178 |9[10111112113[14]15/16]17]18
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( 2 : NATIONAL ADVISORY
) COMMITTEE FOR AERONAUTICS

Form B+— COMPUTING FORM FOR MUTTERPERL'S METHOD
(Underscored numbers are sample calculations )
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Control Point— |
Ap=122609 Bgo=.19566 A,=.37/0 B, =- L2294 n= 2Y0 {{;ﬁ—/oovf C= 1-4/933

1213145167189 1011111211314 ]((5]6[17][18][19
@

! (¢ ’
n| & | éjf,]_%(%: NI ST R T, ec| T i“’—;f e XV (% @ é—:;—’)
#(z)1 5 +2 s’

o O |Looooo|/oogco|.leose|tcoas?| L prror) 22094 . 5277 2€08T}9.3/344 LA SRR 30 €2 e 472 Logs w
zz5

45.0
675

15
45

&0
115

21
36
45
&3
72
gl

6,43
1929
5.7
3214

4500
5143
57.86
7071

7714
83.57

(3
NATIONAL ADVISORY
Form B~ CoNTINUED COMMITTEE FOR AERONAUTICS
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2
3
2 10
/
2
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3 o /____L.-—-"" ]
/ B s
2 = —
(4)
E.Q_ucxtlon 1121314 a,
constant| L} ¢ | 1 | 1 et
O o ozl
(23] 3 52008 ANIF3d ‘
Qg [aZ-l 5,
Q7  |72330% ﬁ
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APPENDIX C.~ DEVELOPMENT AND COMPUTIING PROCEDURES
FOR USE WITHE THE WEISSTINGER MEIHOD

In the Geymen reports avallable, which described this method,
the methematical development was not complete. It was thought
advisable therefore to include the development in thes present paper.

From 1ifting—line theory the squation of downwash at the one~—
guarter chord Iine of a straight wing is giveéen by

.L b/zf.‘.(fl a7 (c1)

= [z ¥F
This Integrel equation is egolved by Multhopp by an integratlon

formula (refersnce 10).

The equaticn of downwash at any point xy of a stralght wing
is given by .

iy = ..l-.. b/2 (l + Am-] I‘l(—) a7 (c2)

[z 7T}

Welssenger dlvides this integral into two integrals, one of which
is the same as equation {Cl} which he solves by Multhopp's method;
and. the other which he solves by a method analagous to that of
Multhopp.

The mathematical development isas follows:

With G = T/bY, 1 = 2y/b, T = 2F/b, ar = b/e,

and setting X equal to the dlstance to the three—quarter chord lins
x = cn/2, the equation (C2) becomes

V _L :’ _ﬂ%'?f Ll -l-,/l +(ar)‘(n—4n)2] G (M)d7
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. .
v = %;_[j G—'%%@ + %’%_/: I [ar(n)] GMaR
where
Ipeo [ax(n)] = e ()= =
or

(c3)

(ck)

.\/’l-i-s.rvz(cos @y — cos @) ~1

Lpa=0 (v,u) = L{ar(cos ¢y — cos gu}] =

ary(cos @, — cos qu)

The first integral of equation (C3) can be written as a function

of . :
ac()
1 [te@ aﬁ':_l_f“ dp_ °¥
2% 1 T 2% o coa ¢ —~ cos Qy
whore

cos @y =cos;—'13_:—i-=-2-bl=n

An integration formula gives

[* e(maq = L % £(Mn) sin on

I, m+1 né.'L

vhere Qn = 5%_75, £(Tn) 1is the value of f£(7) at Tn.

(c5)

(cé)
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Equation {C6) holds exactly if f£{(T) can be represented by -

2w~} 2m
8 = S ) Y- E av sin v
V=0 v=1

or, in additlon,

£lo) = E%J-_' f("f-ln) i ein g1y sin #1®
n=1 [.Ll=l T
Letting G(9) = £(o)
then
: m -om
(o) = E%I EGn Zsin Ri%, sin pa@
n=1 Hy=1l

m m
¢ | 2 z Gy Z iEY sin u;_q:nx cos Hi@

and the integral in equation (C5) becames .

sin L3Pn ©OS HMaQ 4
m+l i an 5- cog @ ~ cos Py P

n=1 pa=l

Now

/"‘ cos ng ap = £.8i0 190,
~O

cos @ — cos Qg sin @,

o

m
7 d
OB Pa® o = o sin pi®y H1®y
! Z (1 Sinll:.QDn)(osq)_cos va> @ = Z

sin @y

pi=1 Bi=l

(c7)

(c8)

gin
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so that equation (C5) becames

m

@._) @x )i Gy S p3 sin Bafp sin piov
s +1 gin Oy

" m=1

Ma=1

n __

1 L Z Hi sin pion sin pioy

= i S c

m+l ZJGn S . 8in ¢y (c9)
n=>L Hy=l

The u3 séries is Independent of wing geometry and may be put into
a coefficient useble for all wings.

From equatlon (C9), for »n=v, let

m
,v= (m+1) i—inCPv Z HasIn® iy (020)
Ha=l
end for n £V, let
m
By, o= (m+l)—i_in ~ Z pisin UiPn 8in paiQy (c11)
pr=l
Then equation (C5) becomes
i 1
by, Gy - Z b,n Gn (c12)
n=l

(Note: The summation prime indicates that the term of n = v
should not be included.)

Expression {Cl2) gives the  induced angle of attack on the one—
guaber—chord line, at the span station v, in terms of the summation
of n 8panwige values of the dimensionless circulation.
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L

Equations (C1Q) and (Cll) mey be simp]i:ied with the aid of

the summation formula

: N\

T Hi CO8 H1X = rezl parst of(z pyetti®

L, N

Hy= =1
- ncoa(milx -- (mildlcos mx + 1
2(cos zx1)
or
b = ditl
VsV T L sin ov
by g = sin on [ 1—(=2)=V ]
] (cos @y — cos gy)2 2(m+1)

The second intsgral of the intogrel squation (G3) o

i/_‘l’“ TA(V,u)G (F)dT,

is solved .in an snalogous fashiom.

The integration formuls gives

\/c:f(o)d(p hzl{:f(‘:l’o);f(ﬂiﬂ) i f(%):l
b=

where

(c13)

(c1k)

(c15)

(c16)
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Dimensioniess circulation is given by

m bor
(o) = —B— 2—' Gp V sin Li1Q, sin p1@
m+1 £
n=l =1
or
%ﬂ_ 1
Gt(o) = m%l- Z_-Gn i pisin M1 ©, cos K@
n=1 U.J_=l
Tetting
P = — en
() — ZJ pisin ulmn_cos u1¢. (cait)
Hi=1l
then

G' () = ji Gn fnlo)

n=1
Expression (Cl5) may be modiried so that

1 [ty et (m)ag = — = [T (v, 16 (@)a
o [ Balvsw) GHMET = — 5 AV, G (9)a

~ g;[‘ [LA(V;U)Gn fn(fp):l ap

/‘l

i ~"la

n=

. 1
Then applying equation (C16), %= . La(v,u) GH(Maq

m et B M
f1 L
.1 n g dlLA(v,0) M, o) IACV.Ms1) UE peas) }
2n M+l On L T o 2 + Z LA(V;U-)fn,U-
= “51
- = [ [LA(v,0) Men, o) +ILACvee1) 1(En 3 ) LACY L) }
). on i : I St

=1 p=1
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For simplicity let fp , = f (cpp) where f (cpu) is from
equation (C17) for ¢ = ¢h un/M+1
" ThHen if
v = - s {[LA(V 0] (En, ) UIAC000) ) (i) i LAFV,u)fn’u}
i (c18)
‘expression (c15) becomes
. m
. Z Cny,n (c19)
n=1 :

The solution of equation (C3) is two times equation (Cl2) plus
ary times equation (C13) or . -

$'= (jtm vGy -~ ji: by, n Gn:) s;.arv gv,n Gy
- n=1 nrl
1 o m e
=2Dbyy Gy teary gy G + /. & 8un Gp—2 Tbv,nGn
. - o Lo
n=1 = n=;
so that
_ B,
¥= (bv,v + avy gu,v) Gy - Z (2by ,n~ axy 8y,n) Gn
.m=l
or
1
I = bry Gy - ? b¥*y.n Gn (c=0)

n=1
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where

b*v = ebp’v + ary gv,v
{ce1)

b¥y,n = Sbyn— 8ry 8y,n

The prime on the summeition indlcates that the term of mn = v
should not be added into it. '

Equating the downwash to the local angle of attack of the plate,

m

ay = b¥y Gy —Z b*y,n Gn (c22)
A=

For a swopt wing the equation of downwash at any chordwise
point for ¥ _>_0 is given by

_ 1 bkrf(z) x — |¥] tan A _
T [z ¥F [ b S (x = [7| ten A+ (v5)° J fl.'f
x °© - X — v tan A ¥
¥ Ex _[—b/z oy [(x = [F] tan AP+ (3-5)2]13/2 =
b/z X — ¥y ban A aF (c23)

l o
Y T
" P G T A5

The first integral 1ls the downwash dus to the trailing vortex
sheot and the last two Integrals reprosent the veloclty induced
by the 1ifting line. By integrating the last two integrals by
parts and rearranging into dimensioniess quantities, the preceding
intograls moy be put in a form simllar to eguation (c3).

1 . 1

(Note that in tho following equation (C25) the squeres under the sccond
radical of L,(n,7) for [ <0 are sumod. In reforence 3 thesec

wore erroneously shown asg a.'iifference.)



where for T<O

Ly(n,7) = 1 Ml+ar te.rLA (n=l51)12(ar) 2(-T) 2 _ } 2_ten Ay/[1+n(ar) tan A% + (op)2n2 |

ar(n=q) L 1+ 2y (ar) tan A 1+ 2y (ar) tan A

and for 7 >0

tp(no) = A+ ar tan A (rlrD % () 2(neq)® =
ar (n-1)

Equation (C24) with ILa(n,7) ae given by equation (C25) is for y>0 and will give
values for only the popitive span sbtatione. For valuss with y<0, expressions similar to
equations (C23) and (C25) must be derived. Values of ILa(n,T) “are needed for y<O0 if an
uncymmetrical wing is to analyzod.

Equa.tion (C25) with n=cos ¢, and 7 =cos qy, end ar ot spon station v as ary
for cos @y >0 becomes, for cos qu <0,

Top( V1) = 1 J;[[l+arv tan A (coa @y — [cos @u]) 1%+ (ary)®(cos oy ~ cos ¢,)%
AT ary (cos gy — cos cp,J L 1-2 ary cos Qy tan A

.2 ten«/ [1+ar, tanJA cos yl2 + (ary)? coo® @y
l+2 (arv cos @y ban ‘A

and for cos q. >0

LA(v,1) = W [1tery tan (cos Py — |cos cm] 2 + (ary)=(cos oy — cos Q)° ~L
ary (coo Py - cos ou)

L(c25)

h

)

TEOLY *CON ¥ VOV

&(026)

%
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Equations for determining Gy at spanwise points of

%f = cos Z_ for any wing may therefore be determined from

m+1
equation (C20).

Summarizing the computations, the relation equating downwash

to the local slope of the plate at m points along the span giving
m equations with m unknowns, Gﬂ is

t
ay = by G—v-—ib*v’n GpV =132, ...n

n=1l
where

oy = angle of attack at span station V

b/e T ml

b¥y = Zby,y + ary gv,v
" _
b=.\,’n = va,n ary 8y,n

b = Dl
YoV o ) gin ?,,

- sin P I-“‘"‘! !n—'\}
{cos Qn—cos‘Qxﬂz[-2(m+l) }

bv,n

gv,v = gv,n for n=v
M

- e— 1 LA(V,O)(f . ) + LA,QY:M"']-)
T 7 o(mel) [ 2 02 ' * Z Zalv,m) fn’“]

p=l

b - wilng spepn
cy chord at span station V

5

Ta(v,n), for a straight wing, see equation (Ck).

La(v,n), for a swept wing, see equation (ce6).
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fn,p = Hi—l . Hi 8in My Qp €08 By @
ri=1 '

where again

- 3

o = 2

% = GT

The computations required in the preceding group of equatlions
may be simplified if such values ss8 by,y by for various nle,
and fp,u for various m's end }'s are favulated. Then a eolution
for any wing conslists of a substitution of wing geometry into the
La(v,n) function, equation (Ch) or equation (€26}, and a combination
of the tabuleted coefficients to obtain m simultansous eguations
with m unknowns Gp.

The computaticns for a symmetrically loaded wing may be still,
further reduced by an alterstion to the preceding eguaiticns and
cosfficients, For e symmetrical wing with or without camber end
twist, the distribution of local angle of attack is symmetiricel
agbout the center of the wing or

ﬂ’.:‘.a_%.;:i = ay
then
Gy = Um-1—V
Gy = Gpsr-v
and
V gees from 1 to 91—;]—'

n goes from 1 tom

it gees from 1 to M
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The summation terms can be written such that n from 1 tom
becomes n + m+l-n fram L to Bl and u fram 1 to M beccmes

B o+ M+l-pu from 1 to M’—él (For the cases n = 1—'%‘—3'- end B = I—“—;-]--

the coefficienis are expressed as thelr former velues as will be
seen directly.)

Now if eguation (C20)} is expressed as

ul
]
ay = (b¥y,, + DXy Myaqp) Gu— Z (b%y,n + D%y mian) Gy
n=1
vhere
n # DL
2
M+l
b =
v = 1,2, ol
2
Then
mEd
2
o, = B¥y Gy — B* n Gp (c28)
n=1
where
B*v:b%,u"'b*\},M.i.l_u v=l,2.-c%;,u#%3;
{c29)
B¥y,n = b n + bRypag ¥ = 1,2 . . . m:éi, n # ‘-“;—l
Thene coefficlents may also be expressed as
BY = Tby,y + 81y gy,v 1
. (c30)

B¥wm = 2Bvyn — 8%y &y)n



-+
whore By, 18 limited in that By o =Dy o +bymap for nf WL B = b, o forne B
To find By,n. conslder the expression for gy,n
1 [Lp(v,0)1(80,0) + [TA(V,M+1) J(£ Msa) + Z I )
- v,Mel) F
®n =" Sel) 2 A(VML) Lo,y
p=l

The summation term of &y, can be wrltten for n # m-'el'l
Ml
2
f‘ La(V,udtn,p = Xﬂ RONGINTRE ST NG et L SN VRN N QT L MPRTC o QU 1o ST L S VPPN
Lo Lo

U=l H=L

"'[ I'A(V-‘M?’_i)fn,mgl_'* LA(VM%l)me—n,Mg-;- ]

for n= mtl
ML
i Ia(v,u) £y = S'rlz.z\(v,u)iz'n,pL + TV ML) Py paal+ [M(v,Mgl) fn,Mg;-%] (c31)
[T (1=i

TEOLY "ON I VOVN

ag
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where as before
(c32)

o)
o

fa,p = ﬁ%_- ) wi sin py B8 cos uy By
-

Bai=1
examination of equation (C32) will indicate that for n = m—,:-L

II:LA CvM-;-L fn,M:ELA] =0

for n#mgl

/ . - ~, i
LAK"’:L%l fn,&;’i + LA(”:L%]‘) fm+1—-n,l\%9=

have values only for even pi, but for evem i, fp,p = — Tm+1n,u

g0 that these terms egual zero.

Then equation (C31) becomes, for n # n—};':,
M1
%‘L ; -
/_)_J La(v,u) fq,p = 2 [En,u + fmeden,u) IA(V,.».LL)
w=1 p=1

+ (fn,M+1—p. + fm+3_—n,M+:l.—u.) LA(V,M+1-{.L)]

and for n = m%-_l’

" M1

M 3 . o _
- f [(Fa,u) Ia(v,n) + (fn,meiqe) Ta(V,Me2)] (C33)
=1

2‘1 LA(V:U) fn,u =
u= i

Further examination of equation (C32) will show that for only the
odd Wi )

fn,u = — fn,m+1-~p



However, the second swmation in equation (C33) has n = %“lt in which Iinstance the even pa
terms in equation (C32) vanigh, thus the second summation becomos

Ml 2
5 B
z g2, [Ta(v,n) = Ta(v,Medn)] &
Wl | g
Tho first swmation in oguation (C33) has torme of £\ = — iy 0 end £ Mpgeq = ~ Ty i
for even py or the coofficients of Ipn(V,u) aond In(v ,M+i-}-,:u) venigh Por oven ’l.l.l._u n -»n,M+1-p.a]
In addition fpp+fmyra,p =~ fn,M+1—-p.+fm+J.—n,M+1-—p for odd Hi1 or tho summation is e
M-l
2
Z (fn,p+m+1-—n,u) [Ta(vop) ~ Lpo(v, M)
p=1
vhere fy yifjiay ) 18 Obtalned from (C32) for the odd terms of uj.
Lastly,
(fn‘,O)LA(VI,D)+(fn,M+l)LA(VJM+l)= (fn,o""fm-l-l—n,o)LA(V:C)'l'(fn,M+1+fm+l—n,M+l)LA(V,M+l) for 1 131-%:
2 2 2
_ (Enofmiag o) [LACY,0)-La(V,M+1) ] for n = Bk
2 . 2
where fn,o"‘fm+l—n,o is token for only odd pji. And, for even By fn,o = fy+ixn,0. So that
a factor f, may be expressod as
+ .
fn,p, = fp,p forn = mzl and 0dd ) M

-f_n,u = fn;u+fm+1;-n,p for n # m—;l and odd 13



= 4T, .
Fou = fn,offpsrnio pon g 4 B_ﬂ'g_l’ =0 and odd uj

Fou = fﬂ-é-"- for n = Iﬂgl, =0 and. odd p

gnd. M=l
2
&v,n = ﬁ'ﬁ Zﬁn’“ [LA(v,g) — LA(V,Mil-u)] (c3k)
=0

Exemining squation (C32)

£ ~gin g -RI

n,H m+l

l-—n)n nx nx nwn
f sin W, -(m—.l-——L = ain - E’J—...) = gsi T cos panx sl Rani co T
m+1-n,u v B2 L i il Py, T+l n Y S K

or wvhen 3 1is odd,

. nit
fm+1-n,p ~ 8in EEJFI
Thus
fn:“' = %r.ﬂ.—n,p.
Thon, as beflore M=

8,n = ;J' i fr,p [Ta(v,0) — TA(V,M+1-p)]

TEDLY “oN WM VOVN
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whers finally

fa,u = fp,u for n = Eiafi and odd pi )
fn,u = 2fp,p for n 94 m;_l and odd i x ( )
- C35
Fou = fnp forn f B 4 =0, and odd by
= £
Po,u = =3 forn = m;l’ )
and
m-
£ = sir DL cog BX_
R T o Z Hasinby o OO% ML T
1=1 '

A further simplification to gy,n cen also be effected. From
the binomial theorem:

R e R B
SRR IR TORENC IR
for a>b (C36}
and

=a[§+%<ﬁ;>‘%@;’)s 16\‘373) ';‘ +]

for a<h " (e37)

Now letting

T(t) = «/@__i_-z-gﬁ
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then for + = g-

T(t) =1+ g tR ~Ft* +- 15 — Dt for t<l
or
-t +L1(1 s LY 1
T(t) =+ ( ) 8\1-, MY (t,) 128 ( ) for t>1
(c38)
Equation (C34) may be written
M=l
z
B, = LT Tr,u A0 (v,n) (c39)
=0
wherse
ATA(v,u) = Ialv,u) — Tav,M+1-u) (cko)
This can also be written
ALp(v,u) = Ip(n,T) — Ip(n,~7) (ch1)
so that from equation (C25)
ATAGY, ) = J1+ary (=) tan A 1% [ary(n=7)1°
ary (n-7)
_ 1 ¥ _[1+ary (1) ten A 1%+ [ar, (n+1)]123
1+2aryn tan A axy (n+7)
2 tan A
T I+2aryn ten A o [1tarvy 'banA] + [aryn ]°
- (ck2)

ary(n2=T72)
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Then

ATp(v,u) = T(ty)— W[T(tz) + T(ts) ten A]

~ T(tg) ten A- E.z;?,,_ '(;1-2_2?"1“_',: (ck3)

vwhere

t: = ‘————l—-:;-— + t.a.nA‘
ary (n-7)

1 e
+ 3 tan A
ary () T l

tg = ary 1 .
l+apy 1 tan A

te =

and T(ty) tekes the sign of (n~T)
T(ts) takes the sign of ta

Seversel of the Punctlions of equeticn (Chk3) are independent of wing
paremeters and may be tabulsted for varicus 1 and 7.

,
Let By =-a%;’ K1=——7]l—-q, KE:;ﬁ—" K‘3=%:
= = =%

Ks n=wmz’ Ks T

where, as before,

= M. H= B
n =008 -T= 0 cos T
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Then
ALp(v,p) = B(t1) = gogt—— [ T(t2) + T(ta) tan A]
Bv K3
— T(tg) tan A~ By K, (chh)

where |

t1 = |Bv Ky + tan A

ta = |By Ko + K5 ten Al

tg = L

By Kg + tan A

and.

T(ty) takes the sign of Xj
T(ty) tekes the sign of tg4

In sumsary, Tor the symmetricelly loaded wing,

m+l
2
ay =B*va—$‘B*u,nG—n,V=l,2...%—L
p—
m=1
B*V = Ebv’v + ary -g_v"v

B*v,n = E'Bv,n = ary &y,n

{bv’n + bv,m+1.—n forn ¥ m%l

Bv,n = bv,n forn = m%-]-"-
S . -
bv,v b sin @y
. ~ sin @p (=)™
Vst T (cos @ — cos Q)2 [} 2wl _j
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€y.n 18 taken from equation (C39); ALa(V,u) is teken from
(Cﬁh) and £, is from eguation (C35).

Limitation of the Seriles

The number of coefficients Gp vrequired for accuracy depends
upon how repidly the series equation (3) converges. Weissinger
used m equal to 7, 15, and 31 in his investigation and ccncluded
thet the resulits obtained with m egual to T were nearly as
accurate ag those with m equal to 15 or 31. For this reason m
equal to T, or fowr coefliclents have been used in ell of the applica—
tione of this method presented herein  The number of terms reguired
in the Interpolation function £, , must also be established. Again
Weissinger used M equal to 7, 15, and 31 and found that rasults
with M equal to 7 proved as satlsfactory as those with M equal
to 15 or 31. ZLastly, it should be noted that equation (3) cannot
satisfactorily approximate a curve containing discontinulties;
however, a modification which will enable it to do so has been
develcped by Multhopp (reference 10}.

Solution feor Additlional Loadipg

Since in a solution for additional loading the wing is
considered a flat plate and all angles of attack ay are equal %o a,
equation (C28) may be modified to

mil
1 = By, %—’ - i By ,n %} (cks5)

n=1 )
Evaluation of this squation at the severel stations y produces &
set of equations containing the unknowm circulations Gn vwhich can

then be solved simultansously to obtain the values of these
circulations.

Substitution of the values so obtained into the followlng
oxpresslons, resulis in the values indicsted:

m+l

= = i%‘m% (c46)
=1
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or for a symmstric wing,

CGpia
acy,
- (R ) ) @
n=1
ey Gy 1
i S o —_— —
o S TRy £ P (ck8)
City DAR Gy _ 1 _ - (ck9)
Cilev o 4CTfde
and from reference 11l for m = 7
= _ 0.3524G; + 0.503Go + 0.34kGs + 0.0k05G (c50)

P " (.3827Gy + 0.7071Gz + 0.9239Gs + 0.500G4

Solution for Bssic Loading

The basic loading on a wing with cember and/or twist can be
determined in a manner exactly parallsl to those of Falkner and
Mutterperl. An arbltrary angle og 18 selected for the root sectinn
and the values «ipcals; neasured from 1t., If these values are then
substituted in equetion (C28), =nd if the resulting equations are
solved simultanecusly, velues of Gp will be obtalned, which when

ingerted into the following expression will give the correct 1ilt
coefficient for the wing at this attituds.

n_}:l
o = MR <c‘_gi._ +EZ Gn sin @ (c51)
n=1

If these valuos of Gp are also substituted Into the following
equation, an expression for the total loading curve will result.

c1 cﬁ = 2b Gy (¢52)
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Of the values of Gpn obtained from calculations for the eddi-
tional loading arc thon substituted into cguation (C52), ordinates
of the addltionel loading curve will be obioined, which when
subtracted from those of tho totsl loading curve will give those
of the desired baslc loading curve..

Correction of Clg

Ae In the othor methods, the oerror introduced by the assumption
that the section lLift-curve slope is in e}l instences 2n can be
readily corroctod. The correction is accomplished by modifying the

ectual c3

specific circulabtion ordinstes Gn by the ratio —2——-—9 whoro
T

specific values of this function at span station n must be
dotermined if thls funcilon varles along the span.

Computing Instructlions

Tho ALx(V,u) functions are determinod cn form C(1) for a
swept wing and form C(2) for a stralght wing (Ao.ssc = 0)}). Im
both cases the coofficlents Ki, Ko, Kz, i, and Ks erc obtalned
from teblo CI. In the velues of T{(%t1), T(tz), T{ta) arc obtainod
by ontering chart CI with the valucs of t1, Tz, ts from columns
(10), (11}, and (12) form C(1). Form C(3) contains thoso computa—
tions which result in the E;—l oxprossions containing tho m‘—é‘l
unknowns Gyp. The voluos @y,n in column 9 of form C(3) are obtaincd
as follows: Considor the valuos in coluwmn L of this form as four
groups of four mombers with tho groups identificd as

A wvhon n=1

2

when n

wvhen n =3

g o o

when n =14

Similerly, the values in colurm 5 of thls form can be considercd
grouped as ¢
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vhen v =
when v =

when v =

Fowo o R
E oW o

when

<
]

then

81,1 =X AX

1
ZB X1
=2Cx1
=ZDx1
8n,1 = ZA X2

€,z = B X2, etc.

The computing form for the simultaneous solution (refersnce 9)
of the equation (CU5) is given in form C(4). The equations are set
up as follows: The firaet equation consists of the first four numbers
in column 15 form C{3), the second eguation the second fouwr, and so
forth; the first number in each group being the coefficiont of G1/¢,-
the second being the coefficient of Gz/o and so forth. Simultencous
golution glves the G/a's with the corresponding span station.
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N = =452 Zon/\. = —Soo7
A = .37 [— AN = 624
R

o
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Capany 039 Has same sien AS (5)

Corumn (15) HAS SAME SIGN &S (/8)
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Formv Ci~ COMPUTING FORM FOR WEISSINGER'S METHOD

(Underscored numbers are sample calculations.)
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TABIE CI.— CONSTANT FACTOR REQUIRED FOR THE
CALCUTATION OF ALA(V,) FORm = M = 7

vl K1 Ko Ks Ky K=
/0 i 1/94W 1/q_| 2q/q2R | o-/n7
1 {0} -13.14806 | 0.5198] 1.082k | —13.6610] —-0,0396
i o Shi2l 1.082h oo 0
2 4 6125 | .6131] 1.0824 3.9992 .1329
3 1.8h77 | .7653} 1.082h% 1.0823 R:% %]
2 {0 -3.4141 | .,58581 1.hike | -4.0000| -.1T716
1| -h.6125} .6131| 1.k | ~5.2254 1 -,1329
2 o L7071 1 1.4342 0 o)
13 3.0826 | 9176} 1.hke 2,1650 L2977
3 {0} —-1.62001 ,7232] 2.6130| ~2.34%32} - uh6h
1f -1.8477, .7653| 2.6130| ~2.6128| ~.L1h2
2! -3,0826| .,9176! 2.6130 | ~L.0002| -.2977
3 © 1.3065| 2.6130 P o]
4 {0} -1,0000 | 1.0000 S ~2,0000 | -1,0000
i -1,0824 |1.0824 o ~2,1649 | -1.0000
21 -1, 41k2 1. k1ke ® —2,8284 | -1.0000
3| -2.6130 | 2.6130 o —5,2260 | -1.,0000
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TABLE CII.— INTERPOLATION FUNCTION
Tn,u AS CALCUIATED WITEm = M = 7

nul Fnu
10} 2.613
1i-1.h3h
2{~-1.531
3 ik
2} 0f-1.h1h
1, 2.696
2 {«-1,000
3}~L.531
310] 1,082
1] -2.41h
21 3.606
3f-1.k1k
L1 0o|—- .500
1] 21.082
31|2.613
TABLE CIII.— VALUES CF By p TABLE CIV.— VALUES OF by ¢
AS CAICULATED WITH m= 7 AS CAICULATED WITH m = 7
1’1.t QB\L’p : n' E.Dv'v
1 (o} 1| 10.k524h
213.8284 %
3 0 3| == -
i 2928 Bl == ==
2( 11]2.0720 5} 1l e e =
2 0 2{ 5,6568
3{2.3888 i R
L 0 bl
31 1 0 3| 1=
21,8284 O =
3 0 3| k.3296
b t1,7022 1
L1 1l .22he 4} 1) - -
2 o] >3 R,
3 3115)4’8 3 -— e e—e
L1 o 5| k.0000
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