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The paper presents a gystematical analysis of the problem of
the determination of the umsteady motlon about an alrfoil moving in
an infinite fluid that contains a system of vortices and the deter-
mination of the hydrodynamical forces acting on the airfoil. The
hydrodynamical problem is reduced to the determination of the
function £ (¢) which transforms conformally the external reglon of
the airfeil into the interior of a circle, The proposed methods
of determining the irrotational motion of a fluid that is produced
by any motion of the airfoil are especially simple and effective
if the function f ({) is rational. As an example the flow is deter-
mined for the case of an arbitrary; motion of an airfoil of the
Joukowsky typo. The Tormulas obtained for the determination of the
hydrodynamical forces by means of contour integration are similar
to those given by S. Chaplygin., These formulas are used to deter-
mine the force acting on the airfoil in the cases where the unsteady
motion is potential throughout and the circulation about the airfoil
is constant and also when the fluid contains a system of vortices.

A full discussion is given of the concept of virtual masses together
with practical formulag for computing the virtual mass coefficients.
A table is added giving the virtual mass coeffliciocnts for different
types of Joukowsky airfoils. For the case of mobtion with constant
circulation the following theorems weres obtained. ZEvery airfoil
possesses a fixed point such that the force, depending on the cir-
culation, for any motion of the airfoil is determined by Joukowsky's
law in terms of the velocity of this point; the moment of the hydro-
dynamical forces about this point being independent of the circula-
tion. Formulas are also given for the determination of the forces
and moments acting on a thin, slightly curved airfoil of Joukowsky
profile for any motion with constant circulation. For the case where
the circulation about the airfoil is zero the condition that the
fluid velocity at the sharp edge of the airfoil should be finite for
a continuously potential flowv is reduced to the requirement that the
traveling polhode should be a fixed straight line, perpendicular to
the first axis for every airfoil. We have the similar geometrical
condition for the case wherec the angular velocity of the airfoil and
the circulation are independent of the time. We have also given
formulas for the computation of the hydrodynamical forces when the
flow contains any system of vortices. These forces depend on the

*Central Aero-Hydrodynamical Institute




2 NACA TM No, 1156

noglition and on the velocities of the system of vortices. The devel-
oped general formulas give, Tor the case of stesdy motion ov the Tluid,
the results obtained by Lagally. For an unsteady motion of a system
of free vortices which are very distant from the airfoll the results
of H. Wagner are given in thc generalized form, namely, for thoc case
of an arbitrary motion of the airfoil. The analysis is illustrated

by the computation of the forces acting on a plate when the fluid con-
tains only a single vortex filament.

1. INTRODUCTION

In recent years the unsieady motion of a fluid has become with
increasing frequency the subject of theoretical and experimental hydro-
dynamical investigations. For the practical study of such motions it
1s particularly importont in view of the fact that they include a large
number of phenomena which are encountered in the solution of definite
technical problema, It 1g sufficient to mention for example the prob-
lem of the determination of the serodynamic rorces for arbitrary motion
of a rigid and elastic wing, the problem of the dynamic stability of
airplanes moving witlhiin or on the boundary of fluids, the problem of
the falling of a body on water, etc.

The unstcady motion of a viscous fluid about wing-shoped sectilons
is generally accompanicd by separation of the boundary layer which
extends in the form of a thin film from the point of separation into
the fluid. The boundary layer in soparating off, is generally speak-
ing, greatly deformed and serves as & source of vortex motion within
the fluid. These vortices gradually diffuse and are dissipated in the
general mass of the fluid, These are actually observed phencmena, In
the case of small viscosity it is sometimes succeeded in obtaining for
them asufficiently accurate description by studying the motion of an
ideal fluid under the corresponding conditions,

As is known, the motion of an ideal fluid under the action of
congervative inertia forces starting from a state of rest is always
potential. he physical requirement of positive pressures is gener-
ally impossible to satisfy if the study is restricted to continuously
potential flows and 1% 1s necessary to introduce into cousideration
fields of velocity potential having swrfaces of discontinuity. The
surTaces of discontinuity coincide with the boundarics of the body and
they may be considered as a schematic representation of a very thin

vortex layer arising in the viscous fluid for the case of very omall
viscosity.
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Starting from flows with surfaces of discontinuity within in
fluid L. Prandtl developed theoretically on an experimental hasis
the approximate theory of a wing of finite span for steady motion
(reference 1), He also gave examples of the accurate solution of
certain two-dimensional problems on the unsteady motion of an ldeal

fluid with & line of €iscontinuity in the form of a spiral (refer-
ence 2).

Birnbaum set up an approximate theory for unsteady motion, the
body being replaced by a system of bound vortices (references 3, 4),

In studying the unsteady motion with surfaces of velocity dis-
continuity a fundamental difficulty lies in the fact that the mechan-
ical charvacteristicas of the body-fluid system depends not only on
the condition of motion of the body at a given instant of time but
also on the preceding motion of the body. The motion of the system
at a given instant of time is thus a function of & combination of
all preceding states of motion of the body. In particular, the exact
golution of the two-dimensicnal problem of unsteady motlon, with
lines of velocity discontinuity starting out from the trailing edge,
encounters very great mathematical difficulties and as yet no solu-
tion has been obtained, This problem was characterized by Prandtl
as "hopeless" of solution.

The forces acting in a two-dimensional flow on a plate from
the tralling edge of which a line of velocity discontinuity is given
off were investigated by Wagner (reference 5), Glauert (reference 6)
and Keldish and Lavrentev (reference 7). In these investigations
it is agsumed that the line of discontinuity coincides with the
straight line which is a prolongation of the plate. This assumption
1y assoclated with another, namely, that the angle of attack of the
plate remains infinitesimaelly small .*

In the general case it ls convenient to isolate from the hydro-
dynamic forces those which depend only on the velocities and accel-
erations of the body. These forces agree with the total force for
the motion of the body in an infinite fluid on the agsumption that
the motion of the fluild is continuously potential. The determination

*In the given case by angle of attack is meant the angle between

the velocity of the center of the plate and the direction of the
plate,
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of the motion of the fiuid and the forces in this case is a classi-
cal problem (reference 6), The additions to these forces thus
isolated will depend essentially on the position and motion of the
singularities of the flow outside the body.¥

By the above approach the gtudy of the continuously potentlal
flows enters the study of dilscontinucuely potential motion of an
ideal fluid as a component part.

The general theorem of the forces independent of the singulari-
ties of the flow was worked out by Thomson and Teit (reference 9) and
Kirchhoff ({(reference 10) as far back as the middle of the last century.
The theory of Kirchhoff was generalized by S. A. Chaplygin (refer=-
ence 11) in the case of the two-dimensional nroblem to the motiorn of
a wing with constant circulation, In this work methods were given
by Chaplygin for the determination of the potentiai flow of a fluid
and the computation of the forces bhased on the theory of functions
of a complex variable. The present paper glves a systematic presenta-
tion of the theory of unsteady motions for the case of Chaplygin and
the case where a number of lgolated vortices exlst within the fluid.
There are a large number o' unsteady motions, the cheracter of which
will be clear from what follows, for which these theories may have a
direct practical value. Moreovser,; as has already been pointed out,
the results of these theories may enter as component parts of inves-
tigations dealing with the most general case of the motion of a fluid.

2. FUNDAMENTAL RELATIONS

We consider an arbitrary plane~parallel motion of a cylindrical
wing within an incompressible fluid such that the plane of the motion
is at right angles to the generators of the wing. All mechanical
characteristics will be computed with the aid of a Cartesian system
of coordinates =x0y fixed invariably to the wing. For convenience
the vectors will be considered as complex numbers. ZFor example the
posltion of a point will be determined by the vector

Z = X + 1y i=v -1

*These singularities may be vortlces, boundaries of the fluid,
surface of discontinuity, etc,
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Denoting the velocity of the origin of coordinates by qq We have

where UO and VO are the projections of the origin on the axes

of coordinates, For the velocity of a point of the wing with
coordinates x, y we shall have

qQ=U+1V =Ty -0y + 1 (V5 + 0x)

that is
Q= g5+ Iz
where ® denotes the angular velocity of the wing.
- The velocitles of the particles of the fluld we denote by
v =u+ iv, Letters with a horizontal stroke above will denote
the conjugate complex of the same letters without the strokes.
7 =X - 1y;:$ =u - iv, eto.

The stream function 1s denoted by WV(x, y, t). Since the
flow is continuous we have on the contecur C:

ay = ths = udy - vix = Udy - Vdx (1)

Remembering that U = Ug -wy; V = Vo + 0% end integrating rela-
tion (1) along C we obtain

W
V = Ugy - Vpx - 5 (%2 + y2> + const. (2)

The value of the stream function V¥ on the wing contour is
always determined by equation (2) which is true for any motion of
the incompressible fluid. Equation (2) is the mathematical expres-
glon of the condition imposed by the moving liguld due to the pres-
ence of a golld body within 1t.

In the region of potential motion the potential o(x, y, )
and the stream function VY (x, y, t) satisfy the equation of Laplace

2 2 2,
3% , % _ o, A, 3%,
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vhile the functions themselves are connected by the Cauchy-Riemann
conditions

op oV Xp _ . ov
ox -~ dy ¢ oy ox
so that
o+ W= w(z)
whence
= . dw
v=u-1iv =gy

w(z) 1is known as the complex potential function.

For points of the region of potential motion the pressure
p(x, R t) may be computed with the aid of the Lagrange integral.
In the absence oi' external mass forces we shall have

> 2, .2
p—-po(t)-p;fc—g-g(u +V>

whers p 1s the density of the fluid, p, (t) is a function depend-

ing only on the time. This function l1s determined by the given pres-
sure at any one point of the fluid. In the above formula of Lagrange
the partial derivative - ap/at is taken on the assumption that the
potential @ 1s expressed as a Tunction of the time and the coor-
dinates ¢,n defined in the stationary system of axes, Between
the coordinates ¢, and the coordinates x, y in the moving
gystem we have the relation:

€ = t(x, v, t); n=n(x vy, t)

Evidently Jf/dt and On/dt are the projections on the sta-
tionary axes of the velocity of the transporting motion.

We thus have

9P (x, v, t) o0 (¢, n. t) , pot L I
ot ot " 3t ; i oy

or
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op (£, n, t) _ow(x, y, t)
at - ot

-y
- (grad @< q) (3)
where E is the velocity of the transporting motion,

Making use of relation (3) we rewrite the integral of Lagrange
for the case where the potential 1s determined as a function cf the
time and coordinstes of the moving system:

= Py (t) - p g% - g (08 + v2) + p (WU + vV) (4)

Since 1in what follows we shall throughout make use of the mov-
Ing system of coordinates we shall always compute the pressures by
the above formula,

In differentiating vectors with respect to time we shall dis-
tlnguish derivatives with respect to the moving and stationary sys-
tems of coordinates. The first we shall denote by the symbol 3/t
and the second by 5/8t. The former are used because the vectors
under consideration depend alsoc on the points of space. These
derivates are connected, as ls known, by the relation

-
éé_?m 3, 2]
ot
which on replacing the vector a by the complex number a besomes

g: -2+ wa (5)

3. FORMULAS FOR THE FORCE AND MOMENT EXERTED

BY THE FLUID ON A WING FOR UNSTEADY MOTION

In this section we shall conslder the general formulas express-
ing the total hydrodynamic force and the moment of hydrodynamic
forces with respect to the origin of coordinates by means of inte-
grals, taken around the contour of the wing, of functions of a com-
plex variable. With respect to the velocity field of the fluld we
assume only that in the vicinity of the countour of the wing C ths
field has the potentilal ¢(P,t) where P 1s a polnt within the
fluld and t +the time, At the trailing sharp edge of the wing in
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the plane of motion of the fluid a line of velocity discontinuity may
start out. In passing through the line of discentinuity at the sharp
edge M the potential ¢ in the general cage changes by a discontin-
ucus amount the value of which mey depend on the time,

We denote by n the unit vector directed along the normal to the
contour of the wing C 1nto the fluld, by dz the element of the con-
tour C 1in the positive direction of passing round the contour
(counter-clockwige). To obtain the direction dz, n must bs rotated
by a right angle from right to left, hence the sguation:

n |dz| = = idz

Let dX + 1dY ©be the force acting cn an eloment of the wing 4z
of unit width, Making use of formula (4) ssction 2 for the pressure
we have

X + 14Y = - pn |dz]| = ipdz =
= ipg (t) dz - 1p §E dz - 122 (uw + iv) (u - iv) dz + ip (uU + vV) dz

(1)

Since (u - iv) dz = dw, udx + vdy = dp and along the wing
Udy -~ Vdx = 4y 1t can be readily found that on the wing contour the
fecllowing identities ars valid:

- §Eu+iv)(u -iv)dz - 2 (uU+vV)dz] = - %Eua—iv)(dq) -iaVv ) +
+ 21 (u+iv) Ay - 2 (uU+vV)dz:' = - % lg—} aw - 2(U+1V)dtf‘ =
RN
- - 1w -
= -3 dz> dz + 1gnd® - wzde (2)

Moreover, on the basis of relation (5), section 2 we have

-ig-%dz-wzdcp =-1d\§§r)—°-j+1~§-zdw =

= - id z(g%-) +ig-fzdw+~§€zd\ll (3)
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With the aild of (2) and (3) we reduce relation (1) to the form:

4 Po ’ ) dw}ﬁ
- id = =~ id i1g.d® ~ 14
5 (aX+1dY) 5 z + 1g,d%p

o)
+ g¢ zdb + g_t' zdw (4)

Integrating this equation we obtain the formula for the total
force on & unit width of wing:

L (X+1Y) = 1goT - 1z zy = - 1 % 1z + §_ $ zdu+
P d.'t 2 C c
o) aw
+ 15 g z 37 4z (5)

In the above equation I' denotes the circulation taken on the con-
tour of the wing counterclockwise and Zy is the coordinate of

the starting polnt of the line of velocity discontinuity.

Remembering that along CV = Ugy - Vgx _ué) (x2+y2) + const.
we compute the integral g zdV¥. Integratiug by parts we obtain
C

§ zd¥y = - & [on - Vox - ‘é—J (x2+y2)] (dx+1dy)
C

But
$ xd.x=‘¢' ydy:ﬁxszc:f yzdy=0

Thus we may write

g zdy= - U, ¢ yax + iVOf xdy + %9’ yzdx + ixzdy

The formula of Green, applied to the present case , glves
-fyax = $xdy =J/ axdy = s¢ ylax = - 2 // yaxdy =
-2 Sy*4 x%dy = 2// xdxdy = 2 Sx*

where S 18 the area bounded by the wing contsur, x* and y*
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are the coordinates of the center of gravity of the wing area.
Hence

$ zdy= [Ub + iVO + W (- y* + 1x*)} 8 = Sg¥ (8)
C

The magnitude here denoted by g¥ 1is evidently no other than
the velocity of the center of gravity of the wing avea. OSubstitut-
ing the values of the computed integral in formula (5) we obtain
the general formula for the force exerted hy an unsteady flow on a
wing

X + 1Y = 1pggl' - 1pzM§*%+ i 4 ‘1"\ dz + _\qu* + 1r~ﬁdW dz>

(1)

The above equation is analogous to the Blasius-Chaplygin equation
for steady flow. The integral In the equation may be taken about
any contour L enclosing the wing if between T and C there
are no singular polnts of the complex potential function. This
fact makes equation (I) suitable for the computation of the acting
forces,

If: 1) the wing moves forward with constant velocity
8q_*/6t =wW=20

2) the circulation about the wing is constant I' = const,
ar/at = 0

3) the fluid is infinite, over a finite distance there are no
vortices and the fluid is at rest at infinity, then the last term
in equation (I) is equal to zero since in this case the integral
does not depend on the time, Since in this case dw/dz outside
the wing is throughout holomorrhic ard at 1nfin1ty is of the order
1/z, (dw/dz) is at infinity of the order 1/z¢ and therefore
the first integral likewise vanishes. Thus the acting force is
reduced to the Jourkowsky force

X + 1Y = 1pgyT

If there are external mass forces an Archimedes force is to
be added on the right of formula (I).
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We shall now comnute the moment. For the moment or. the force
acting on an element dz ‘taken with respect to the origin of
coordinates we may write

dM = xdY - ydX = Real ~ iz (AX + 1dY)

or, on the basis of (1) and (2)

_iPo 3 '
%dﬁ = R‘eal z i_? dz - aitp dz - —K?I) dz + q4d® + iwzdcp}

Setting 2z = X% + y° = r® we shall have: Real zdz = dr>/2 and

considering too the fact that 1wW=zzd® is purely imaginary we
obtain

-
1 1Po 2 o 1 2 —_— =
af = Y dr® -~ r 5 4 (r“®) + Real quoZd\l’ + gpzdw -

1 [aw ¥ d 1
'EZ'\dz dz + 3§ T 2z zdw
Integrating over the contour of the wing we obtain

13__ 2 4l

™ gt

- ) _
b, — . Qw /ax - Qw
+ Real L-iqo $zav + % Fzz, dz psfz\d /‘ dz + 5— 2 22 5 dzJ

where 1 is the distance of the point of separation to the origin
of coordinates. (In the expression contained in the square brack-
ets In the first three terms i has been replaced by -i. This
is permissible as we are interested only in the real part). Taking
equation (6) into account we finally obtain
2. _eriy ar
- 2 dt

+ Reall- 1q0 <qu*+ip .¢'z dz>- ﬁz@w> dz + 5— 5 sfzz dz dz -] (I1)
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Evidently in both formulas (I) and {II) the two first integrals
may be taken over any contour L enclosing the wing 1f between L
and C there are no singular points of the complex potential func-
tion.

If the fluid is infinite and there are only isolated singu-~
larities within the flow (sources, vortices, dipoles, etc.) both
integrals in equation (I) and the two first integrals in equation (II)
may be determined as the residues about the singularlties of the
functions under the integral signas., The last integral in equation (II)
in this case may also be computed with the aid of residues if it is
posgible to construct an analytical function of the complex variable =z
having isolated singularities outslde C and assuming on the
contour C itself the values z.

From what follows it will be seen that the presence of isolated
singularities in the flow, if the transformation of the outside
rogion of the wing into the interior of a clrcle is effected by a
rational functilon, the last integral in equation (II) may be obtained
as a sum of residues.

4, DETERMINATION OF POTENTIAL FLOWS

A solution of the vproblem of destermining the potential flow of
an infinite f1uid for any motion of the wing with the aid of a
function conformally meppicg the external regicn of the wing on
the upper half-plane has previously been given by S. Chaplygin.
In this section we shall givs methods of solving this problem with
the aid of the function 2z = f{{) that transforus the outer region
of the wing in the z-plane into the interior of a unit circle K
in the ¢{-plane.

For definiteness we shall assume that the center of the
circle X coincides with the origin of coordinates and that for
7 =, {= 0. The function f({) near the origin of coordinates
hags the following form

z=f(§)=lf+ko+klg+k2§2+,.. (1)

where P( §) = kO“" kl{; + k2 f. 2 +. . . holomerphic everywhere within
K:
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We denote the complex potentlal function of the flow under
consideration by W, (z) = Pq + W, where Py (x, y, t) and

Vo (x, ¥, t) are single-valued and harmonic functions everywhere
outside the wing. To determine w, (z) we have on the wing con-
tour the condition

We represent Vo (z) 1in the form
wo (z) = Ugwy (2) + Vowy (2) + wwg(z)

gso that wy (z) wg (z) wz (z) are holomorphic everywhere out-
side the wing and their imaginery parts V¥, V5, ¥z on the con-
tour of the wing C satialfy the following conditions:

\V1=y}\l»’2=-x5\1/3=']2‘(x2+y2) (3)

It 18 readily seen that Wy (z) is a potential function of

the potential flow for forward motion of the wing along the x-axis
with unit velocity, w, (z) corresponds to the forward motion of
the wing with unit velocity along the y-axis and w3(z) gives the

potential flow of the fluid in rotating the wing about the origin
of coordinates with an angular velocity equal to unity. The func-
tions wy (z), wg (z), W3 (z) are determined by the geometric

propexrties of the wing contour,

Replacing in Wy (z), 2z by { we obtain a function Wg (&)

holomorphic within K. In a similar manner we obtain the func-
tions wy (z), wp (z), wz (z) holomorphic within K. To deter-

mine these functions we write boundary condition (3) in the
{ -plane on the contour of the circle K in the following form:

Imag w; = Imag f(c)

Imag wp = Imag - if({) (4)

Inag Wz = - & (<2 + y%) = - 3 £(L) F (O
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From the above equations we cen, knowing f({), determine
vy (£), Wy (%), Wz ({). The first two of these functions can

readily be expressed through f{{) in finite form as may be
shown as follows: The functions wy () and f ({) have the

same imaginary parts on the circle X, £ {{) having a pole at
{ = 0 with principal part k/{. Evidently k/{ and -k{ have
on K the same imaginary parts. Hence

() = o) - ¥ - B (5)

or

wi(t) = kg + (ky - E)0 + kpt® 4 . . . (5a)

From boundary condition (4) we conclude that the functions wo({)

and -if({) have the same imaginery parts on K. Furthermore
the function ~if({) has a pole at ( = O with principal
part -ik/{, the negative part of which on K coincides with
the negative part -ik{. Therefore

wa(l) = - 1£(L) + -1_%‘ - 1E¢ (6)
ox
wa(l) = - iky - i(k + Xt - ik2§2 - . .. (6a)

In what follows we shall use the notation
=1\ = bk
f & =k§+k+——+—+u
\{ 0T Tt
On the unit circle x° + y2 = f (¢) £ (1/t) hence the last of
conditions (4) may also be written thus:

. N
mag ws (8) = -3¢ ) F () (7)

Restricting ourselves for simplicity to the case where the
contour of the wing is an analytical curve and therefore f ({)
is holomorphic at !ﬁ, = 1 we shall show that the problem of
determining wx (¢) 1is equivalent to the problem of splitting

the function - :25 (L) T K%> into a sum of two functions
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f1 () and £, (¢) in such a menner that f, ({) is holomorphic
everywhere within and on K, and f, ({) everywhere outside and
on K and that

wz(l) = 2y (£) (8)
Thus for ¢} =1, -1f (¢) F (l\ = £, (t) + £p (¢) 1is
a £/

purely imaginary, hence on the circle K
— A\
Real f, () = - Real. £y (t) = - Real fp <%‘) (9)
It is evident also that on X
. = 7/
Imag fp ({) = - Imag T, \\%> (10)

The functions f4 ({) and ;fg'(l/g) are holomorphic within

and on K, and according tc (9), on the circle their real parts
are equal. Hence throughout the {-plane the equation holds:

£ (8) = -5 (1) +q (11)
1 2 (&)

where q 18 a purely imaginary constant,

By virtue of relations (10) and (11) it is evident that for

g =2
Imag £, (§) = Imag £ (§) + q

Hence the function 2f; (¢) - ¢ 1s holomorphic within X and for

|§' = 1 the imaginary part is equal to -i(x2 + y2)/2 and there-
fore with an accuracy up to an unessentlal additive constant rela-
tion (8) holds. The above aplitting of the function is particularly
easy to carry out in the case where f({) is a rational function.

Evidently w, (¢) may be determined also with the aid of the

Schwarz integral (reference 12). Since the real part of the_
function iwg ({) on the circle K is equal to 1/2 f (¢) T (1/¢)

2 ) ;
vz (§) = C+ f; J'It r (el®) F (e‘ie) Eifiﬁ ae
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where C 1s a purely Imeginary constant which may be neglected.

Transforming, we obtain

wyll) = - = § £() T (é);—*—% L (81)

=SSN

If f(§) is single valued and has only an isolated singu~
larity, the integral in equation (8;) may be computed with the
aid of residues. Setting

wz(l) = cq8 + czﬂz + 03§3 e (817)

With the aid of equation (8;) for the coefficient cq we obtain
the formula

o1 =<dw3 .1 F rF G) & (12)

e $
af /§=O 2n g u

The series (8;;) for w3(§) may readily be written out if we
first expand in a Fourier series the function

W(e) = - % £(e19) F(o=19), For, let
o©
V(6) = ag + :S:\ (ap cos né + b, sin n 6)
n=

The trigonometric series for o(0) conjugate to VY(6) is
(reference 12)

[ -]

\—'\
p(0) = ) (- a, 8inn 6 + b  cos n 8)
n=1
Setting b, + ia, = ¢ , Wwe have
oo
n

ws(l) = 0 on b
n=1
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The complex potential functions w, (z), LA (z), wz (z) the

methods for obtaining which we have considered are expressed in
terms of the variable z = x + 1y, referred to a moving system
of coordinates, and give the absolute flow of the fluid. In order
to obtain the relative flow of the fluid it 1s necsssary from the
vector of the absolute velocity to subtract the vector of the
trangporting velocity. Thus the relative veloclity fleld is deter-
mined by the complex function

dWO — -—
T " Y * oz

If the motion of the wing is translational ®w = O, the
relative flow is potentiel and has the complex potential functlon

wo (Z) - EOZ

This 1s the so-called characteristic stream function of the wing
for translational flow at infinity.

It should be remarked that the potential flow considered 1is
not always physically possible since it is determined only by
kinematic conditions without taking account of the dynamic condi-
tion of the positiveness of the hydrodynamic pressure, It can
readlly be shown that with the presence of projecting angles on
the wing contour the velocity of the potential flow of the fluid
near the angles tends to infinity and this, according to the
integral of lagrange leads to infinite negative pressures phys-
ically impossible within the fluid. In this case if as before
an ideal fluid is assumed it 1s necessary to consider motions
with discontinuous velocity distribution along lines starting
out from the walls of the body.

5., ELLTIPTIC WING AND JOUKOWSKY PROFILE

We shall consider examples of the application of the methods
presented above to the determination of potential flows. We shall
first take a wing bounded by an ellipse with semi-axes a and D
(fig. 3). The external region of the ellipse is conformally
transformed into the interior of a unit circle K in the {-plane
with the aid of the function
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-1 [:(a-b)c + (a+bd) lﬁ]

N

ft
Hy
—~~

e
~—

i

so that

b
1]
]
=

. = - L (a-
> (a+b); k = 5 (a-b)

By formulas (5a) and (6a), section 4, we obtain immediately

bt
ia

Wl(ﬁ)
Wz(C)

Further, we have
B 2 1,2
=71 < a~-b
- % £({) f(—\ = - 1 | (a%-12) ¢° 4 2(af4b?) + 5
£/ 8 ¢
By (8) section 4, we obtain

v (£) = -  (aB-p2) (@

If b =0 the ellipse degenerates into a plate of width 2a and

then
wy =0
wo = ia {
Ws-‘i—ziéz

As a second example we shall consider the problem of deter-
mining the potential flow of an infinite fluid for any motion
within 1t of a Joukowsky wing. Incidentally, we shall compare
certain geometric characteristics of Joukowsky profiles which we
require for determining the hydrocdynamic forces.

As is known (reference 13) the outer region of the circle K,
(fig. 4) in the plane 2z, = Xy + 1y,, 1is conformally mapped on
the external region of the Joukowsky wing in the plan z' = x'+iy’
with the aid of the function
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2
1 a

z' ~a== Zn 4+ — 1

L (s Zl) 1)

The Joukowsky wing 1s given completely by the parameters a,
a, R, the geometric meaning of which on the z)-plane is clear from
figure 4., The angle o may be taken as a number characterizing
the concavlty. of the profile; ¢ = R cos a-1 characterizes the
thickness of the profile; if € = O we have an arc of a circle.
For R = const., o« = const., and the variable a in the 2z; and

z' planes vary similarly, hence the number a determines only the
linear scale of the Joukowsky profile, The point Ml transforms

into the sharp edge of the wing M. At this point the correspond-
ence will be quasi-conformal. All angles in the z!'-plane will be
twice as large as the corresponding angles in the z,-plane, ZEvi-
dently at the point M; the direction MP; wall correspond to

the direction M P and the direction of the radius OM;N, goes

over into the direction of the principal tangent at the inflection
point M of the Joukowsky profile. Hence /PMN = 2/ P1MNy = Za.

Transforming the irrotational flow about the cylinder K;

with the aid of relation (1), we obtain the flow about the Joukowsky
profile, the angle between the velocity at infinity and the real
axis in both planes being the same since (dz'/dzl)oo = 1/2. The

point Ml will be a critical branch point of the flow if the angle
of inclination of the velocity at infinity to the x;-axis is

equal to a or m+a. Only in this case will the velocity of the
transformed flow at point M be finlte and therefore only in this
case 18 an irrotational motion of a potential flow about a Joukowsky
profile possible, Evidently the direction of a possible irrota-
tlonal flow makes the angle o with the direction of the principal
tangent at the sharp edge, This direction is known as the first
axis of the profile. The angle o may thus be implicitly defined
with respect to the profile as the angle between the principal
tangent and the flrst axls indicating by definition the di:ection
of a possible potential irrotational flow about a Joukocwsky pro-
file, In what follows we shall assume the direction of the first
axls as the real axis of a Carteslan system of coordlnates xy,

the origin of which is at the sharp edge and we shall set =x+iy = z.
Evidently

(2)
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The external reglon of the circle K, 1s mapped on the
interior of the unit circle X in the §-plane with the aid of

the transformation
+1la -
2, = 8 [Re £1 1] (3)

¢

Thls transformation is so determined that to the point M,, zy = -a

corresponds the point M', § = 1,

We make use of equations (1), (2), {3) in ordsr to express =z
in texrms of ﬁ. We obtain

aR |1 2 & 7
- .. -2 1= 4
where, for briefness, we set 1 - = = p3 evidently |[pf <1,
? J R

We shall now compute the area of the Joukowsky profile and
the coordinates of the center of gravity x¥* and y¥*, x¥+iy¥* = z%,

There are immedlately evident the following formulas, valid
for a profile of any contour:

dz

2(¢) at

S = [ff dxdy:—ﬁydx:ﬁxdy:-%ﬁs dz = -
C C C

N

Sx* = ffXde.y = :L'ﬁ dey = ]..'ﬁ (Xz + yz) dy
2 2
C C
Syv - S yaxay = - L8 Pax - 16 (24 )
2 o 2 C
whence
- i - dz
so¢ = - 16 07tz - - 25 2(0) () g el

To gimplif'y the computations we introduce the varilable z,
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aR aR |
ZO=Z+—2—(“'2)='?!_

Fe-w? iy

Further for |§| = 1, we shall have

-
moI SRy

i

d.ZO aR
T2

Thus, for determining S we arrive at the computation of the
integral
. 2 2 r’ ~ 2 =
ia“R =2 1 Ll (1 -u)
S = § |+ (1 -0 ] - -u) at
8 U-Fle
K !' [g (1 - HC)Z

Within KX the function under the inbtegral has poles at the pointso
{ =0 and § = (. Taking the residues about these poles we obtain

B (2w @) (uow it - Zu) (5)

@ ) @
o 1%
or replacing p by 1 - —g

o2 o R cos a -1
S = wa"k™ cos o >
{2R cos o - 1)}°

For computing the coorlinate zo* we have

s 3 3 ; . + )
- ia“R N ¢ 4 =2 1 ]f 1
Sz ¥ = « _.1..6.._.. ﬁ !--,g- "'l\l-"f"l') T;;Ej §+(J_.. ) . i _é. -
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Taking the residues about the poles of the function under the
integral and transforming the obtained expression we find

Szo* - ﬂaSRS (1"U-)2 (l'E)z (p_...ﬁ.-zu:l-)
8 (1-pp)3
Returning to the variable 2z we may write
aR
Sz* = Szy* - 8 3 (u-2)

or

35 = o= T 2 =
Spx = 228 ‘;Z“‘E‘;; ‘.L“'“}_gél'”)z + (H-Z)(MHT-Z)] (6)
~Hpt

Equations (5) and (6) may be simplified somevhat by taking
into consideration the radius of the circle Ky into which the
circle X; is transformed, by the inversion z1; = a%/z;. This

circle as is known (reference 14) figures in the graphical con-
struction of the Joukowsky profile by the method of Trefftz.
Denoting the radius of the circle K, by r, we obtain

R
= TR oos o - 1 (7)

r

With the aid of the radius r we may write

2
s = Z2- (R%-rf) (5a)
“33 g
z* = 2 5 R -r” +e % (6a)
2 \ g2 2

When o = O the Joukowsky profile is symmetrical and has the form
shown in figure 5. We denote by 1 the maximum diameter of the
symmetrical profile. Setting { = -1 in formula (4) and taking
account of (7) we obtain for 1

1 = ZRr = R+r

For the value of the area and the position of the center of
gravity of the symmetrical profile, we obtaln from equations {5a)
and (6a)
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2
_ na .2 ~ 2
s =21 1 -8 (5b)

x¥ =

-
l_z+%]; y* = 0 (6b)

Do

Having f£(f) in explicit form (equation (4))rand meking use
of equations (5a) and (6a), section 4, we find wl(ﬁ) and wo ().

Neglecting the additive constante we obtain

wy (L) = %Rii |1 - (1-n)2 ﬁ} (8)
i8R , 2 1
vo(l) = == ¢ i (1-0)" 137 _{ (9)

Further, we have

1a2R? |1 ¢ 17, - -2 1
aé LE v (u-2) + (1-u)2 ij;z] L§'+ (u-2) + (1-n) & ]

Neglecting the principal parts corresponding to the poles
within K, the additive constants, and multiplying by two we
obtain

2n2 O 2 -
ws(t) - - 22 by [Le (e o G eeicn) | o

or after transforming:

18°R% 1 1)t g ] '
w3(() = 2= [g-i_“m.r R (10')

Thus the potential function of the potential flow for arbitrary
motion of the Joukowsky wing 1s expressed by the egquation

-

- )2t — - . 2 = ‘\W
wolt) = Baol - bG8 8l | ¢ ey Ll B
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and the complex velocity in the {-plane by

o er ., _(1-u)¢ = _
Tz o T b

isR __® 3 (1-2)% (uip-2) T
T S5R ————— 2-p~ -1 = > 11
Y | (B-u-ul) (£-1) + T ) (11)
Further, we have
dWo _ dWO df.
dz & dz
where according to equation (4)
dz _ &R (3_¢) r 1+t - 2ul
= X2 T b 2
Tz LEZ (1 - mz] (22)

Evidently at the point E =1 corresponding to the sharp edge
d{/dz has a pole and therefore dwo/dz remains finite only if

(/ dWo\

\E’ﬁ-), = 0 (13)
(=1

The condition (13) assures the finiteness of the velocities and is
therefore necessary in order that the unsteady continuous potential
flow be physically possible.

Making use of the explicit expression (°1) for awy/al , we
reduce condition (13) to the form

av, - & lew=d) g (14)
1-pp
oY
Vo = - 2B g (14a)
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The velocity component UO does not enter into condition (14) and

therefore the forward motion along the x-axis may be with any
velocity, the veloclty at the tralling edge being finite. Condi-
tion (l4a) denotes geometrically that the instantaneous center of
rotation lies on the straight line PP' (fig. 6) perpendicular
to the x-axis and at a distance a(R+r)/4 from the origin, The
addition of & velocity parallel to the x-axis dlsplaces the
instantaneous center of rotation along the straight line FPP',

We thus arrive at the conclusion that the velocities at the trall-
ing edge are finite if the moving polhode coincides with the-~-
straight line PP*. This result, established for a Joukowsky wing,
is evidently valid in a similar form for any wing with sharp edge.

For a =0, R=1, p =0 the Joukowsky profile degenerates
into a plate. In this case

dw 2
-0 ia - :
dc = iaVv - '-'2—' (§ 2) w (11 )

and instead of (14) we have
V. ==2uw (14')
2
The straight line PP' for the plate is at a distance of 1/4 the
width of the plate from the trailing edge (fig. 7).
6. FORCES ACTING ON THE WING FOR A POTENTIAL FLOW
OF THE FLUID

We shall study the hydrodynamic properties of the forces and
egtablish methods of computing them for the case where the motion
of the infinite fluid is throughout potential and the circulation
about the wing is egual to zero:

P:O -

We shall gtart with equations (I) and (II), section 3. The com-
plex potential function WP(Z) is holomorphic and single-valued

outaide the wing and therefore the expansion of de/dz at infin-
ity starts with the terms of the order 1/22; (dw,/dz)? is
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therefore of the order 1/z4' and hence the Integrals

2 N 2
d‘WO 1 G'WO\
s (2 o<} 6 (52

Py =

0O 1+

taken over the contour of the wing are equal to zero:

P=RO=O

0

Remembering that

. dwo . dwo dwo
Qo=1cﬁz 4z =16 2£(L) T at =2ﬁk<a—§—-£=o

gince the function to be integrated is holomorphic within the
circle K and only at the poinv £ = 0 does it have a pole of
the first order. Applying eguations (TI) and (II), section 3, we
obtain

] 3Ly OIg
XO + 1YO = é‘_'t“" = gt" + i(L)IO (III)
R o Ny,
M= Real | - 1a5Ty + 57 (V)
where
d.WO
Iy = P | Sg* + 2ak\g7 /, (1)
i =0
and
- 4w
No=£5 § =z g7 ds (2)
C

First of all we shall make certain observaticns that follow
directly from equations {IXI) and (IV). If the wing moves in
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tranglation with constant velocity it is evident that IO and NO

do not depend on the time, and it then follows from equation (1II1)
that XO + 1¥5 = O, This is the well known paradox of D!'Alembert.

In this case ﬁb = Real [- EOIO] , hence the moment of the hydro-
dynamic forces, generally speaking, is different from zero also
for uniform rectilinear motion., The moment M = O if qo e&nd

Io have the same direction because then qnIy is real. For

translational motion the components Ip, Iy, and Iy depend
linearly on the veloclty components q,, Uy, and V,. Hence

for a wing there exist in general two directions having the
property that for translational motion in any of them the moment
of the hydrodynamic forces is equal to zero.

If the motion of the wing ls a rotation wilth constant
angular velocity about a stationary center, we find by choosing
the origip of coordlnates at the center of rotation that the
moment My with respect to the center of rotation remains at

all times equal to zero, Hence the hydrodynamic force in this
cage must be considered as applied at the center of rotation.

The potentlial motlon of the fluid may be considered as
gtarting from a state of rest as a result impact or suddenly
applied system of impuleive pressures Py = =~ PP (reference 8)
along the contour of the wing C. It is not 4ifficult to show
that B = - Ip and M = ~ Real Ny are the sum of the impulsive

pressures applied to the fluid and the sum of the moments of all
these impulsive forces with respect to the origin of coordinates.
For we have

~-
B=~-p qu*+i szdw:l = -ipﬁqu)o

where Sg* is replaced according to equation (6), section 3,

by 9'z®¥0. Further integrating by parts we obtain on account

of the single-valuedness of Cpo,

B=1p foydz = -1 6 p dz (3)

The integral at the right denotes the sum of all the impulsive
forces.
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In a similar manner we have

_ . 0 s aw. = o 6o 2ZZ
M = - Real 5 b zz dwy = p $ Py 3 (4)
or
M=TReal p § 294z = - Real S zp, dz (5)
3ince
%ﬁ = Real zdz

The right-hand side of (5) represents the sum of the moments of
the impulsive forces with respect to the origin of coordinates. It
is thus clear that B and M are respectively the momentum and
moment of momentum of the fluid.

Equations (III) and (IV) express the theorems on the momentum
and moment of momentum for unsteady potential flow of the fluid.
The term -iq I, in formula (Iv) is added on the right on account

of the dilsplacement of the moment center,

If the motion is such that for the two instants of time to

and t; the orientation of the wing in stationary space is the
gsame and the translational and angular velocities are the same the
impulse of the hydrodynamic forces for the interval of time tj-t,

is equal to zerc since the change in momentum of the fluid for this
interval is equal to zero, In particular for periodic motions of
the wing the mean value of the hydrodynamic forces over the

period T equals zero, that ia,

t+T

1
g (Fy o+ 1¥y) at =0
t

vhere Xp' and YO' denote the projections of the forces on the

stationary axes of ccordinatcs. The mean value over a period of
the moment of the hydrodynamic forces about any point of the wing
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for periodic motion 1s in the general case different from zero.
Remembering that the change in the moment of momentum relative to
the origin of coordinates over & perliod 1s equal to zero we may
write

t+T 4T
- 1 . -3 1 ! -
Hy=3 Moat=3ea1-—TE I g, 1, at
t t

We shall now consider B and N more in detall., According
to equations (3) and (4), and the boundery condition (3),
sectlon 4, we may write

B=1p é‘scpod-z = =p ﬁcPody + ip ﬁCPOdX = =0 .qscPOd\Ul -1 fcpofm’z
) dzz
M=p 35@0-—2-—: - pﬁCPOd\US
Setting
B =3By + iBy
and

-p Joa¥ = A (i, k=1, 2, 3)
c

ik

we shall have

By = N1Ug #7221 Vo + Azy® )

By = MUy +hgp Vo + Agp® & (6)

M= AU #hpz Vo + Mgz 00

It is readily shown that the matrix ||7\ ik H is symmetrical,
Aik = )‘ki since Opk and \Uk are harmonic conjugate functions,
For, on the contour C we have

ol Ay
ds  on
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Therefore,

e O
$o, 5508 =50, 5 ds
Applyling the Green formula we obtaln

, Sp S
$ %5{}‘%5}{%“:0

whence follows the symmetry

g Pyl = g @By

To explain the physical significance of Aik we shall also compute
the kinetlc energy of the fluid T. We have

2 o
T=gff ‘gradcp‘ dxay:_ggs~mo&l'qu='%f$0d\l/

whence
2 2 2 N

or

2T = BxUp + B, Vg + Mw

J

It is thus clear that the coefficients Aik play in the given case
the same part as the masses and moments of inertia in the dynamics
of a solld body. These coefficlents are known as the virtual
masses.

In what follows we shall use the following notation:

(7)
A1 = Mz = Axys A31 = A3 = Axws Az2 = A2z = Ayp f
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It is not difficult to derive formules for the transformation of
the coefficients of virtual masses in psasing to a new system of
coordinates, Let us together with the system of coordinates xoy
assume the system Xx'o'y' where the coordinates of the new
origin o' in the system xoy are £, n and the =x'-axis makes
with the x-axis the angle . Denoting by

Ayt 7‘y' A )‘x'y' >‘x'w' )‘y'w' the coefficients of the virtual

masgses referred to the new axes of coordinates we shall have the
Tfollowing transformation formuleas:

Ar = Ny cos? B + Ay sin § + Axy sin 2B
Apr = Ay 8in® g 4 A con? B ~ Ay Bin 2B
¥ X y Xy
>\xly| = %‘ (Ay-7\x) sin 2B + 7\xy cos 2B
Axguy = (Ax“'AXyE+Axw) cos B + (Axyn-Ay§+§WD) sin B
Aprgs = = (Axn—kxyﬁ+-AxﬁQ sin B + (Ayyn-Agl+dy,) cos B
2
Apt = M+ AER - 2NgEn - 200gn-Ayel) + Ay

The numerical values of the coefficients Ax, Ay, and Axy

depend only on the direction of the assumed system of coordinates,
while the values of Ay, and Aym depend also on the position

of the origin; Ay depends only on the position of the origin,
According to Mises the combination Aik congidered as a whole
constitutes a motor dyad (rcference 15). The latter is analagous
to the motor dyad of inertla or a solid body and is called the
motor dyad of the virtual masses.

It 1s readily seen that in the general case the determinant

IAx 7\xy 2
Ikxy Ayl = Axky - ny > 0 because the guadratic form

2 2
2T = }\XUO + 7\yVO +2?\xy UOVO

is positive definite since it gives the kinetlc energy in trans-
lational motion. Hence it follows that the equations

Axn* - nyg* + wa = 0; A '-Ayi* A

xy* yw = 0

have the only solution
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" AN - Axy“xg - A Aykgg
’ il . P
ANy - Ay Ay - Py

The point with coordinates §¢* and n* is called the central
point (reference 16). If the origin of coordinates is chosen at
the central point then

>‘xw=7‘yw=o

The momentum vector is expreesed through the velocity of the
central point. The moment of momentum with respect to the central
point does not depend on its velocity. Since A, Ay - kxyz >0
the equation )

has two real roots %l and Az. Therefore there always exist two

mutually perpendicular directions such that for translational
motion of the body

-A

Top = M35 Ige = - Mgy

where -Ipy, -Igp, and gy, qo are the components of the momentum
of the fluid and the velocity of the body in these directicns,

In the case of translational motion in one of these two direc-
tions; the moment of the hydrodynamic forces about the central
point is equal to zero, that is, in this case the hydrodynamic
force is applied at the central peoint. This evidently follows
directly from equation (IV) if it is remembered that for the cen-
tral point Aygy = Aym = 0. If in addition the velocity of the
motion is constant the hydrodynamic force and moment arc equal to
Zero,

We shall now give formulas for computing the coefficients of
the virtual masscs, We have

". /dXO> T
B = - Sg¥* + 2nk ——
o [- q " J

¢ =0
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As before let

z = (L) = 1—(:'+ kg + kl§ + k2§2 + .0 e

¢

be a function that transforms conformally the outer region of the
wing into the interior of a unit circle. According to equations (5a)
and (6a), section 4,

EZT) - (k1K) Ug - 1(k+K) Vy + cq0 (8)

where ¢y = (dw3/d§) ¢y may be computed for example by

¢ =0
equation (12) section 4. With the aid of (8) we may write
s _ _ ~
B= -p i‘[S+2“k(kl'kﬂUo+i [S-2nk(ky+k)] Vo+ [1Sz*+2rke] 9} (9)

Separating in (9) the real and imaginary parte we obtain on the
basis of equations (6) and notations (7)

AL = -p [s -2k (kky+kky ) ] (10)
Ay = -p [S-2nkE-n (ki +Kk, )] (11)
7\xw = p [Sy* - rc(kcl+fc_5i)] (13)
wa = p [-Sx* + wi(ke,-keq)] (14)

For Aw we have

7\(0 = ~-p ﬁ C,D3d\l/3 = = P ﬁ Wsd\l-rs = = é—j': ﬁ W3d.(W3 -Ws) = - 2'-{ ﬁ wsdws
C C C c
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but for ‘§| =1 w(f) =w (1/t)*, hence

N =B S i-‘g@) e at (15)
K

Formula (15) is suitable for computing AN, if wg({) is detor-
mined. It is evident finally that on the basis o% (2) there also
holds for Ay the formula

oy = /D 3
Ny =2 8 (O (§) T at (158)
K

It £(f) is rational wx({) 1s also rational and the integrals in
formulas (15) and (15a) are computed with the aid of residues.

We shall now write in explicit form the expressions for the
hydrodynamic forces in terms of the introduced coefficients of
virtual masses., From equation (III) we obtain

dUO av dw
- - 0 =X
Xg = [Ax T My T Mwds T @ AyyUo + AyVp + Aymw)] (16)
*If
2
w(l) = cqf + cpl + .
then

W <:§> = ¢y % + Co ;% + .
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From equation (IV)

2 aM” ' ‘ o
o = - at *+ Real [1(Uy-1vy) B]
whence
-
i au av, aw 2
> 0 0 4w 2
Ho = e+ Mo as + ot + MU Vo') +

+ (\-N) Ul + (Amuo-xmvo)wJ (18)

We recall that in formulas (18), (17), (18), U, and Vg are the

projections of the veloclty of the origin of coordinates on the
moving axes.

With the aild of the formulas established in this section and
the potential functions obtained in section 5 i'or theé potential
flows in the motlon of an elliptic cylinder and Joukowsky wing in
an infinite fluid, it 1s not difficult to write out the values of
the coefficients of the virtual masses for the above profiles.

Choosing the axes of coordinates along the principal axes of
the elliptic cylinder we have

z = £(0) =% (a-d) {1 (ad) 3

¢
ws(l) = - 1 (2B0?) ¢2

whence

k=~

[av | o

(a+b); ¥y

]
1
)
o~
o
1
o
-
.e
o
I
Q

Moreover we have

. . 8.= nab and x¥* = y¥ = O,
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Making use of these relations we obtain from equations (10) to (14)

2, = z, = - -
7‘x = pnb”; Ay = pra‘; >‘xy = )‘xw = )\Ym— 0
From equation (15)
Ao = -§ § (222) 2 [ (a®-b2) | {at = E (a2-p?)
w = "8 §2 L 2 -8

K

The center of the ellipse is the central point,

Applying formulas (16), (17), and (18) for the projections of
the force and moment we obtain the followlng values

dUop

— 2 \
it + praw VO

XO = - pn'bz

2 2
dt

2,242
~-b doy
- _ prla . ) T - pn(az_bz) UOVO J

- pna - p:rbzw U > (19)

]
o
1

o"
]

For b = O the ellipse degenerates into a plate for which

4

R 2. - B _n. _ bra_
Ax_o, y = Pra®; }‘xw‘&y"}\yw“o’ ?xw_ 5
av
X~ = na%nv s Y, = - naz -0
0 = pra®loi %o = - P 3 (20)
- pﬁa4 aw

2
MO = - "8 a‘_E - prna Uovo

With the aid of similar but more laborious computations, on
the basis of the results obtained in section 5 and the formmlas
of the present section, we computed the values of the coefficients
of virtual masses for the Joukowsky profiles, The results are

glven in table I. Examining this table we find that the concavity
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characterized by the angle o plays a more important part than the
thickness which 1is characterized by the paremeter ¢ = R cos o - 1.
A very thin, slightly curved profile is in its hydrodynamic prop-
erties similar to an arc of a cilrcle.

The coordinates of the central point of a symmetrical
Joukowsky profile with respect to the origin coinciding with the
sharp edge, 1f the x-axis is directed along the axls of symmetry,
is determlnsd by the formulas

12
al
SRR B G ) m* =0

For an arc of a circle the central point is the center of the
circle of which the arc is a part.

7. MOTION WITH CONSTANT CIRCULATION

We shall study the special case where the motlion of the fluid
outside the wing is potential, the velocity is egual to zero at
infinity and the circulation about the wing is different from
zero, I['s£ 0., Assuming that the motion of the fluid is contin-
uous throughout we may consider the circulation I' as constant
in time. For, the pressure from its physical meaning is a single-
valued function of the points of the fluid, but only for I'= const.
is the term quat in the Lagrange formula for the pressure, a
single-valued function.

The problem of determining the hydrodynamic forces for con-
stant circulation was proposed by S. Chaplygin and the funda-
mental results were obtained by him (reference 11). In the case
under consideration the characteristic stream function of the
fluld near an infiniltely distant polnt is of the form

r c1 ¢2
w(z) = e Inz + Co*+ 7 * ;E + 0 . e (1)
whence
aw T 1 %1 % (2)
dz “2xiz - 2~ 3 et
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and

2 T
(&) -5 %3 @

On substituting § for 2z wherse ﬁ as before 1is a variable con-
gidered within the unit circle K, we shall have

w(t) = wo(g) = g Int (4)

where wo(ﬁ) is the characteristic function of the irrotational

flow. The term - 5T In{ is added because of the presence of
L

circulation about the wing. ZEvidently on the boundary for

1¢] = 1 Tmeg ZP Inf = 0. Thus the Tunction w({) satisfies the
required boundary conditions and gives the flow with circulation T
about the wing,

We shall now investigate the forces. Everywhere outside the
wing dw/dz is holomorphic and near an infinitely distant point
the expansions (2) and (3) are valid, hence evidently

1 5(W ; dz = 0; Real ¢ z ! dw\>
2 dz -

Further, we have

. Tk I 1 -
Q=1 ¢ z i dz =Qy -1 § L§+k0+kl§+' . .] FrEi e af = Q@+ 'k,
C X
and
p . -G 2y = (1} 4t
Vg § 225z =Nogpm ¢ (ﬁ)f(g) t (5)

s 9. r -
Q=1 ¢ z Fmp—d2; Nyg=5 § zz i
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31k,
Remembering that sto = -wl'ky and that ON/dt = ON,/dt since

the second term on the right in (5) does not depend on the time
we obtain by equations (I) and (II), section 3, and (III) and
(Lv), section €

X + 1Y = X5 = 1¥ + i (go + iwkp) (V)

M= ﬁb + pl' Real Eoko (V1)

where Xy + 1Yy and ﬁb denote respectlvely the force and moment

which would act on the wing 1f for the same motion the cilrculation
were equal to zero., Evidently ag + iwky 1s the velocity vector

of the point 2z = ky as it moves with the wing. This polnt, as

is readily seen, 1s iavariably fixed to the wing and therefore its
position on the wing does not depend on the choice of the system
of axes. Setting g + lwkgp = g We may write formula (V) in
the following form:

X + 1Y = Xg + i¥g + iplqy (va)

The above equation is a generalization of the Joukowsky theorem
for the arbitrary motion of a wing in a fluid with rotational
potential motion. Formula (VI) is equivalent to the following:

1\-/[) = ﬁo + Real ikp (- ipI‘Ek) (VIa)

The second term in the above equation represents the moment of the
Joukowsky force iquk applled at the point z = k.

The point z = k; possesses very remarkable dynamic prop-
erties which are evident from the following conclusions drewn from
formulas (Va) and (VIa):

I. If the wing moves in an infinite fluid with constant cir-
culation the total hydrodynamic force consists of the force which
would exlst in the absence of circulation and of the Joukowsky
force 1quk where q 1s the velocity of the point 2z = ko.

II. The total moment of the hydrodynamic forces about the
point z = kg for motion of a wing in an infinite fluid with

constant circulation does not depend on the value of the cir-
culation.
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III. The impulse of the Joukowsky force is equal to ipls,
where 8 1is the displacement vector of the point 2z = k3 1in the
stationary space.

From the above we obtaln directly the following results:

1. The mean value of the Joukowsky force for any interval of
time t - tp 1s equal to ipl'g* where g* = 8/(t - t;) is the

mean velocity vector of the point 2z = ko.

2, If after a certain interval of tlime the point 1z = kg

returns to its initial position the mean value of the Joukowsky
force For this interval of time is equal to zero,

In the preceding section we have found that in the perlodic
motion of the wing the mean value of the forces over a period in
the absence of cilrculation 18 egual to zero. Taking this into
account we obtain on the basis of result (1) the theorem of
Chaplygin: If the motion of a wing is a periodic oscillation
associated with translational motion with constant velocity g
then for constant circulation the mean value over a period of the
hydrodynamic forces is equal to the Joukowsky force 1plqy corre-
sponding to the translational motion. This theorem may evidently
be given a more general formulation, namely: If at the instant
Ty and t, the translational and angular velocity and the orien-

tation of the wing are the same, the mean value of the hydrody-
namic forces for comstant circulation in the time <t - tp 1is
equal to iquk* where qk* is the mean velocity of the

point z = kg.

As an example we shall consider the motion of a Joukowsky
wing with constant circulation. According to the rule of
Joukowsky, the circulation about a wing will be determined from
the condition of finiteness of the velocity at the trailing edge.

In Section 5 we have seen that the requirement of finite
velocity is expressed by the condition

(=1

(where § = 1 18 the point corresponding to the sharp edge on
the wing) which according to (4) may also be written thus:
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/ N

Setting in the expression for dwo/dz (formula 11, section 5)
{ = 1 we obtain

. 202 -
_ 1a®R® (u+u-2) i
1RV - =~ (1) @t e = ©
whence
/ a
' = - 2x8R \Vo+ Z(R+r) W (7)
4

If T = 0, relation (7) becomes condition (l4a) section 5. We
note that the motion along the moving x-axis is in no way con-
strained by the condition of finite velocity at the trailing edge.

We shall nowv explain the kinematic character of the possible
motions of the wing for which condition (7) for T = const is
gatisfied. Condition (7) oxpresses the requirement of the con-
stancy of the projection of the velocity of the points of the
wing on the moving straight line PP' perpendicular to the first
axis and at a distance a(R+r)/4 from the sharp edge.

If the angular velocity of the wing  is constant (7) is
satisfied if the instantaneous center of rotation lies on the
straight line QQ' (fig. 8) parallel to the straight line PP!

at the distance 5%%%5 . Thus for I' = const; W = const only

such motion is physically possible for which the moving polhode
is a straight line perpendicular to the first axis. If the
equation of this straight line is x =h we may give h any
previously assiganed value, choosing the corresponding circula-
tion by the formula

I = Lh - 2 (R+r)] 2naR W (8)

In particular a rotation of the wing is possible with constant
angular velocity about any stationary center in the z-plane.
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We shall now consider econdition (7) assuming that the point A
(f1g. 9) belonging to the wing and having in the moving system the
coordinates § and 7 moves in stationary space with velocity v

constant in direction Denoting by B the angle between the
velocity vector ¥ and the x-axis we shall have

a8
Vog=-Vsingp -wf; 3t =
Condition (7) now assumes the following form:

T' - 2raRr {VsinB+ [i—Z‘(R+r)}w}

vhence if ¢ -;é a (R + r)/4 we obtain for the angular velocity

n

© = i VSinB] (9)
¢ - @R+ B :

Setting

r = = (O, and Vsin g =
2naR I-E-E(R+r)_' 0 Q-Z‘(R+r)

we have

1

W = (L)O -
For a thin, slightly curved Joukowsky profile relations (7),
(8), and (9) assume the form

I' = - 2ra(l+e) IVO + %‘—D-J (7a)
' = na(l+e) [2h-a] (8a)
(9a)

= 1—1 . ]
l_2:ta(l+ g V sin BJ
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For a plate ¢ = O.

The position of the point 2z = kg for the Joukowsky profile,
on the basis of the transformations (4) section 5, is determined
by the formula

ko= 2 (2 -p) = 2 (R+ o719 | (10)
If oo and € = Rcos a - 1 are small then

kg =2{2+¢ - 1a) (10,)

N

For the arc of a circle the point z = ko lies at the center

of AB (fig. 10); for the plate the point z = ko coincldes with
the center.

» The force and moment in the motion of a thin and slightly
curved Joukowsky wing moving with constant circulation are
expressed by the equations

dv, d.w T
X = = pnaz [. dto + % a a-—%'/ o - (G'UO + Vo + 8.(1))] = p‘lvk
duy dvg aw 5
Y= -pne? |ag b g s e g ree (To+fao) |+l

where Uk, Vy are the projections of the velocity of the point

Z = ko on the moving axes

ao, a
Uk=Uo+""2"(D; Vk=vo+'2‘(2+€)(.0

f du, av
= |5 0 0 9 2 dw
= - 212 —_— —_ < == 2 . 2
M= pra I ac, I 4 a T + a FE: + (UO VO ) +

S 1 1
+<aUO -1 aa,VO> W + UOVO] + paI’[ Uy + éeUO - EG'VO_I
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In varticular for a plate with the origin of coordinates at the
center we obtain

X = pnal Vow - pl'Vg
av,
2 %0
Y = - pna® = + o[
P I o' 0
¥ = prat dw 2 g
M=-Tga - e Yoo

8. FORCES ACTING ON THE WING IN THE PRESENCE COF A
SYSTEM OF POINT VORTICES WITHIN THE FLUID

We shall consider first the case where there is only a single
vortex within the fluid. ILet a be the point where the vortex is
located at the instant of time under consideration and let -I" be
the circulation about 1t. Evidently the circulation about the
wing is equal to I'. Frcm the fact that the pressure is single-
valued it follows that the circulaticn I' is constant in time.

If within the fluld there are several isolated vortices the
circulation about each vortex is constant in time. The complex
potential function is holomorphic everywhere outside the contour C
with the exception of the point a which is a logarithmic singu-
larity of w(z). Near the point a the function w(z) 1s of the
form

w(z) = - == 1n (z-a) + ¢c5 + ¢ (z-a) + ¢y (z-a)% + . . .
(1)
LU —%— +Cy + 205 (z-a) + . .. (2)

The velocity function dw/dz 1s single-valued and holomorphic
outgide the contour C and has a pole of the first order at the
point a,

Denoting by v, the velocity induced at point &a we shall
have Vg = cy. If the vortex is free it will travel with

velocity 3&.
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From expansion (2) for (dw/dz)2 near the point a we obtain

<dw‘ _ Pz 1 ) PV' 2
(Z_a)z ﬂl(z-a) a

4

e . . (3)

<

Since the velocity at Infinity and the circulation over an
infinitely removed contour are equal to zero hence near the infi-
nitely removed point, the expansion holds:

1

Cl 02
w(z) =cn' + =+ 2. . . .
(2) = og' + G+ 2
whence
aw Ol' 202'
dz 22 23
and

e P (4)

We shall compute, taking account of the behavior of w(z)
outside the contour €, the integral

P=% <>dz

In place of the contour C we may take for the integration the
contour L and the circle IL;. The direction of integration 1s

indicated in figure 11, The contour L encloses the wing and the
vortex and all its points may be taken as far as we please from
the origin of coordinates; I, 1is a clrcle of small radius with
center at point a.

From the expansion (4) for (dw/dz)z sbout an infinitely
removed point it is evident that

;@ e
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The integral over the contour 1, is computed by replacing
(dw/dz)z by its expansion (3). We obtain

P = i, T (5)

To compute the integral denoted in section 7 by Q, we repre-
gent the complex potential function w = ©® + iV in the form

w(z) = wig(z) + wy (2)

where

Vg = @ + iWO; W) o=@y + 1Yy

wo(z) 1s the complex potential function of the motion of an infi-
nite fluid in the absence of any singularity within the fluid. The
conditinns and methods for determining Wo(z) were exnlained in

section 4. wy(z) 1is the complex potential function of the added
motlon of the fluid outside the wing due to the presence of a point
vortex at the point a with circulation -I. wl(z) is determined
from the conditions

1. Along C V¥, =0

2. Near the pcint a

wilz) = - I In (z-a) + P (z-a)
2ni
and therefore
dw
1 T 1
W - Egr-att (z-2) (6)

3. At infinity wy(z) is holomorphic

The function P(z - a) 1is holomocrphic everywhere outsidec the
contour C. Transforming the outer region of the contour C into
the interior of a unit circle in the { -plane and substituting
for z in wl(z) we obtain
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wl(ﬁ) = 51:?.1.. [ln <§ - %‘) -In (¢ - p) :' + const (7)

where b denotes the transformed point a in the { -plane, If
the transformation is such that z = corresponds to { = O then
near z =o, { (z) will be of the form

¥k d1 dp
E ="+ S+ —=+ ... .
z 7,2 9.3

Making use of these expansions and (7) we obtain the expansion of
wl(z) near an infinitely removed point. Neglecting the constant

terms we obtain

V4
£ l — l
—_ = - ek --b\——-+... (8)
dz 2ni Kb J g2
Replacing w by wp + Wy Wwe may write

aw dw

= aw _ 1
Q=1 ¢ ziz=%%+1 s za.z._dz
C L+L1
aw dwl
Computing the integrals 1 § =z g; 4z and 1 $ z o 4z
L L,
with the aid of expansions (6) and (8) we obtain
. /-— lv T .
Q= Qy + ik \b—‘5> + ial’ (9)

For the hydrodynamic force formulas (I) and (III) with (5)
and (9) gives

BIO Sa ) —
1Y = el 2= T . ip% 2 R
X + iy st + ipqOI' + 1p 5% ipVel + 1p st & (D b)P
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It is readily seen that gqg + Ba/dt 1s the absolute velocity of

the vortex. It is evident also that gy + 8&/5t - vy is the
velocity of the vortex relative to the fluid which we shall dencte

-

by Vyep- If the vortices are free ¥ngy = 0. Setting
ipk (b-1/b) = I; we may write

B3I -
X+ 1Y = X + 1¥g + o= + 1p Vpg T (VII)

We note that -I;, may be considered as the momentum of the fluid

induced by the vortex in the presence of the wing. The concen-
trated force causing the vortex to move with a given velocity for
unsteady motion (reference 17) is equal to ip vrelF. IT the

vortices are free

X + 1Y = EQEQE%_Ell (VIIa)

If the vortices are invariably fixed to the wing and the wing is
in translational motion, b = const, w = 0, and therefore
8I1/8t = O.

For the acting force we obtain the formula

X + i¥ = Xy + 1¥g + ip ¥yl (VIIb)

The forces, if the vortex is fixed to the wing, areqpomputed by the
Joukowsky formula if the corresponding values for vV, are taken.

The reaction force of the fluid on the vortex is equal to -ip?feip

and therefore in this case the total reaction of the fiuld on the
vortex and on the wings is equal to zero.

Thus if the vortex idealizes a small wing invariably Tixed
to the given wing the total hydrodynemic force acting on the systenm
consisting of the wing and the small wing reduces to Zpn + i¥g.
Such an infinitely small wing has no erfect whatever on the general
hydrodynamic force. This result 1a of course valid only in the
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cage where there are no singularities in the flow except the vortex
under consideration. In particular the circulation over the con-
tour enclosing the wing and vortex in the case under consideration
is equal to zero,

We shall now suppose that we have a system of n vortices
at the points a, with the circulation -T (k = 1,2,3. . .n).

Bvidently the circulation about the wing is T =Zl“k. In this

cage P 1s represented az the sum of the residues about the poles
of the integrated function which will be the points ay.

— .
D= 12 Vak Pk = iv*T (56.)
k=1

where v* denotes the velocity of the motion of the center of
gravity of the system of free vortices.

Decomposing w into the sum: wy + w3 + Wy + . . . + Wy

where Wy corresponds to the motion of the fluld about a station-
ary wing in the presence of a vortex at point &), with the cir-

culation -Pk and proceeding in the same manner asgs for the case
of a single vortex we obtain

n n
zE“ . - 1 . ]
Q = QO + 1 asPS + lTk/bs - APS = Qo + ia*¥P + = T
- b P

8=1 g=1 \

where bg 1is the image of ag 1in the { -plane, a* is the
coordinate of the center of gravity of the vortices and I

denotes the expression ipz k <Fé - %{) 'y end -~-I is the
s
a=1
momentum of the fluid induced by the system of vortices in the

preseace of a stationary wing., In place of formula (VII) we
obtain in the given case the analogous formula

8(Iy + I)

X 4 iY = ——— + ip PpeyT (VII')
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where

n ‘ Ba
T*_ T oo (\ b= - ?a~\ T
rel* T/ 9 * 5% 8/ * =8

8= 1

If T = 0 the concept of center of gravity becomes meaningless and
in formula (VII') and in the previous relations the summation gigns
must be retained.

If the wing is in translational motion (w = 0) with constant
velocity and the motion of the fluid with respect to the wing is
steady, and the vortices within the fluid are free, then it is
evident that bk = const and therefore

X+1¥ =0

This 1s a generalization of the paradox of D'Alembert to the case
where the motion is steady and within the fluid there is an arbi-
trary system of free vortices at a finite distance.

If the motion of the wing is translational as before and the
motion of the fluid is steady but the vortices are bound then the
force acting on the wing is

X + 1Y = ip ?*rell"

The force due to these vortices is likewlse equal to ip?*relf

and therefore this force is entirely transmitted by the fiuid to
the wing. The latter case has been considered by Lagally
(reference 18).

Formula (VII') permits determining the hydrodynamic forces if
the positions and velccities of the vortices are known., If the
vortices are free or invariably f'ixed to the wing it is sufficient
for determining the forces to give only the positions of the vor-
tices, because in these two cases the absolute and relative veloc-
ities of the vortices are completely determined by the positions
of the vortices,

The problem of determining the positions of the free vortices
as a function of the time in any particular case, is generally
speaking, very difficult. It is sometimes possible to estimate
ag(t) and therefore also bg(t) approximately from various

physical considerations.
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Let us consider the limlting case where the system of free
vortices 1s very far removed from the wing ‘asi -~ @,

ﬁe have

k 2 . ¥k 41
Thexrefore

LY 1 o
RICERLEIDYSRNLY
g=1
1 1
+ O(g): -(a* - k) '+ O <‘a*s>

where a¥* 1s the center of gravity of the system of vortices.
The expression O(l/as) approaches zero together with l/as

Tor [asl - o, With the aid of formula (VII') we obtain for
the force

S{a* - kn)
X 4 1Y = Xg + 1Y - ip — g2 T4 o<.;.-_>
3
Evidently
5(&* - ko) -
— e ¥ -
ot =Vt - dg

where the right side represents the velocity of the center of
gravity of the system of vortices with respect to the point 2z = kj.
Tor 'as| -» » keeping only the principal terms we obtain

X + 1Y = Xy + 1¥g + ip(g - V)T (10)

Thus the additional force acting on the wing due to the presence
of a system of free vortices very far removed from the wing is
computed by the Joukowsky formula.
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If ¥* = 0 we obtain a stationary vortex at infin'ty and we
shall then have the force found in section 7. The result con-
tained in equation (10) applicable to the translational motion of
the wing was obtained by Wegner from other considerations (refer-
ence 19).

We shall now turn to the computation of the moment of the

hydrodynamic forces acting on the wing in the presence of a vortex
at point a. We consider the intsgral

This integral taken over 1 1s equal to zsro since (dw/dz)2 is
of the order 1/z%4 at infinity. Further, it is evident that

2 \2 RN

1 dw\°_ 1 dw a (dw 2

R CAPE Sa) (& 2 AR

z § <dz> 2 ? (z-2) dz> z + 3 f dz) O
Iy 1 1

From the expansion (3) for (dw/dz)2 near the point z = a it
follows that

Real R = Real [-ia P] = Real a v, T

gince the real part of the first integral is equal to zero. Taking
into account {7) and (9) we obtain with the aid of formulas [II)
and (IV)

- - — i_ by 1\'. :: ! dl-‘
M= My + p Real {qo Lk@ ") + a:.] I -avlr+ at (VIIT)
where
T =T, (1 _ 1
L"Zni‘gf(g)f g at

17T
C‘B‘

\

The sign Real before dL/dt is omitted slnce 1. 1is always real.

|
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For
2ni t _ 1 t -1

I ( 1i_._1 ) at = dw; but along the circle Ky, =0
hence dwy = drpl.

If there is a gystem of vortices within the fluid then

M=My+0p é {Real [kqo <s* E§> + as(qo-vas)]l’s + ?ir} (VIIIa)

Finally in the general case where we have a gystem of vor-
tices and a clrculation over an infinitely removed contour I‘ £ 0

we shall have for the force and moment the eguations

’

- 1 N B
X + 1Y = X + i¥q + 1p 2{540 l:k (bs - 5;‘)*‘ Vs rel_ir‘s +

+ip gy PO} (VIIDb)
”~ "" |
= j — /— 1)\ I -0
M= MO + P Reall% quo (bs - B—;) + ag (qo"vas)j Iy + koqgl"of +
4 -
d dLg
o — VIiIIb
& § at ( )

As we have seen, in the formulas determining the hydrodynamic
forces there enters the vector 7V, representing the velocity
induced at the point where the vortex is situated. We shall now
give a rule for computing. Va if the complex potential
function w({) is known,and z = f£({) where f({) is a function
holomorphic near the point { = b, the image of tho point a at
which the vortex is situated.

By the expansion (2)

dw T 1
a=°1=<a'z“+”z““‘“a> ()
- z=a

<}




54 WACA TM No, 1156
Near the point b, w({) is of the form
w(t) = ®(f - D) - 2= 1n ({ - b) (8)

2ni

where ®({ - b) is holomorphic near the point b. Moreover we
have

where

Combining (a), {(B), (3) we may write

= 1 T 1 1 N 1
v.=|9'(0) = - 5=+ =5 =+ 377 — -
a [ 7 2ni g—b 7! 2ni Z()i(é_b) + J__ ZOn (E_b)d + . . ']9-—1)
2 L=
or
= [ z0"™ 0 ’
va=<@|<o> S i S o N N S
4ni zg'/2g am L (-b \z' zy'y ¢
Noting also that
1 1 29"
T T g T T ay (¢-p) +
we obtain finally
= /. r z0'\ _1
To-(on @+ 00) o (11)

We recall that the circulation about the vortex is -T.
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As an example we shall determine the hydrodynamic forces
acting on a plate when there is a vortex in the fluid. For
Simpliclity we assume that the point A at which the vortex is
gituated lies on the x-axis coinciding with the direction of the
plate (fig. 12).

With the aid of the function

the external reglon of the plate is transformed conformally into
the interior of the unit circle X in the { -plane. Making use
of the expreasion for wo(ﬁ) found in section 5, we obtain the

complex potential fvnction in the presence of a vortex in the form

2
w Iy r ¢
W(g Vol § - ‘L—]:a;' 2 + 2;1 <§— "§—>— 'é-*ﬂ—i- In (>'§O)
0

where @O is the image of the point zZg at which the vortex is
Situated. Remembering that zp = Xy 1s real we obtain by
formula (11) for the velocity of the fluid at point A

r %o

i on_az

X0

<

(12)

/%02 -a2 2 vaz L

2
2 —i[VO L Yo% L w (xg + v/x0%-2%)

| S
+
a8}

For the force by formula (V1I), after passing to the variables
in the =z-plane, we may write
EEB dzg dzg
it at_ *tdt

X + 1Y = Xg + 1¥g + (

-puh/koz-az I+ ip?}el r (13)

where dzo/dt denotes the velocity of the vortex relative to the
plate.
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Denoting the absolute velocity of the vortex by ?éb we shall
have

-> -~ - - d-Zo
Vab = Vrel + vxoi Vgh = o + 4y + lwx,
In particular:
N -3 - - dZO -
1. If the vortex is free v, 4 = 0; vap = Vyos 5 T 0 -do~10Xg;

2. If the vortex is bound dzg/dt = O
- . - . -
Va'b = qO + ].E,\)XO 5 Vre 1= q‘O + l(L)IX'.O - VXO

By formula (12) in the first case:

d.ZO iVOXO i ZXOZ-aZ T JCO

== = Uy 4 == + - ==

at 0 s 2 - 2ni , 2_.2
'\/XOZ -a A on --ad XO a

and in the second case:

) Woxg
Vpel = U - Smoo== ~ 5 m——mo + Bq1 o3

rel 2 2
/v 2 2 /. 2 2 Xn -a
xo ~8 XO -a 0

X+1Y=Xo+iYO—ip-—O‘—“__(UO+iVO) I+
2

2

2

pasT" pxol’

e — + A (14)

5 2,52
2/;;2-?12 2n (x0%-a")
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For the vortex bound to the plate we obtain

2_40
X + 4/Xp=-a
X + 1Y = Xy + i¥5 + 1p(UgtiVg)T + p 0 0 VT +
¥nC-al
0
2 2
pwasT exql’ (15)
+ = +
2y xOa‘az 2n(x02-a2)

FProm formulas (14) and (15) for xg — - there is obtained

X + 1Y = X5 + 1Yy + ip(Ug#iVg) T

Thus in both cases the force depending on the circulation is a
Joukowsky force,

If the plate is stationary we obtain from formulas (14) and
(15)

2
pXOP

X =

p
o5 AM-AB
Zﬁ(xoz—az) an

that is, the vortex acts on the plate with a force which is the
same in both cases. The suction of the tip of the wing on the
gide of the vortex is greater,

From formulas (14) and (1S) it follows that the forces
increase without limit when Xg = - a. This indicates the

impossibility of the shedding of a vortex with finite veloclty
from the trailing edge. As Xq approaches -~a the forces will

be finite if the circulation T' is small of the order of

Vixl - a.

In concluslon, we compute the moment of hydrodynamic forces
applied at a plate. By formula (VIII) we have

————e o D
’ ﬁ = ﬁo + p Rea.l{?jo <xo+ /xoz-az) T - Zo ?XOI"}.;_ %LE
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The expression for L in the given case is of the form

= I 2 C _a -
T =~ A AR SR

R

Passing to variables in the z-plane and differentviating L with
regpect to t, we find

dL. _ 1 (xg +~Ax02-a3 )2 Azg zd\ﬁ
(dt T a )l

® TS
2_52
XO ~a

Thus if the vortex is free

4 paly
oo Pl Qo2 - i
M= - Zg-gp - eef Up Vg - 7=——=: T (16)
Jxob_au
For a vortex fixed invariably to the plate
i - o
at
and therefore
4: ey
M= - pﬁf g% - pra® Ug Vg + olxg +~/i02-a2) UgT (17)

From formulas (16) and (17) it is seen that for x5 — - the terms

depending on the circulationﬁapproach zero., If the plate it sta-
tionary then in both cases M = 0.
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TABLE 1 - VALUES OF THE VI RTUAL MASS
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COEFFICIENTS FOR JOUKOWSKY PROFILES

62

Strongly curved
thin profile or
arc of circle
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of coordinates for arc of
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Iy curved
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