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TECHNICAL MEMORANDUM 1257

VIBRATION OF A WING OF FINITE SPAN IN A
SUPERSONIC FILOW*
By M. D. Hagkind and S. V. Falkovich

An investigetion was made of the disturbed motlon of a ges
for the harmonic vibrations of a thin slightly ceambered wing of
finite span moving forward with supersonic velocity. This problem
was considered by E. A. Krasilshchikova (reference 1) who applied
the method of Fouriler series and obtalned a solution of the space
problem for the condition that the Mach cones drawn through the
leading edge of the wing intersect the wing or are tangent to 1t.

In this paper, a different method of solutlon is given, which
is free from the previocusly mentioned condition. In particular,
the vibrations of a triengular wing lying within the Mach cone are
considered.

1. FUNDAMENTAL EQUATIONS OF FROBLEM

A thin, slightly cambered wing, whose projectlon on the
x,y-plane has the form of an equilateral triangle with vertex
angle 2y< 2a, where a 1s the Mach angle, 1s considered. It
is esgumed that the fundemental motion of the wing consists of a
rectilinear translational motion with constant supersonic
velocity u parallel to the x-axls. It 1s also assumed that
the coordinete axes move with the same veloclty and that the
x-axis 1g taken in the directlon of the velocity u. On the
fundemental motion of the wing, the additional harmonic of 1ts
vibration with frequency ® 1is superposed, where the poasi-
bility of deformation of the wing is not excluded. The equation
of the surface of the wing can then be wrlitten in the form

z(x,5,t) = £o(x,¥) + £1(x,5) cos wt + £5(x,y) sin wt (1.1)

*"Kolebaniia Kryla Konechnogo Razmekha v Sverkhzvukovom Potoke."
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It 1s assumed that the ratlos of the functioms £y to the lin-
ear dimensions of the triangle and the derivatives Bfk/ax and

Ofy /oy are small.

Considering the nonvortical motion of the gas, for the
velocity potential & (x,y,z,t) the following linearized equation
may be btaken:

(]__MZ)B(D a¢ a¢ Iié_@_-_l__a__dlzo (1.2)

dx? Byz Bz a th al dt2

where M = u/a 4is the Mach number and a is the velocity of sound.

The flow conditlon that must be satisfled on the surface of
the wing by the velocity potential &(x,y,z ,'b) shall be considered
as satisfied on the projection of the wing in the plane =z = 0.

The derivation of this equation shall be based on the work of
N. E. Kochin (reference 2). A stationary system of coordi-
netes Xy, connected with the moving system of
coordinates by the rela%io x=x1 -ubl, y=y, 2= 21,
end t = t7; 1s used; when expressed in these coordinates, equa-

tion (1.1) becomes

z7 = fo(xy-uby,yq) + £y(xy-uty,y;) cos Wt + £o(xq-uty,y;) sin wh

For the component of the veloclty of the gas particles normal
to the wing, there 1s obtained

— e || ge— - [ = 008 - sinwt - u =— asin®w W, wt
dty ox ox 1 ox * Wy cos
By introducling the notation

of g ofy ofy
al I z(x,y) Wfy - u . Zl(x,y) ~wf; - u e Zz(x,y)

the boundary condition, which must be satisfied by the velocity
potential &(x,y,z,t), is represented in the form

<g_f>z=0 = Zo(x,¥y) + Z1(x,y) cos Wt + Za(x,y) sin wt (1.3)

On the surface of the Mach cone, & (x,y,z,t) = O.
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Thus the problem is arrived at: To find within the Mach cone
the function &(x,y,z,t) setisfying equation (1.2) and condi-
tion (1.3) and becoming zero on the Mach cone.

When the steady vibrational character of the motion of the gas
1s teken into account, equation (1.2) is transformed to a simpler
Porm, setting (reference 3)

® (x,5,2,t) =Pp(x,5,2) +P1(x,7,2) cos (Wb +Ax) +
Po(x,y,z) sin Wt +Ax)

-
a(MZ-1)

By introducing the notation
Z,(x,5) + 1Z.(x,5) = Z(x,¥)

4 (x,y,2) + i93(x,y,2) = ®(x,5,2)
there is obtalned for debermining the functions mo(x,y,z) and
?(x,y,z) after simple computations from eguations (1.2) and (1.3)
the following equations:

%, v, i
0 0,2 % _,

(1-M?) +
dx? dy2 dz2

(?;Q>z=o = Zo(xy7) &

2 2
(1-42) dpg , O , 3% ¥2p= 0

dx? d3y2  dz%

(L.4)

0%qg

~1Ax
'az—>z=o = 12(x,7)e

k=

u'\/Mz-l )

The function @g(x,y,z) determined by equations (1.4) is the
veloclty potentlal of the motion of the gas for steedy forward

=it + Ax
motion of the wing and Re [CP(x,y,z)e 16 )_l is the velocity

potential corresponding to the vibrations of the wing.
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It is noted that for k = O, the system (1.5) goes over into

the system (1.4), so that it is sufficlent to find the solution of
syatem (1.5).

2. METHOD OF SOLUTION
In equations (1.5)
X = x* \ME-1
y=y*
Z = z¥
and the curvilinear asystem of coordinates are introduced

¢ = N x*2 'y*z"z*z

x¥iy¥*

z¥ (2.1)
xkpy¥

g = ‘\/x*z--.y*z-z*z

Tt is easily seen that within the Mach cone x*Z-y*Z.z¥2 - 0;

the coordinates £, 1n, and uniquely define the position of & point.

On the Mach cone § = 0, and (= 0. In the triengular region of the
projection of the wing, z = 0, |y]<tg 7 x,

T‘z

n=0 )
a< t<h
? (2.2)
(a. N Noos 27 4 . ~/cos 27 )
cos ¥ + 8in ¥y cos y - sin 7/

In the new coordinates, equation (1.5) . assumes the form

2 | 2y 32
.§2§_2+2§.d;°_p-gz §._°B+§_°E + ko= 0 (2.3)
3t 2 at at2 2

1264



L 4

92T

NACA ™ 1257 : 5

oY
(ﬁ)ﬂ:O = £(£,5) (2.4)
where |
2 _g2 2y
(0 - o (S0 g L0 (o S0 )

By setting in eguation (2.3) o =X ,n)VW({) after separation
of the variables there results

2
£ dgi Zg-—— + [k2§2-n(n+1] Yv=0 (2.5)
¢2 %, ¥x (n+l) X= 0 (2.6)
ézz*af Tmined X = '

The solutions of equation (2.5) are expressed in Bessel functions,
When account is teken of the finiteness of the function ¢ on the
Mach cone ({ = 0), the following solution of equation (2.5)

results:
(kD) = 4 /Zkg n+1(k£) (@>0) (2.7)

In order to choose in equations (2.5) and (2.8) the constant n,
the arbitrary function F(l) is expanded, analytic in the region
contalining the origin of coordinates, Into a series of
functions V,({):

F(8) = 2. agn(l)
=0

In order to establish the possibllity of this expansion, use
is made of the formule of Gegenbauer (reference 4, p. 283):

[~ -]

_§_"§ sznv(T)Jv_l_n(g) ath<im (2.8)
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where Am,( T) .are the Gegenbauer polynomials determined by the
equation :

Sln

2"+ (y4n) I'(v +n-m) ('L \2m
T+l =0 mt 2)

Any(T) = (2.9)

By setting v = % in equations (2.8) end (2.9), and by teking
account of equation (2.7), the following series is obtained:
Ao
7=

A (T W (8) (It <P (2.10)

5 BB

where An(T) accordi o equation (2.9) will have the form

(%) ) (2.11)

When series (2.10) and the integral formule of Cauchy are used,

R(¢) : e¥a(t)
N=

a, = 'é':]':-_i' S F(T )ap(T)ar

ITi<r

(2.12)

The cosfficients an cen eaglly be expressed in terms of the
derivatives of the function F(!) for { = 0. Thus, by taking
into account series (2.10) and the Cauchy formula for the
derivatives,

e 2n4l (n-2m) (2n-2m)} 2.13
R -SRI U ey sy g (2.13)

1264
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For the steady motion in equation (2.5) k = O, then
VYn(€) = {® and equations (2.12) become the usual power series

R =D ﬁ%ﬂl (o

n=0

It 1s assumed that in equaticn (2.4) the function f£(t,l) is
analytic in f; then according to eguations (2.12), it can be
expended in the functions ﬂfn(kﬁ) into the series

£E,l = : £ ( 80y (k) (2.14)
N=

In this connectlon, the solutlion of the problem 1s sought in
the form

® € ,n,L) Fzé‘lin(kﬁ)xn(ﬁ,n) (2.15)
Ne=

On the basis of equation (2.4) and serles (2.14), the boundary
condition for the function X,(f,n), which satisfies eguation (2.6),
is obtalned: .

oX.
(f)ngo = £ (8) (ast<D) (2.16)

vhere & and b are determined from equations (2.2). The problem
thus reduces to the integration of equation (2.6) for the boundary
condition (2.16). By means of the transformation X, = ¢RHX *,
equation (2.8) reduces to the equation of Darboux for the

function Xp,*(f,q) and because in this case n is an inbeger,

the general solution of equation (2.6) can be represented in the
form (see reference 5)

Xn(€n) = in‘“'l AEI_IELE:_T& (2.17)
¢

where Up(f,n) 1s an arbitrary harmonic function end A% is the
Laplace operator of order n. _
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3. OBTAINING THE HARMONIC FUNCTION Up

By developing the expression (2.17) and taking into account
that AUL(¢ ,n) = O, there 1s obtalined

Xo(E,n) = nsz"‘io (-z)m _(2o-m)l pm 3 (5.1)
Mes

m! (n-m)?! otm

When condition (2.16) is satisfled, an ordinary differential
equation of Euler for (dUp/dn)ne0 1s obtained:

o _(2nem)t o am (aUn) _Eeen(e)
:,:‘0 (-2) m! (n-m)! e at® \ on/n=0 nt (as t<D)

(3.2)

The general integrel of an Euler equatlion, as is known, has the form

GEP.) D ot ug () (a< ESB) (3.3)

=0 ‘&=

where un(f) 1s a particular integral for equation (3.2) and Cp'
is an arbitrary constant.

The complex variable T= { + in is Introduced and the
function of this varieble Wn(T) = Up + iVp is considered. By

meking use of the Cauchy-Riemann equations, the boundary conditions
that must be satlsflied by the function Wn(‘r) are obtained:

Vo(£,0) = v (E) = Ta(t) +io cmgz”“w

(vn(g) - 5: un(mz) J

where C are new constants of integration and a< t<b.

? (3.4)
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Further, from squations (2. 15) and (3.1), it follows that on
the Mach cone

- " . n(kg) m(Zn -m)t ,m STU,
®(0,1,0) (s lim in g( ¢ SE

0,t—0%=0 mt (n-m)t

When the properties of the function VY (k{) and equa-
tions (2.1) are taken into account,

#(0,1,0 =3 ni(xs5)? Ty(0,1)

n=0

Because on the surface of the Mach come, the function @
becomes zero, it 1s necessary that U,(0,n) = O. Moreover, on
account of the symmetry

U,(£,0) = O (0<t<a, t>D) (3.5)

Condition (3.5) permits the analytical continuation of the
function Wp(T) into the left half-plense.

Finally, the function ® and therefore, according to egua-

tion (3.1), the entire function Un(m (¢,m) must be finite for 9 =
and ¢ =a, and £ = b. Thls condition will be satisfied if the
fini'beness of the function Wn(m) (T) 1is reguired for m = 0, 1,...,n.
The satisfying of the last comdition leads to equations rletermining
the constants Cp in equations (3.4). Thus the following boundary-
condition problem of the theory of functions 1s arrived at: To
determine the analytlcal function Wn(m) (t), regular in the upper
half-plane, finite at the points T =*a and T =*b, and satis-
fying the conditions on the real axis (n = 0):

Im Wn(m) = vn(m)(g) (+a< E<+b)
Re W,(@) =0 (a>]g, |g>D)
Im W™ = v*(¢)  (-b<t< -a)

(-0 = (1) v, @ ()
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By applying the formula of Keldish and Sedov (references 6 and 7),

~b ) ‘\
2._a2 (m 2_.2
(m) _ 2 [Te-a svp '\t (8) [vé-8 —odd
W) = - N Un sEeTE 2oz ds (m-0dd)
- &(3.6)
or  [<2. (m) .
Wn(m)(‘r) = - — Tz 2 Yo (s) *_ds (m-even)
2l \[12-p8 Vs g2Té 82 .-al

-

Equations (3.8) give for Wn(m) finit? values at the points
T = #a. The condition of finiteness of Wn(®)(T) at T =%b leads
to the system of n+l equatlons

ght vn(m) (s) ds

etan(oesty - 0 (m=0,1,...,m) (3.7)

wvhere u =0 for meven and p =1 for m odd.

By computing 'vn(m)(f,) from equations (3.4) and substituting
the result in equation (3.7), the system of eguation (3.7) can be
brought to the form

:if: CBym = D (1=0,1,...,n) (3.8)
=0
where
a2(1-v)
By,zvs1 = 2(1-D)By 2y = 21(21-1)...(21-2V) I3 (1 -v)
1
Z(I-V)dx
J2(1-v) = =
=2) =g £(xE-1) (1-02x2)
b .
Dy = - sV 7, (1) (s) as 5=2, p= {0 for 1 even
: a A/(st-at)(be-s2) b’ 1 for 1 odd
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The integrals Jp can be expressed In terms of complete
elliptic integrals of lt("he first and second kind meking use of the
recurrence relatlion

(2143)kB309 4 = 2(241) (1468)dp( 4,1 - (zz+1)J2ﬂ

JO=K'
.Jz = K' + ng'
k

(k' = Af1-KZ) | y,

where K! and E' are complete elliptic integrals of the first
and second kind of the auxiliary modulus k'. All the coefficients
Byp ©Of the system (3.8) can thus be computed.

} (3.9)

Transleted by S. Relss,
National Advisory Committee
for Aeronautlcs.
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