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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHENICAL MEMORANDUM 1236

A CLASS OF de LAVAL NOZZIES*
By S. V. Falkovich

A study 1s made herein of the irrotational adisbatic motion of
& gas In the transition from subsonic to supersonic velocltles. A
shape of the de Laval nozzle is given, which transforms a homoge-
necus plane-parallel flow at large subsonic velocity into a super-
sonic flow without any shock waves beyond the transition line from
the subsonic to the supersonic regions of flow. The method of
solution is based on Integraticn near the transition line of the
gas equations of motion in the form investigated by
S. A. Christianovich (reference 1).

1. Fundamental - equations., - A plane, steady, irrotaticmal,
adisbatic flow of & gas is considered. In this case, the equatioms
of motion, as 1s known, have the form

giu g;v=o %-%‘1&=0 (1.1)
ﬁ L p_._®& Po (1.2)
2 TRIo " RI Py

o] denelty of gas
u,v components of velocity along x- and y-axes
P pressure
W absolute value of velocity
aéliabatic exponent

Subscript O denotes condition of gas at rest.

. *"Ingtitut Mekhaniki Akedemii Nauk Siuza, SSR" Prikladnaia
Matematika 1 Mekhanika, Tom XI, 1847.
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From equetions (1.1) there exist two functions, the velocity
potential o (x,y) and the stream function \y(x,y), determined
by the equations _ )

AP = u dx + v 4y d\|!=-59—(-vdx+udy) (1.3)
0

If u=Wcos 6 and v =W sln 6, where € 1s the angle
between the velocity vector and the x-axis , are substituted in
equations (1.3) and are solved for dx and dy,

cos 6 PO sin 6 sin 6 PO cos 6
= SOB 5 o 22D dy = —m— — s d\l[
dx 49 - — = av =
' (1.4)

The concepts x and y and @ and V are functions of the
variables W and 6; +then

-4 e
ap = $F av + ¥ a0

oV oV
av = aWexw % ae

If these expressions are substituted for d‘P and d\ll in equa-~
tions (1.4),

_ (cos 6 3% _Po gin 0 3V Goseﬂ Po sin 0 OV
dx'( W e w a»:)‘“” W oo o W 80

dyu(s 099, p cos @ B\ll>dw_‘_<sin9_a_¢+f’_0_cosea_‘3>d9
oW M W o p W 08

=

(1.5)

In order for dx and 4y, determined from equations (1 5), to be
total differentials, it 1s necessary and sufficient that the fol-
Iowing equalities hold: _ —
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3 (cos 6 3% _ P0 sin & V) _ 3 cose?_fgsinea‘ll\

B\ W MW p.W W WN\W O p W 08
30

O (sin e3P, Pocos 6 dV\_ o (sin 6 39, Po cos 6 SV
Fe’prwB'ﬁE?wBEpw,;Eéj

> (1.6)

From equetion (1.2) and the condition of adisbatic flow,
a_[Po)_Pow
aw \p /7 P g2

where

a veloclty of sound

If the differentiation in equations (1.6) is carried out,

3¢ Po . do 39 _ _ Po (421 OV
R=PVE  So-p ey (2.7

where M = W/a 1is the Mach number.

In equations (1.7), as the independent variable, in place of
the velocity W & new variable s (reference 1) is introduced R
which is comnnected with W Dby the relation

a
8 =/ Va?w?2 aw (1.8)
W aw

Equations (1.7) then assume the form

where
po 2
K(s) = (?) (1-M2) (1.10)

inasmuch as equation (1.8) is & function of =.
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The system of equations (1.9) in the regions where the flow
velocity 1s subsonic, W< a, 1s of the elliptic types Hence,
any solution @@= @(6,s) and V¥ = VY(6,8) of equations (1.9) rep-
resents two fun¢tions analytic 1n the varlables s and 6 up to
the line of transition to the region of supersonic velocltles.

If the Jacoblan of the transformation of the region in the
plane 6,8 on the plane QD,W

ot - | - (]

does not become zero over a cervain segment of the transition line
and therefore also in a certain region on the supersonic side, the
functions ®(6,8) and WV(6,8) may be analytically continued across
this segment into the supersonic region of the flow. Hence s the
flow in the subsonic region determines the flow in the supersonic
reglon near the transition line. Eguatione (1.9) retain their
meaning also for supersonic velocities. For, if W >a, s will
be purely imaginary and K negative. .Setting =& = is and

K = -R in equations (1.9) gives

X =V oP = oV
Ca SN 3L Sg=-/\[-K—ae (1.12)

Thus, if in the solution P(6,8) end W6,s) of equations (1.9)
determining the flow in the subsonic region, s 1s set equal to iF¥
and the real parts of the expressions thus obtained are taken, the
solution of equations (l.11l) determining the flow of the gas in the
supersonic region near the traneition line 1s obtained.

2. Investigation of equations (1.9) near the transonic line
W= a,. From equation (1. 8), it follows that in the plane of the
variables 6,8 the upper half-plane g >0 will correspond to
the region of subsonic velocity and the axis of the abscissa
8 = 0 to the line of sound velocity. It 1s therefore necessary
to consider the behavior of the function K(s) for small va.lues of
the variable =s.

Equation (1.2) is represented in the form

we - (slay” M7 ax” M © (2.1)

2+(K-1) MZ

P8TT

T
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Substituting this value of W 1in equation (1.8) gives

. .
8= f (@21)t% gy (t = A%, ¥ = !:L1.>
0 (1-t%)(n8-t?) k-1

Computing the integral gives

h
1 het) 14t
s == log |:<—h+t) —l-t] (2.2)

If the equation is expanded in a power series in ¢,

2 4 4 (S
s=h']2't3+h'lt5+———h'lt7+ . e
3 shé 706
Then,
t = a.lsl/s + 9.353/3 + 5555/3 + o o o (2.3)
where
3 3h
81 \|ZT
h =1

Further, from equetion (1.2) and the asdiebatic condition after
simple transformations,

—u]—'-

K-1 T
e P 2
—Q- = -—0 l- L . (2.4)
P TP \ 12

Substituting this value in expression (1.10) gives for K(s)
1

K-1
NE(&) = 29- t (l- % (2.5)

* h
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Substituting in equetion (2.5) the series for t (equation 2.3)
glves

' } P ,"’ 3h?
NK(s) = blsl/3 + bss5/3 + 'b535/5 O <°l = .59 PT)
¥*

(2.5)

It follows from equation (2.6) that for a velocity near that of
sound, that 1s, for small s, oconsideration may be restricted in
series (2.6) to the first term by setting WK = 'bltsl/s. The
fundementel equations (1.9) then assume the form

1/3 d 1/3
a,---'blB/ %’ g.:.)s'bls/

oY
s 2 (2.7)

)

whence for the functions W(6,8) and ©(6,s) there is obtained

By, By, 1 v P o _ 1 . ,
g?'l‘—a-:-z-"'-s—s-sgﬂo ——— BS (o] (28)

Having determined from equations (2.8) the velocity potential
¥(6,8) and the stream function VY(6,s), by equations (1.5) the
coordinates x and y are found in the flow plane. It 1s easily
peen that equations (1.5) can be represented in the form

~)
ax = 2 [(cos 6 22 - 29 g1n 6 ¥\ as + {cos 6 2P - PO gin o M) as
W os P o8 %8 P s/ |

dy-% [(sine-g-g+%9-cos egg>ds+<sin9-g—:’+%gcos 6-%%):19_-D

(2.9)

If, however, we pass from the exact equations (1.9) to the approxi-
mate equations (2.7), the expressions (2.9) cease to be exact dif-
ferentlals. Hence, simultaneously with the passing from equa-~
tions (1.9) to equations (2.7) it is necessary to introduce

1184
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instead of the relation (1.8) between s and W a new relation
such that the expressions (2.9) remain exact differentials., In
order to obtain this relation in equationms (2.9) are substituted the
values of the derivatives of the function ® from equetions (2.7)
after which the condition that dx Prom equations (2.9) is a

total differential assumes the form

d 1/3 W Po VAW
36[(018 cosesg-Fsme-S; ﬁ_

-
=-a bsllscose.al"+59-sine§i’l
ds |\ 1 % P 3 )W |

Carrylng out the differentiation and making use of the first of
equations (2.8) satisfies this condition if the following equations
are satisfied (the expression for dy likewise then becomes a
total differential):

1/3
Po . M3a (1 "15/._‘19.9
W 1 ds \ W w ds \ pW

2 3/2

Setting s = T glves

Po _ [2\/3 a<1> 2\/3 P 4 P
sw@ nam\E) \3) vemow @0

Thus, the equation determining 1/W 1is obtained, nemely,

2
a_(i)-2=0 . ‘ .
z(w) 3=0 (2.11)
dn

The functions satlsfying this equation are called Alry functions.
Tables of these functions have been computed by V. A. Fock
(reference S). Thus

£ =0y uln) + Gy v(n) (2.12)
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where u(n) and v(n) are two linearly independent tabulated
integrals of the equation (2.11). The constants of integration are
determined from the conditions

P i(l) =<§1/3__‘°°_=z 3,2,
W n=0 x dﬂ w T‘HO 2 ) blp*a'*_ ay 7 = ;}:2—

where the latter relation is obtalned from equations (2.10) and
(2.6). After computation,

C; = a—l*- [w(o) - v'(o] cz-= g]; E;'(o) - ﬁ(oﬂ (2.13)

where from reference 5,

w(0) + 1v(0) = ENE _ oxp |
o 4/3
37 1T(2/3) |

u'(0) + 1v'(0) = —2ANT ___ oxp '-’6‘“
34/31‘(4/3)

From the first of equations (2.10) and (2.12),

(2.14)

3

Py =<z>l/3 o) cu'(n) + Cv'(n)
P Cyuln) + Cov(n)

The expressions (2.12) and (2.14) thus found for 1/W and po/p
must be substituted in equations (2.9).

3. Determination of flow in Pfeed part of de Laval nozzle. -
The shape of the de laval nozzle was determined such that the
distribution of the velocity over the section tended, with increasing
distance from the critical section upstream of: the flow, to a uni-
form flow wlth a certein subsonic velocity Wy near the velocity

I*



NACA ™M 1236 9

of sound. It wes necessary that the walls of the nozzle for
Xx~> - ® have & horizontal asymptote y ==2H (fig. 1), the mag-
nitude H being determined from the amount of gas flow and the
veloclty Wb.

In the plene of the varlables 6,s, there corresponds to the
Infinitely distant section in which the velocity is constant and
equal to WO, the point A wlth coordinates € =0, s = 85e To

the lines of flow there correspond In the 6,8 plane & bundle of
curves issuing from the point A. In order to obtain a solution
of equations (2.8) having the stated properties, in the upper half-
plane of 6,s bipolar coordinates are introduced (fig. 2).

92+(s+so) 28,0
a = log -—z—-———— B = arc tg <3 3 (3.1)
6 +(s-so)2 6°+8%-8,

Thus the lines o = constant constitute a Pamily of circles
with centers on the s-axis and the lines {8 = constant constitute
a famlly of circles with centers on the 6-axis passing through the
point A (fig. 2). The equetions of the families of these clrcles
are, respectively,

2

2
2 2 80 2 2 8
6“+(s+8, oth a)® = —— (6-8, ctg B)® + &° = 0
0 shzoz, 0 gin2 B

The first of equations (2.8) transformed into bipcolar coordinates
has the form

Ry . 32y 1 v v
=t St rop TR [(l+ch o cos B)aa, + sh o sin B i 0
oa o - .
(3.2)
1/6
VY= (ch & + cos B) X(x,B) (3.3)
Equation (3.2) is reduced to the form
éEXv ﬁx cth & 3 S 0 (3.4
+ + + 35 X .4)

in which the variables are separable.
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In seeking a solution of equation (3,4) of the form
X= X(a) Y(B), the ordinery eguations for X(a) and Y(B)
are obtalned:
2 .
9—% +n2Y = 0 )
ap '

2
d“X , cth a dX 1 a2
e T e oe— — = =
12 3_da,+<36 n>x ©

where n 1is an arbitrary constant. If n 1is set equal to O,

2 2 )
a?y _ %, etha 84X, 1 y_o (3.5)
z =0 5* =3 datie
ap da

The flrst of equations (3.5) gives Y = Cl f_CZB and the second,

by the substitution t = chzu, reduces to the hypergeomstric
equation :

2
£(1-t) 9-% +

dt

1 7 ax 1
- 7 P R el = .
(é 6 > at " Tag - (3.8)

the general integral of which can be represented in the form

-1/12
X = ot P (1. 7 7 1 1

1
iz’ 12’ 1:'75 + C4F (ig: 122 o7 %)

If C; =C4 =0 and consldering equation (3.3), the required solu-
tion of equation (3.2) is in the form

h 1/6 1
WO =<? < ;hc;s§> F <?%’ fz: 1, 5 :> B (307),

ch a

Returning to the initial varlables 6 and s according to
equaetions (3.1), after simple transformations
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o (s [t ]t
28 0°+(s-8,) 16°+(s+8,) 2848

\llo(e,s)= =0 __ F <’l‘:-7_:1: 20 = IV 9 ) t&n—l———g———z-
6% +a24802 12712 (6%+82+8,%) ~ 8%+s8-g,

(3.8)

This solution corresponds to the flow of gas in & nozzle having the
shape shown in figure 1. BSuch flow cannot, however, be continued
into the region of supersonic veloclities. In order that a certain
subsonic flow having a straight streamline may be continued into
the supersonlc reglon, it is necessary and sufficient, as has been
shown by ¥F. I. Frankl (reference 2) (see also S. A. Christianovich,
reference 3, ch. V.), that the stream function W(6,s) have on

the transition line the form

Y(e,0) = A161/3 + A363/3 + A595/3 TR (3.9)

The solution (3.8) does not, however, satisfy this condition inesmuch

as on the transition line (8 = 0) it has the form

1/8

28

0 L7 250
(9 O) = ———— F ( 2 9 l’ ]) tan -l

VYol o882 12’ IZ 92_502

In order to continue the flow with the stream function of equa-~
tion (3.8) into the supersonic region, it is necessary to add to
equation (3.8) the solution of the first of equations (2.8) satis-
fying the condition Wi(e,O) = 61/5. Such a solution, as is shown

in reference 4, has the form

3y 3 3 2/3
A “& + SAnwi -3 =0 n = <? %)

whence setting A = 31/3, we obtain

by = (%)lﬁ <’\3/9 +/\‘62 + &% +’?9 -I\’Gz + sg> (3.10)
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Hence, in order to construct the flow in the de Laval nozzle
having the shape shown in figure 1, it is sufficlent for the stream
function V(6,s) to assume the form -

3

1184

Yo,s) = AO'WO + AV + AzVs 0&5 = 0) (3.11)

where Ay, Ay, and A; are arbitrary constants and the functions
ﬂb and ﬂ& are glven by equations (3.8) and (3.10).

Equation (3.11) for W(6,s) 1is obtained if in the expansion
(3.9) the first two terms are retained. With the values of the
constants A,, A;, and Az, & nozzle may be congtructed sufficlently

near the glven nozzle of the shape under consideration.

The equations determining the functions ﬂb and 'ﬂ& in the

supersonic region will be determined. In the expression (3.8) for ) o
8 = 0, the argument of the hypergeometric function attalns the
value unity end for the supersonic velocities, that ls, for imegi-
nary &, although remaining real, becomes greater than unity. -
The formule giving the analytlc continuation of the hyper-
geometric series (reference 6) is used -

F (a,b,c,t) = T(c) P(c-a-b) ¢ (a,b,a+b=c+l, 1-t) +
I'(c-a) I(c~b)

Eﬁq},r(&+b-Q) (l_t)c-a-b F (c~b, c-a, c-a-b+l, 1-t)
I'(a) I'(v)

which in the case consldered has the form N - _ - ;ﬂl

1 7 (/3 1 7 2
L4, 01, ) = X, L, B 1
F(lz’ 1zr b t) 11/12) I' (5/12 F(lz’ 12’ 3 >+

_T(-1/3 1/35(5, 20 4 1.4
F(i/12) 1‘(77125(1 -t) (12’ 12 3

and the characterlstic coordinates A=6 - 1is and p = 6 + 1s -
are determined. After computations, the following equations are
obtained:



r

81T

NACA T™ 1238 i3

1/6%
REWR ! I(1/3 sf-N?
oz [T '1"%5712) (M+so)2

2/3 2 2
- solk=A) a2 (=) —
lriz . 37 12 _0——2"- ¥ 152’%%""1= ) _Q&L"z)—z arc tg Z5g +:)
A l-1+50 (N"H'So) A p,-so
(3.12)

Vi(An) = (%)1/3 <l\7/\[>7+,\[[+\3/ ,J)T-W) (3.13)

These expressions determine the flow In the regions 1 and 2 between
the transition line and the characteristlic passling through the cenbter
of the nozzle and directed upstream of the flow (fig. 1). The fur-
ther compubation of the supersonic part of the nozzle can be carried
out by the method of characteristics.

Translated by Samuel Reilss
National Advisory Committee
for Aeronautics.
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o = constant

B = constant
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Figure 2.



