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THE UNSTEADY MOTION OF AN AIRFOIL*

By L. I. Sedov

systematicalanalysis of the problem of
the determination of the unsteady motion about ail airfoil moving in
an infinite fluid that contains a system of vortices and the deter-
mination of the hydrodynmical forces acting on the airfoil. The
hydrodynamical problem is reduced to the determination of the
function f ({) which transforms conformably the external region of
the airfoil into the interior of a circle. The proposed methods
of determining the irrotations,lmotion of a fluid that is produced
by any motion of the airfoil.are especially simple and effective
if the function f (~) is rational. .% an example the flow is deter-
mined for the case of an arbitrary motion of an airfoil of the
Jouliovskytypo. The l“ormulasobtained for the determination of the
hydrodynamical forces by means of contour integration are similar
to those given by S. Chaplygln, These formulas are used to deter-
mine the force acting on the aizi’oilin the cases where the unsteady
motion is potential throughout and the circulation about the airfoil
is constant and also when the fluid contains a system of vortices.
A full di~cussion is given of the concept of virtual masses together
with practical formulas for computing the virtual maqs coefficients.
A table is added .givin&the virtual mass coefficients for different
types of Joukowsky airfoils. For the case uf motion with constant
circulation the followin~ theorems were obtained. Every airfoj.1
possesses a fixed point such that the force, depending on the cir-
culation, for any motion of the airfoil is determined by Joukowskyfs
law in terms of the velocity of this -point,the moment of the hydro-
dynamical forces about this point being independent of the circula-
tion. Formulas are also given for the dete~mination of the forces
and moments acting on a thin, slightly curved airfoil of’Joukowsky
profile for any motion with constant circulation. For the case where
the circulation about the airfoil is zero the condition that the
fluid velocity at the sharp edgo of the airfoil should be finite for
a continuously potential flow is reduced to the requirement that the
traveling polhode should be a fixed straigh~ line, perpendicular to
the first axis for every airfoil. We have “thesimilar geometrical
condition for the case where the angular velocity of the airfoil and
the circulation are independent of the tflme. ?/ehave also given
fozmnzlasfor the computation of the hydrodyn~~.cal forces when the
flow contains any system of vortices. These forces depend.on the
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on the velocities of the system of vortices. The d.evel-
formulas give, for the case of steady motion o? the fluid,

the results obtained by Lagally. For a.nunstedLy motion of a system
of free vortices which are very distant from the airfoil the results
of H. Wagner are given in the generalized fomn, namely, for the case
of an arbitrai-ymotion of the airfoil. The analysis is illustrated
by the computation of the forces acting on a plate when the fluid con-
tains only a single vortex filament.

1. II!N7RODUCTION

In recent years the unsteady motion of a fluid
increasing frequency the subject of theoretical and

has become with
experimental hydro-

dynamical-inve;ti~atians, Fol’the ]ractical study of &ch motions-it
is particularly important in view of the fact that they include a large
number of phenomena wh+.chare encountered in the solution oi’definite
technical problems. It is svfficiont to mention for exqmFle the prob-
lem of the determination of the aerodyna~ic forces for arbitrary motion
of a rigid and elastic wil~, the problem of the dynamic stability of
airplanes moving within or on the boundary of fluids, tho problem of
the falling of a body on wate~, etc. .

The unsteady motion of a viscous fluid about wing-sh~ped sections
is generally accompanied by separation of the boundary layer which
extends in the form of a thin film fron the point of’separation into
the fluid. The boundary layer in.separating off, is generally speak-
ing, greatly defomed and serves as 3 som’ce of vortex motion within
the fluid. These vortices gradually diffuse and are dissfl.patedin the
general mass of the fluid, These are actur,llj-observed-phenorne.na.In
the case oi’small viscosity it is sometimes succeeded in obtaining for
thmu asuffic:ently accurate description by studying the motion of an
ideal fluid under the corresponding conditions.

As is known, the motion of an ideal fluid under the action of
conservative inertia forces starting frcm a state of rest is always
potential. The physical requirement of positive pressures is gener-
ally impossible to satisfy if the study is restricted to con~~.nuously
potential flows and it is necessary to introduce into consideration
fields of velocity poter,tialhaving surfaces of discontinuity. The
suri’acesof discontinui~y coincide with the boundaries of the body and
they may be considered as a schematic representation of a very thin
vortex layer arising in the viscous fluid for the case of very cmall
viscosity.
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Starting from flows with surfaces of discontinuity within in
fluid L. Prandtl developed theoretically on an expe~imental basis
the approximate theory of a wing of finite span for-steady motion
(reference 1). He also gave examples of the accurate solution of
certain two-dimensional problems on the unsteady motion of an ideal
fluid with a line of &iscontinuity In the form of a spiral (refer-
ence 2).

Birnbaum set up an approximate theory for unsteady motion, the
body being replaced by a system of bound vortices (referenceF3z, 4).

In studying the unsteady motion with surfaces of velocity dis-
continuity a fundamental difficulty lies in the fact that the mechan-
ical characteristics of the body-fluid system depends not only on
the condition of motion of the body at a given instant of time but
also on the preceding motion of the body. The motion of the system
at a given instant of time is thus a function of a combination of
all preceding states of motion of the body. In particular, the exact
solution of the two-dimensional problem of unsteady notion, with
lines of velocity discontinuity starting out from the trailing edge,
encounters very great mathematical difficulties and as yet no solu-
tion has been obtained. This problem was characterized by Prandtl
as “hopeless” of solution.

The forces acting in a two-dimensionalflow on a plate from
the trailing edge of which a line of velocity discontinuity is given
off were investigated by Wagner (reference 5), Glauert (reference 6)
and Keldish and Lavrentev (reference 7). In these investigations
it is assumed that the llno of discontinuity coincides with the
straight line which is a prolongation of the plate. This assumption
IS associated with another, namely, that the angle of attack of the
plate remains ird?initesimallysmall.*

In the general case it is convenient to isolate from the hydro-
dyneraicforce~ those which depend only on the velocities and accel-
erations of the body. These forces agree with the total force for
the motion of the body in an itiinite fluid on the assumption that
the motion of the fluid is continuously potential. The determination

*In the given case by angle of attack is meant the angle between
the velocity of the center of the plate and the direction of the
plate.
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of the motion of the fluid and the forces in this case is a classi-
cal problem (reference 6), The additions to these forces thus
isolated will depend essentially on the position and motion of the
singularities of the flow outside the kody.*

By the akove approach the study of the continuously potential
flows enters the study of discontinuously potential motion of an
ideal fluid as a component part.

The general theorem of the forces independent of the singulari-
ties of the flow was worked out by Thomson and Tait (reference 9) and
Kirchhoff (reference 10) as far tack as the middle of the last centwy.
The theory of =rchhoff was generalized.by S, A, Chaplygin (refer-
ence 11) in the case of the two-dlmenstonal problem to the mot:on of
a wing with constant circulation. In this work methods were given
by Chaplygin for the determination of the potential flow of a fluid
and the computation of the forces based on tinetheory of functions
of a complex variable, The present paper gives a systematic presenta-
tion of the theory of unsteady motions for the case of Chaplygin and
the case where a number of isolated vortices exi~t within the fluid.
There are a large number 01’unsteady motions, the ch%racter of which
will be clear from what follows, for which these theorie~ may have a
direct practical value. Moreoverj as has already been pointed out,
the results of these theories may enter as componenc parts of inves-
tigations dealing with the most general case of the mo~ion of a fluid.

2, FUNDAMENTAL RELATIONS

We consider an arbitrary plane-parailelmotion of a cylindrical
wing within em incompressiblefluid such that the plane of the motion
is at right angles to the generators of the wing, All mechanical
characteristicswill be computed with the aid of a Cartesian system
of coordinates xOy fixed invariably to the wing, For convenience
the vectors will be considered as complex numbers. Yor example the
position of a point will be detemined by the vector

z = x-!-iy i . 61-

-— -. —

*These singularitiesmay be vortices, boundaries of the fluid,
surface of discontinuity, etc.

.—.———- . ., , , ., ,,,, ,,,,, ,
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Denoting the velocity of the origin of coordinates by qO we have

~()= T30+ iv.

where U. and V. are the projections of the origin on the axes

of coordinates. For the velocity of a point of the wing with
coordinates x, y we shall have

c1=U+iV= Uo - toy+ 1 (Vo -t@x)

that is

where w denotes the angular velocity of the wing.

The velocities of the particles of the fluid we denote by-.
T=u+iv. Letters with a horizontal stroke above will denote
the conju$ate complex of the same letter~ without the strokes.

E.x - Q-; 7 = u - iv, etc.

The streem function is denoted by ~(x, y, t). Since the
flow ia continuous we have on the contcmy C:

d$ = ;nds = udy - VdX = Udy - Vdx (1)

Remembering that U = UO -~yjv.~o+wx and integrating rela-
tion (1) along C we obtain

W= UOY-VOX-; F+Y2) + const: (2)

The value of the stream function $ on the wing contour is
always detemnined by equation (2) which is true for any motion of
the incompressiblefluid, Equation (2) is the mathematical expres-
sion of the condition imposed by the moving liquid due to the pres-
ence of a solid body within it.

In the region of potential motion the potential CP(X,y, t)
and the streem function V(x, y, t) satisfy the equation of Laplace

-—
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while the f’unctionethemselves are connected ly the Cauchy-Rienann

so that

whence

cp+ i$ = w(z)

A

F=u - iv =

w(z) is known as the comylex potential

ail
-F

dw
dz

function.

For points of the region of potential motion the pressure
p(x, y, t) may be computed with the aid of the Lagrange integral,
In the absence oi external mass forces we shall have

3?= &~(”’+‘2)P~(@-P~

where p is the density of the fluid, PO (t) is a fuilctio~ldepend-

ing only on the the. This function is detemnined by the given pres-
sure at any one point of the fluid. In the above formula of Lagrange
the partial derivative - w/at is taken on the assumption that the
potential cp is expressed as a function of’the the and the coor-
dinates f,17 defined in the stationary system of axes. Between
the coordinates ~,11 ad the coordinates x, y in the moving
system we have the relation:

f = C(X, Y, t); q = 7(X, Y, t)

Evidently @t and aV/bt are the projections on the sta-
tionary

We

axes of the velocity of “thetransporting motion,

thus have

a~ (x,y, t) acp(f p)+mt+w~
at = ------%- ‘“– a~ at

or
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where ~ is the velocity of the transporting motion.

Making use of relation (3) we rewrite the integral of Lag.’ange
for the case where the potential Is determined as a function of the
time and coordinates of the moving system:

P= po(t)-p~-; (U2 + V2) + p (Uu ‘tV-V) (4)

Since in what follows we shall throughout make use of the mov-
ing system of coordinates we shall always compute the pressures by
the above formula.

In d.ifferenti.stingvectors with respect to time we shall dis-
tinguish derivatives with respect to the moving and stationary sys-
tems of coordinates. The first we shall denote by the symbol slat
and the second by 5/5t. The former are used because the vectors
under consideration depend also on the points of space. These
derivates are connected, as is known, by the relation

which on replacing the vector = %y the complex number a beoomes

(5)

3. FORMULAS FOR T!KEFORCE AND MOMENT EXERTED

BY THE FLUID ON AWING FOR UNSTEADY MOTION

In this section we shall consider the general formulas express-
ing the total hydrodynamic force and the moment of hydrodynamic
forces with respect to the origin of coordinates by means of inte-
grals, taken around the coirbo~rof the wing, of functions of a com-
plex variable. With respect to the velocity field of the fluid we
assume only that in the vicinity of the contour of the wing C the
field has the potential ~(P,t) where P is a point within the
fluid and t the time. At the traillng sharp edge of the wing in

1
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the plane of motion of
start out. In passin~
edge M the potential
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the fluid a line of velocity discontinuity may
through the line of discontinuity a.tthe sharp
cp in the general case changes by a &iscontin-

uous amount the value of which may depend on the t~e.

We denote by n the unit vector directed along the normal to the
contour of the wing C into the fluid, by dz the element of the con-
tour C in the pcsitive direction of yassing rcmnd che contour
(counter-clockwise). To obtain the direction dzj n must ba rotated
by a right angle from right to left, hence the equation:

nldz~=-idz

Let dx + idY he the force acting CR an elazent of the wing dz
of unit width. Making use of fommzla (4) section 2 for the pressure
we have

dX-tidY=- pn Idzl = ipdz =

= ipo (t) dz - ip ~ dz - 32?(u + iv) (u - iv) dz + ip (uU + vV) dz

(1)

since (u - iv) dz . dw, udx + vdy . dcp and along the wing
udy - Vdx = dti it can he readily found that on the wing contour the
fcilcwing identities are valid:

[
] = - $~wiv)(dv -id$) +- ~ (u+iv)(u-iv)dz - 2 (uU+vV)dz

,——

1 9+ 2i (u+iv) dv - 2 (uU-tvV)dz= - ~ ~ dw - 2(U-tiV)d, =

2
i ‘dw=--
()

dz +
2s

Moreover, on the basis of relation

(3)
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the aid of (2) and (3) we reduce relation (1) to the form:

(dX+idY) = ~ idz + i~dC~-
“(z %!!p :[FZ +

Integrating thie equation we obtain the formula for the total
force on a unit width of wing:

9

(4)

(5)

In the above equation r denotes the cjrculation taken on the con-
tour of the wing counterclockwise and ZM is the coordinate of

the starting point of the line of velocity discontinuity.

Remembering that along C~ . Uoy - V@ - ~ (#+y2) + const.

we compute the integral $ zd~. Integrating by parts we obtain
c

[ 1j Zd~ =-$ TJoy - VOX - ; (X2+Y2)((j,-x+idy)
c

l?ut

$xdx=$ydy =$x2dx=$y2dy=0

Thus we may write

$ Zdl+f.- U. $ ydx + tV# xdy +
c

The formula of Green, applied to the

; $ y2dx + ix2dy

present case, gives

-$ydx=ixdy =~sdxdy=s$ y2dx. -2ff ytjXdy.

2 Sy* h x2dy = 2JJ xdxdy = 2 SX*

where S is the area bounded by the wing contsur, x* and y*



10 NACA TM No. 1156

are the coordinates of the center of gravity of the wing area.
Hence

[ 1
$ zd$= Uo+iVo+W(-y++ ix*) S.Sq~ (6)
c

The magnitude here denoted %y q* is evidently no other than
the velocity of the center of gravity of the wing area. Substitut-
ing the values of the computed integral in formula (5) we obtain
the general formula for the force exerted by an unsteady flow on a
wing

(I)

The above equation is analogous to the Elasius-Chaplygin equation
for Bteady flow. The integral in the equatjon may be taken about
any contour L enclosing the wing if between L and C there
are no singular points of the complex potential function. This
fact makee equation (I) suitable for the computation of the acting
forces.

If: 1) the wing moves forward with constant velocity
5q*/5t = w. o

2) the circulation about the wing is constant r = const,
dI’/dt. 0

3) tie fluid is infinite, over a finite distance there are no
vortices and the fluid is at rest at infinity, then the last term
in equation (I) is equal to zero since in this case the integral
does not depend on the the. Since in this case dw/dz outside
the wing is throughout homomorphic andah infinity i~ of the order
l/z, (dw/dz)2 is at infinity of the order l/z2 and therefore
the first integral likewise vanishes. Thus the acting force is
reduced to the Jourkowsky force

be

x+iY. fPqor

If there are external mass forces an Archimedes force is to
added on the right of formula (1).



NACA TM No. 1156 11

We shall now comvute the moment. For Lhe moment oi’ttheforce
acting on an element dz taken with respect to the origin of
,coordinateswe may write

$ = xdY - ydX = Real - i; (dX+ idY)

or, on the basis of (1) and (2)

Setting z~ . X2 + y2 = r2 we shall have: Real ~dz = dr2/2
considering too the fact that i~oz~d~ is purely imaginary we
obtain

and

hi .&~dr2- f
~~d (r2Cp) +Real iqo~dv + qoz~w -

P 2p ——.— L

)

1 ,~dw 2 al
-~ z’\aT dz+~~Z?dW

1

Integrating over the contour of the wing we obtain

;ti=.;rM2g+

where rNI is the distance of the point of separation to the origin
of coordinates, (In the expression contained in the square brack-
ets in the first three terms i has been replaced by -i. This
is permissible as we are interested only in the real part). Taking
equation (6) into account we finally obtain

pr2M m
$.-— 2 E+
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loth formulas (I) and (11) the two first inteGrals
any contour L enclosing the wing if between L
no singular points of the complex potential func-

is infinite and there are only isolated singu-
larities within the flow (sources, vortices, dipoles, etc.) both
integrals in equation (I) and the two first integrals in equation
may be determined as the residues about the singularities of the

(II)

functions under the integral signs. The last i~tegral in equation (II)
in this case may also be computed with the aid of residues if it is
possible to construct an analytical function of the complex variable z
having isolated singularities outside C and assuming on the
contour C itself the walues :.

From what follows it will be seen that the presence of isolated
singularities in the flow, if the transformation of the outside
region of the wing into the interior of a circle is effected by a
rational function~ the last integral in equation (Ii) may be obtained
as a sum of residues.

4-, DEI!ERMINATIONOF POTENTIAL FLOWS

A solution of the problem of determining the potential flow of
an infinite fluid for any motion of the ‘~ingwith the aid of a
function conformably metippif.gthe externai reglm of the wing on
the upper half-plane has previously been given by S. Chaplygin.
In this section we shall give methods of solvlng this problem with
the aid of the function z = f(~) that Transforms the outer region
of the wing in the z-plane into the interior of a unit circle K
in the ~-plane.

For definiteness we shall assume that the center of the
circle K coincides with the origin of coordinates and that for
z = ~, ~ = 0. The function f(~) near the origin of coordinates
has the following form

z =f(~) = :+ko+k1~+k2c2+, . . (1)

‘2
where P(c) =ko+k1~+k2~ +. . . homomorphic everywhere within
K,



1

NACATM NO. 1156 1s

We denote the complex potential function of the flow under
consideration by W. (z) =CPo + i$O where cpO (x, y, t) and

$0 (x, y, t) are single-valued and harmonic functions ever~here

outside the wing. To determine WO (z) we have on the wing con-

tour the condition

(2)

We represent Wo (z) in the form

W() (z) = Uowl (z)-!-vow~ (z) -I-(IJW3(Z)

so that W1 (z) W2 (z) W3 (z) are homomorphic everywhere out-

sld.ethe wing and their imaginary parts $1, $ 2, *3 on the con-

tour of the wing C satisfy the following conditions:

$1=Y; W2=-X;W3=-; (X2+Y2) (3)

It is readily seen that WI (z) is a potential function of

the potential flow for forward motion of the wing along the x-axis
with unit velocity, W2 (z) corresponds to the forward motion of

the wing with unit velocity along the y-axis and W3(Z) gives the

potential flow of the fluid in rotating the wing about the origin
of coordinates with an angular velocity equal to unity. The func-
tions w~ (z), W2 (z), w3 (z) are determined by the geometric

properties of the wing contour.

Replacing in W(-J(z)) z by ~ we obtain a function W()(c)
homomorphic within K. In a similar manner we obtain the func-
tions W1 (z), W2 (z), W3 (z) homomorphic within K. To deter-
mine these functions we write boundary condition (3) in the
~-plane on the contour of the circle K in the following form:

Imag W2 = Imag - if(t) (4)
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From the above equations we can, knowing f(~), determine
WI (t), W2 (c), -W3(0. The first two of these functions can

readily he expressed through f(~) in finite form as may he
shown as follows: The functions W1 (~) and f (~) have the
same imaginary parts on the circle K> f (~) having a pole at
~ = O with principal part k/~. Evidently k/~ and -k~ have
on K the sane imaginary parts. Hence

(5a)Wl(t)= ko+ (kl -idc + k2~2+ . . .

From boundary condition (4) we conclude that the functions w2(t)
and -if(~) have the same imaginary parts on K. Furthermore
the function -ii’(~) has a pole at
part

~ = O with principal
-ik/~, the negative part of which on K coincides with

the negative part -iii~. Therefore

w2(~) = - iko - i(kl + ~)~ - ik2~2 - . . . (6a)

In what follows we shall use the notation

On the unit circle X2 + y2 = f (~) ?_(1/~) hence the last of
conditions (4) may also be written thus:

(7)

Restricting ourselves for simplicity to the case where the
contour of the wing is an analytical curve and therefore f (c)
is homomorphic at Cl = 1 we shall show that the problem of
determining W3 ~~)1 is eq~~lent to the problem of splitting

the function - ;f(~)r -
(c)

into a sum of two functions
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fl (~) and f2 (~) in euch a m~ner that fl (~) is hol~orphfc
everywhere within and on K, an? f2 (~) everywhere outside and

on K and that

w3(~) = Zfl (t)

Thus for ICI = 1, ()-;f(~)F 1
c,

=fl (g) +fz (~) is

purely imaginary, hence on the circle K

()l\Realfl (~) = -Real.f2 (~) = -Real= ~

It is evident also that on K

(8)

(9)

(lo)

The functions fl (~) ~d -~ (1/~) are homomorphic within
and on K, and accordir.gto (9), on the circle their real parts
are equal. Hence throughout the ~-plane the equation holds:

/\
(11)

where q is a purely imaginary constant,

By virtue of relations (10)
Itl =1

Imagfl (~) =

Hence the function 2fl (~) - q

and (11) it is evident that for

Imagf2 ({) + q

is homomorphic within K and for

Itl =1 thetiaginmy part is equalto -i(x2+y2)/2 andthere-
fore with an accuracy up to an unessential additive constant rela-
tion (8) holds. The above splltting of the function is particularly
easy to carry out in the case where f(~) is a rational function.

Evidently W3 (~) may be determined also with the aid of the

Schwarz integral (reference 12). Since the real part of the
function iw3 (~) on the circle K is equal to 1/2 f (~) 7 {1/~)
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may be neglected.

(81)

If f(~) is single valued and has only an isolated singu-
larity the integral in equation (81) may be computed with the
aid of residues. Setting

W3(C) = Clt + c~c2 -tc3t3 + . . ,

With the ald of equation (81) for the coefficient c1 we obtain
the formula

The series (811)

first expand in a

$(e)= -~f(eie)

for w3(~) may readily be written out if we

Fourier series the function

~(e-ie). For, let

w

The trigonometric series for cp(6) conjugate to ~(e) is
(reference 12)

\-cp(e)=~(- ansinne+bncos nQ)

n=1

Setting bll+ ian = Cn, we have
m

(12)

——... . . .. . .. .. . . .....--- —- ----- . . ——. - —..—-.--—- --------- -.-..-..—-———
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The complex potential functions wl (z), w2 (z), w3 (z) the

methode for_obtain@g which we have considered are expressed in
terms of the variable z = x +“iy, referred to a moving system
of coordinates, and give the absolute flow of the fluid. In order
to obtain the relative flow of the fluid it is necessary from the
vector of the absolute velocity to subtract the vector of the
transporting velocity. Thus the relative velocity field is deter-
mined by the complex function

If the motion of the wing is translational M = O, the
relative flow is potential and has the complex potential function

W. (z) - ;Oz

This is the so-called characteristic etream function of the wing
for translational flow at infinity.

It should be remarked that the potential flow considered is
not always physically possible sfnce it is determined only by
kinematic conditions without taking account of’ the dynemic condi-
tion of the positiveness or the hydrodynamic pressure. It CS.11
readily be shown that with the presence of projecting angles on
the wing contour the velocity of the potential flow of the fluid
near the angles tends to infinity and this, according to the
integral of Lagrange leads to infinite negative pressures phys-
ically impossible within the fluid. In this case if as before
an ideal fluid is assumed it is necessary to comider motions
with discontinuous velocity distribution along lines starting
out from the walls of the body.

5. ELLIPTIC WING

We shall consider examples

AND JOUKOWSKY PROFILE

of the application of the methods
presented above to the determination of potential flows. We shall
first take a wing bounded by an ellipse with semi-axes a and b
(fig. 3). The external region of the ellipse is conformably
transformed into the interior of a unit circle K in the ~-plane
with the aid of the function

, , ,,,, ,,..,..,-,,,, . .. ——



——.—--— ..... . .. ...., .. , —-, ,,., ..--—., ,!..- —.-., . . . . . . . . . . . ,..— . . . . . . . . . . . . . . . . . ,, . . -. -., . .. .—.

18 NACA TM No. 1156

z
[

=f(~)=-~ (a-b)t + (m-b) ~
!!1

so that

k= - ~ (a+b); kl = - ~ (a-b)
2

By formulas (5a) and (6a), section 4, we obtain immediately

Further, we have

[

a2-bz

1

i (a2-b2)~2 + 2(a2+b2) + ‘—if(c) ~(;)=-;--
2

[2 —
By (8) section 4, we obtain

If b = O the ellipse degenerates into a plate of width 2a and
then

As a second example we shall consider the problem of deter-
mining the potential flow of an infinite fluid for any motion
within it of a Joukowsky wing, Incidentally,we shall compare
certain geometric characteristics of Joukowsky profiles which we
require for determining the hydrodynamic forces.

As is known (reference 13) the outer region of the circle K,
(fig. 4) in the plane Z1 = xl + iyl, is conformallymapped on
the external region of the Joukowsky wing in the plan z! . x’+iyl
with the aid of the function
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The JoukowsQ wing is given completely by the parameters a,
a, R, the geometric meaning of which on the z~-planeis clear from
figure 4. The angle u may be taken as a number characterizing
the concavityof the profile; c = R cos u-l characterizes the
thiclmess of the profile; if c = O we have an arc of a circle.
For R . const., a = const., and the variable a in the Z1 and

z: planes vary similarly, hence the number a determines only the
linear scale of the Joukowsky profile. The point Ml transforms

into the sharp edge of the wing M. At this point the correspond-
ence will be quasi-conformal. All anglea in the zt-plane will be
twice as large as the corresponding angles in the
dently at the point

zl-plane. Evl-
M1 the direction MIP1 w1ll correspond to

the direction M P and the direction of the radius OMIN1 goes

over into the direction of the principal tangent at the inflection
point M of the Joukowsky profile. Hence ~PMN = 2ZP1M1N1 = Za.

Transforming the irrotationalflow about the cylinder K1

with the aid of relation (l), we obtain the flow about the Joukowsky
profile, the angle between the velocity at infinity and the real
axis in both planes being the same since (dz’/dzl)m = 1/2. The

point ‘1 will be a critical branch point of the flow if the angle

of inclination of the velocity at infinity to the xl-axis is

equal to a or fi+a. Only in this case will the velocity of the
transformed flow at point M be finite and therefore only in this
case is an irrotationalmotion of a potential flow about a Joukowsky
profile possible. Evidently the direction of a possible irrota-
tional flow makes the angle u with the direction of the principal
tangent at the sharp edge. This direction is known as the first
axis of the profile. The angle u may thus be implicitly defined
with respect to the profile as the angle between the priacipal
tangent and the first axis indicating by definition th~ Li:ection
of a possible potential irrotationalflow about a Joukmsky pro-
file. In what follows we shall assume the direction of tinefirst
axis as the real axis of a Cartesian system of coordinates XY)
the origin of which is at the sharp edge and we shall set x+ty = z.
Evidently

- iaz = zle (2)
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The external region of the circle Kj is mapped on the
interior of the nnit circle K in the t-plane with the aid of
the transformation

(3)

This transfomuation is so determined that to the point Ml, Z1 . -a

corresponds the point M’, ~=1.

We make use of equations (1), (2), (3) in order to express z
in terms of t. We obtain

SR rl cl
z f(t) = -—z L~+P - 2+ (1.V)2 -H]= (4)

e-iu
where, for Imiefnessj we set 1 - ———— =

R
p; evidently ~ <1.

the

for

s=

We shall now compute the area of the Joukowsky profile and
coordine,tesof the center of gravity x* and y+$ x**iy+ . z*.

There are immediately evident the following formulas, valid
a profile of aqr contour:

SX* = ~~xdxdy = ;$x2dy. ; @ (X2 + y2) dy
c c

ld(x2’+Y2)tiSy* =J~ ydxdy = - i$y%x=--:
2C 2C

whence

To simplify the computations we introduce the variable ZO
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Further for Icl =1, we shall have

Thus, for determining S we arrive at the computation of the
integral

Within K
t= Oand

(5)

, ,, ,,,,,,,,,m.. ,,,,.,, .,,-,.! !! . ...!! . .-. ...——... ——— ——
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Taking the residues about the poles of the function under
integral and transforming the ottained expression we find

fia3R3(1-v)2 (1-1)2 (p+~-2V~)s~o* .
8 (1-y~)s

Returning to tinevariable z we may write

SZ* = s~o* -S* (p-z)

or

No. 1156

the

(6)

Equations (5) and (6) may be simplified somewhat by taking
into consideration the radius of the circle K2 into which the
circle K1 is transformed, by the inversion Zll = a2/zl. This

circle as is known (reference 14) figures in the graphical con-
struction of the Joukowsky profile by the method of Trefftz.
Denoting the radius of the circle K2 by r, we obtain

Rr = ———
2Rcosa-1 (7)

With the aid of the radius r we may write

s = ~2- (R2-,.2) (5a)

(6a)

When u = O the Joukowsky profile is symmetrical and has the form
shown in figure 5. We denote by 2 the maximum dismeter of the
symmetrical profile. Setting ~ = -1 in formula (4) and taking
account of (7) we oltain for 2

1 = 2Rr = R+r

For the value of the area and the position of the center of
gravity of the symmetrical profile, we obtain from equations (5a)
and (6a)
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(5b)

(6b)

Having f(~) in explicit form (equation (4)) and making use
of equationa (5a) and (6a), section 4, we find W1(L) and W2 (~)~

Neglecting the additive constants we obtain

Further, we have

Neglecting
within K, the
obtain

the principal parts corresponding to the poles
additive constants, and multiplying by

or after transforming:

(8)

(9)

two we

1
(lo)

(lo’)

Thus the potential function of the potential flow for arbitrary
motion of the Joukowsky wing is expreseed by the equation
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and the complex velocity in the ~-plane by

Furtherj we have

dwo ‘WO dc
—=-~zdz

where according to equation (4)

Evidently at the point ~ = 1 corresponding to the sharp edge
dt/dz has a pole and therefore dwO/dz remains finite only if

(11)

(12)

(13)

The condition (13) assuree the finiteness of the velocities and is
therefore necessary in order that the unsteady continuous potential
flow le physically possible.

Making use of the explicit expression (-1) for dwO/d~ , we
reduce condition (13) to the fom

eR (ll+F-2) ~= ~2V0 - ~
1-p;

or

a(R+r) ~To=-—
4

(14)

(14a)
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The velocity component UO does not enter into condl.tion(14) and

therefore the forward motion along the x-axis may be with any
velocity, the velocity at the trailing edge leing finite. Condi-
tion (14a) denotes geometrically that the instantaneous center of
rotation lies on the straight line PPr (fig. 6) perpendicular
to the x-axi6 and at a distance a(R+r)/4 from the origin. The
addition of a velocity parallel to the x-axis displaces the
instantaneous oenter of rotation along the straight line PP’.
We thus arrive at the conclusion that the velocities at the trail-
ing edge are finite if the moving polhode coincides with the---
straight line PP:. This result, establishedfor a Joukowsky wing,
is evidently valid in a similar form for any wing with sharp edge,

Foru=O, R=l, w = O the Joukowsky profile degenerates
into a plate. In this case

dwo
— = iaVo
d~

- ~ (L-2) W (11’ )

and instead of (14) we have

V=-:u
o

(14’)

The straight line PP’ for the plate is at a distance of 1/4 the
width of the plate from the trailing edge (fig. 7).

6. FORCES ACTING ON TEE WING FOR A POTENTIAL FLOW

OF THE FLUID

We shall study the hydrodynamic properties of the forces and
establish methods of computing them for the case where the motion
of the infinite fluid is throughout potential and the circulation
about the wing is equal to zero:

r=O ----_

We shall start with equations (I) and (II), section 3. The com-
plex potential function w (z) is holornxphic and sin@e-valued

Poutside the wing and there ore the expansion of dwQ/dz at infin-
ity starts with the terms of the order 1/22; (dwo/dz)2 is
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therefore of the order l/z4” and hence the integrals

taken over the contour of the wing are equal to zero:

‘o =RO=O

Remembering that

since the
circle K
the first
obtain

where

and

function to be integrated is homomorphic within the
and only at the paint ! . 0 dow it have a pole of
order. Appl~ing equations (T) and (11), section 3, we

mo aIo
XO+iYo=~= ~+ IuIO

$.= Real [.iQo+;G]

(III)

(rv)

(1)

(2)

First of all we shall make certain obsenatims that follow
directly from equations {111) and (-IV). If i:hewing moves in
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translation with constant velocity it is evident that
10

and No

do not depend on the time, and it then follows from equation (111)
that X. + iYo = O. This is the well known paradox of D’Alembert.

In this caae % = Real [- ~Io] , hence the moment of the hydro-

dynamic forces} generally speaking, is different from zero also
for uniform rectilinear motion. The moment ~= O if go and
10 have the same direction because then ;()~o is real. For

translationalmotion the components 10, Ix, and Iy depend

linearly on the velocity components qo, Uo, ~d Vo. EenCe

for a wing there exist in general two directions having the
property that for translationalmotion in any of them the moment
of the hydrodcynsmicforces is equal to zero.

If the motion of the wing is a rotation with constant
angular velocity about a stationary center, we find by choosing
the orig~n of coordinates at the center of rotation that the
moment lb with respect to the center of rotation remains at

all times equal to zero, Hence the hydrodynamic force in this
case must be considered es applied at the center of rotation.

The potential motion of the fluid may be considered as
starting from a state of rest as a result impact or suddenly
applied system of impulsive pressures pt=. pcp(reference 8)
along the contour of the wing C. It is not difficult to show
that B = - 10 and M . - Real No are the sum of the impulsive

pressures applied to the fluid and the sum of the moments of all
these impulsive forces with respect to the origin of coordinates.
For we have

r

B=-P
1 1
Sq*+i@Zdw . . iP @ zd~o

where Sq* is replaced according to equation (6), section 3,
by ifzd$O. Further integratingby psrts we obtain on account

of the single-valuednessof cpo,

B= iP $Qodz = - i$ ptdz (3)

The integral at the right denotes the sum of all the impulsive
forces.
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In a similar manner we have

M=- Real ~ $ z= dwO
dz~

=P$qo~

or

M= Real P $$ zVOdz = - Real# ~ptdz

(4)

(5)

since

The right-hand side of (5) represents the sum of the moments of
the impulsive forces with respect to the origin of coordinates. It
3s thus clear that B and M are respectively the momentum and
moment of momentum of the fluid.

Equations (III) and (IV) express tiletheorems on the momentum
and moment o~ momentum for unsteady potential flow of th~ fluid.
The term -iqOIO in formula (IV) is added on the right on account

of the displacement of the moment center.

If the motion is such that for the two instants of time tO

and tl the orientation of the wing in stationary space is the

seineand the translational and angular velocities are the same the
impulse of the hydrodynamic forces for the interval of time tl-to

is equal to zero since the change in momentum of the fluid for this
intetial is equal
the wing the mean
period T

where Xo’

stationary
the moment

equals

to zero. In ~articular for periodic motions of
value of the hydrodynamic forces over the
zero, that ia,

t+T

~ ~ (Xo’+iYo’)dt=O
t

and Y.’ denote tho projections of

axes of coordinates. The mean value
of the hydrodynamic forces about any

the forces on the

over a period of
point of the wing
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for periodic motion

29

Is in the general case different from zero.
Remembering that the change in–the moment of momentum relative to
the origin of coordinates over a period is equal to zero we may
write

t+T t+T

We shall now constder B and N more in detail. According
to equations (3) and (4), and the boundery condition (3),
section 4, we may write

Setting

and

B=Bx+~y

P f’cpidv~= ‘fk (i, k= 1, 2, 3)
c

we shall have

‘Y = A12U0 +~22 VO + ’32U

}

(6)

M= \ 3U0 ‘A23 ‘O + ’33u J

It is readily shown that the matrix I!A~k IIis symmetrical,

hi~ = Aki 8ince ~k and ~k are harmonic conjugate functions.

For, on the contour C we have
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There?ore~

Applying the Green formula we obtain

whence follows the symmetry

To explain the physical significance of Aik we shall also compute

the kinetic energy of the fluid T. We have

or

2T = BXUO + BYV()

It is thus clear that the coefficients
the ssme part as the masses and moments of inertia in the dynamics
of a solid body, These coefficients are known as the virtual
masses.

-+ Mo.)

Ailc play in the given case

In what follows we shall use the following notation:
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It is not difficult to derive formulas for the transformation
the coefficients of virtual masses in passing to a new-system
coordinates, Let us together with the system of coordinates
assume the system x’o’y’ where the coordinates of the new

31

of
of
Xoy

origin o’ In the system xoy are ~, ~ and the x’-axis makes
with the x-axis the angle p. Denoting by
Axt Ayt hut Ax?yl Ax,wl Aylm, the coefficients of the virtual

masses referred to the new axes of coordinates we shall have the
following transformationformulas:

Ax, = Ax cos2 ~ + ~-ysin2 D + ~~y sin 2i3

Ay , = Ax sin2 p +Ay CoS2 ~ - Axy sin 2P

AXlyt = $ (~y-~) sin 2i3+ Axy cos 213

A ~l~! = (A~~-~y~+A~~) Cos ~ + (h~yq-hyt+~~fl)‘in ~

A y’u’ = - (Ax~-hxY~+Am) sin ~ + (Xxy9-.Ay~+Xyu)cos @

~~t = ld-12+ ~yf2 - %YE7 - z(~xti)?-~ymt)+ ~w

The numei-icalvalues of the coefficients Ax, Ay, and Axy
depend only on the direction of the assumed system of coordinates,
while the values of AX(Jand ~ywl depend also on the position

of the origin; Am depends only on the position cf the origin.
According to Mises the combination ~ik considered aS a whole
constitutes a motor dya,d(reference 15). The latter is analagoua
to the motor dyad of inertia of a eolid body and
motor dyad of the virtual masses.

It is readily seen that in the General case

lAXAXY . ~ ~
IIAXY ~y x y - ~xy2

> 0 because the quadratic

2T = ~xUo2 + XY-V02+2AXY Uovo

is called the

the determinant

f’orm

iS positive definite since it gives the kinetic energy in trans-
lational

have the

motion. hence it follows that the equation=-

only solution
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The point with coordinates ~*

NACA

and q* is called the
point (reference 16). Jf th~ origin of coorfifl.natesis
the central point then

TM No. 1156

central
choeen at

A~=Am=o

The momentum vector is expressed through the velocity of the
central point. The moment of momentum with respect to the central
point does not depend on its velocity. Since Ax Ay - hxyz > 0
the equation

Ax - A Axy

A AY-A ‘oq,

has two real roots Al and AZ. Therefore there always exist two

mutually perpendicular directions such that for translational
motion of the body

where -101,

of the fluid

I01 = -@l; 102 = - h2q2

-102, and qlj q2 are the components of the momentum

and the velocity of the body in these directions.

In the case of translationalmotion in one of these two direc-
tions, the moment of the hydrodynamic forces about the central
point is equal to zero, that is, in this case the hydroiiynemic
force is applied at the central point. This evidently follows
directly from equation (IV) if it is remembered that for the cen-
tral point Ax~. A@ = o. If in addition the velocity of the
motion is constant the hydrodynamic force and moment arc equal to
zero.

We shall now give formulas for computing the coefficients of
the virtual masses, We have
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As before let

be a function that transforms conformably the outer region of the
wing into the interior of a unit circle. According to equations (5a)
and (6a), section 4,

(8)

where c1 . (dw3/d~)L=O; c1 may be computed for example by

equation (12) section 40 With,the aid of (8) we may write

Separating in (9) the real and imaginary parts we obtain on”the
basis of equatione (6) and notatione (7)

Ax . -p [S-2nk&.fi(kkl+~l)_j (lo)

(12)

AXco= p [Sy+ - fi(kcl+=i)] (13)

A
yw . p [-SXW -t.tii(kcl-~l)] (14) -

For Aw we have
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Iclbut for . 1 Wm. ; (1/~)*, hence
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(15)

Formula (15) is suitable for computing Am if w (~) is detcm-
mined. It is evident finally that on the basis o$ (2) there also
holds for AW the formula

(15a)

If f(t) is rational W3(~) ~S ~lSO ratfona~ and the integrals
formulss (15) and (15a) are computed with the aid of residues.

in

We shall now write in explicit form the expressions for the
hydrodynamic forces in terms of the introduced coefficf.entsof
virtual masses, From equation (III) we obtain

then

..----- ... .. -.—- .- ..-.
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From equation (IV)

.. ~, . .:,-

Go=- = + Real [i(UO-iVo)’B]

whence

35

(18)

We recall that in formulas (16), (17), (18), U. and V. are the

pro~ections of the velocity of the origin of coordinates on the
moving axes,

With the aid of the formulas established in this section and
the potential functions obtained in section 5 l’orthd potential
flows in the motion of an elliptic cylinder and Joukowsky wing in
an itiinite fluid, it is not difficult to write out the values of
the coefficients of the virtual masses for the’above profiles.

Choosing the axes of coordinates along the principal axes of
the elliptic cylinder we have

~ (a2-bz)~2 IW3(C) = - ,

whence

k= - ~ (a+b); kl= - ~ (a-b); c1 =0

Moreover we have

.,,S.= flabandx*= y++.=.0,
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Making use of

.
Ax

From equation

The center of

Applying
the force and

NACA

these relations we obtain from equations

= pnb2; Ay = pfia2; Axy = Ax@ = AYU=

(15)

!?MNo. 1156

[lo) to (14)

o

J (a2-b2) # [-~ (a2-b2)]~d~ = ~ (a2-b2)

K

the ellipse is the central point.

formulas (16), (17), and (18) for the pro~ections of
moment we obtain the following values

For b = O the ellipse degenerates into a plate for which

(20)

With the aid of similar but more laborious computations, on
the basis of the results obtained in section 5 and the formulaa
of the present section} we computed the values of the coefficients
of virtual masses for the Joukowsky profiles. The results are
given in table I. Examining this table we find that the concavity

I
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characterized by the angle u plays a more tiportant part than the
thlckneas whfch is characterized ly the parameter c = R cos u - 1.
A very thin, sli@tly curved profile Is in its hydrodynzmricprop-
erties similar to an arc of a circle.

The coordinates of the central point of a symmetrical
Joukowsky profile with respect to the origin coinciding with the
sharp edge, if the x-axis is directed along the axis of symmetry,
is determined by the formulas

For an arc of a circle the central point is the center of the
circle of which the arc is a part.

7. IMOTIONW1!TECONSTANT CIRCULATION

We shall study the special case where the motion of the fluid
outside the wing is potential, the velocity is equal to zero at
infinity and the circulation about the wing is different from
zero, I’#o. Assuming that the motion of the fluid is contin-
uous throughout we may consider the circulation r as constant
in time. Forj the pressure from its physical meaning is a single-
valued function of the points of the f’luid,but only for r= const.
is the term &@t, in the Lagrange formula for the pressure, a
single-valued function.

The problem of determining the hydrodynamic forces for con-
stant circulation was proposed by S. Chaplygin and the funda-
mental results were obtained by him (reference 11). In the case
under consideration the characteristic stream function of the
fluid near an infinitely distant point is of the fozm

r c1
w(z) = ~ lnzi-co+~+~

Z2 i-...

whence

dw rl c1 2C2
z= —–-~-~-”””23riz

(1)

(2)

I —-- —
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and
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(3)

On su%stftuting C for z where L as before is a variable con-
sidered within the unit circle K, we shall have

(4)

where WO(L) is the characteristic function of the irrotational
flow. The term - -!-ln~ is added because of the presence of

Zlri
circulation about the wing. Evidently on the l)oundaryfor

l~l=l~ag~ln~=o. Thus the function w(~) satisfies the

required boundary conditions and gives the flow with circulation I’
about the wing.

We shall now investigate the forces. Everywhere outside the
wing dw/dz is homomorphic and near an infinitely distant point
the expansions (2) and (3) are valid, hence evidently

Further, we have

and
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Ed17ko
R@nembering that — .

6t
-fm k. ~d that aN/at s

the second term on the right in (5) does not depend
we obtain by equations (I) and (II), section 3, and
(-XV),section 6

ii = tio+ pI’Real tioko

39

~No/at since

on the time
(III) ~d ,

(v)

(VI)

where X. + iYo and tio denote respectively the force and moment
which would act on the wing if for the same motion the circulation
were eq,ualto zero. Evidently ~ + icoko is the velocity vector

of the point z=ko as it moves with the wing. This point, as

is readily seen, is i.mariably fixed to the wing and therefore its
position on the wing d~es not depend on the choice of the system
of axes. Setting q. + iwko = qlc we may write formula (V) in
tho follcwing form:

X + iy . XO + iyo + iprqk (Va)

The above equation is a generalization of the Joukowsky theorem
for the arbitrary motion of a wing in a fluid with rotational
potential motion. Formula (VI) is equivalent to the following:

8= fio+ Real iko (- ipr~k) (Via)

The second term in the above equation represents the moment of the
Joukowsky force i~rqk applied at the point Z = ko.

The point z = k. possesses very remarkable dynamic prop-
erties which are evident from the following conclusions drawn from
formulas (Va) and (Via):

I. If the wing moves in an infinite fluid with constant cir-
culation the total hydrodynamic force consists of the force which
would exist in the absence of circulation and of the Joukowsky
force ‘prqk where qk is the velocity of the point z = ko,

II. The total moment of the hydrodynamic forces about the
point z . k. for motion of a wing in an infinite fluid with

constant circulation does not depend on the value of the cir-
culation.

I ---- ----
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III. The tipulse of the Joukowsky force is equal to ipra,
where s is the displacement vector of the point z . k. in the
stationary space,

From the above we obtain directly the following results:

1. The mean value of the Joukowsky force for any interval of
time t - to is equal to ip~gk* where q* = s/(t - to) is the

mean velocity vector of the point Z = ko.

2. If =“ter a certain interval of time the point z = %
returns to its initial position the mean value of the Joukowsky
force for this interval of time is equal to zero,

In the preceding section we have found that in the periodic
motion of the wing the mean value of the forces over a period in
the absence of circulation is equal to zero. Taking this into
account we obtain on the basis of result (1) the theorem of
Chaplyqin: If the motion of a wing is a periodic oscillation
associated with translational motion with constant velocity q.
then for constant’circulation the mean value over a period of the
hydrodynamic forces is equal to the Joukowsky force iprqo corre-
spending to the translational motion. This theorem may evidently
be given a more general formulation, namely: If at the instant
to and tl the translational and angular velocity and the orien-

tation of the wing are the sane, the mean value of the hydrody-
namic forces for constant circulation in the time t - to is
equal to iprqk* where qk* is the mean velocity of the
point Z = ko.

As an example we shall consider the motion of a Joukowsky
wing with constant circulation. According to the rule of
Joukowsky, the circulation about a wing will be determined from
the condition of finiteness of the velocity at the trailing edge.

In Section 5 we have seen that the requirement of finite
velocity is expressed by the condition -

(7)‘dw
d

=0

t=1

(where t . 1 is the point correspondingto
the wing) which according to (4) may also be

the sharp edge
written thus:

on
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Setting in the expression for dwo/dz (formula 11, section 5)
~ = 1 we obtain

whence

r=
/

- 2YcaR
(
VO-t~(R+r)w

)

41

(6)

(7)

If hO, relation (7) becomes condition (14a) section 5. We
note that the motion along the moving x-axis is in no way con-
strained by the condition of finite velocity at the trailing edge.

We shall nov explain the kinematic character of the possible
motions OT the wing for which condition (7) for r = const is
satisfied, Condition (7) expresses the requirement of the con-
stancy of the projection of the velocity of the points of the
wing on the moving straight line PP1 pe~pendicular to the first
axis and at a distance a(R+r)/4 from the sharp edge.

If the angular velocity of the wing @ is constant (7) is
satisfied if the instantaneouscenter of rotation lies on the
straight line QQ’ (fig. 8) parallel to the straight line PP’

!rl Thus for r= CO~lst;at the distance
2fl* “ (o. const only

such motion is physically poseible for which the moving pol.bode
is a straight line perpendicular to the fm~t sxis. If the
equation of this straight line is x = h we may give h any
previously assig,ledvalue, choosing the corrmponding circula-
tion by the formula

r

1
I’.h- Q R+r)

4( 1
2fiaRw (8)

In particular a rotation of the wing is possible with constant
angular velocity about any stationary center in the z-plane.
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We shall now consider ~ondition (7) assuming that the point A
(fig. 9) belonging to the wing andhs,ving in the moving systemth~
coordinates ~ and ~ moves in stationary space with velocity V
constant in direclion, Denoting by ~ the angle %etweeu the
velocity vector T and the x-axis we shall have

Condition (7) now assumes the following form:

whence if ~ # a (R + r)/4 we obtain for the angular

Setting

velocity

(9)

For a thi~, slightly curved Joukowsky profile relations (7),
(8), and (9) assume the form

I

r=- 2fla(l+C) ~Vo + ~ (7a)

(1)=
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For a @ate c = O.

The position of the point z . ko
on the basis of the transformations (4)
%y the formula

43

for the Joukowsky profile,
section 5, is determined

+e-ia) (lo)

If a and c = R cos u - 1 are small then *

For the arc of a circle the point z = k. lies at the center

of AB (fig. 10); for the plate the point z = k. coincides with

the center.

) The force and moment in the motion of a thin and slightly
curved Joukows@ wing moving with constant circulation are
expressed by the equations

,-
dUo

-+a~+””(vo+~a”) l+~k

dvo
Y=-pfia2ia—L dt+dt

where Uk, Vk are the projections of the velocity of the point

z = k. on the moving axes

( -k).+ uovo]+, s.r[uo+;euo+md+ aUo 4
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In particular for
center we obtain
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a plate with the origin of coordinates at the

x s p7ra2 vow - prvo

Y=-

-+
lM=-

8. FORCES ACTING ON

SYSTEM OF POINT

We shall consider first

z dVo

‘fia Tt—
+ muo

ptia4dw—— -
8 dt pfia2UOVO

THE WING IN THE PR12SENCEOF A

VORTICES WITHIN THE FLUID

the case where there is only a single
vortex within the fluid. Let a be the point where the vortex is
located at the instant of time under consideration and let -17 he
the circulation about it. Evidently tilecirculation about the
wing is equal to I’. Frcm the fact that the pressure is single-
valued it follows that the circulation I’ is constant in time.

If within the fluid there are several isolated vortices the
circulation about each vortex is constant in time. The complex
potential function is homomorphic everywhere outside the contour C
~ith the exception of the point
larity of w(z). Near the point
form

w(z) = - & in (z-a) +

g= i’ 1
dz

—+C1
- 2GF z-a

The velocity function dw/dz is

a which is a logarithmic singu-
a the function w(z) is of the

co + c1 (z-a) + C2 (z-a)2 -1-...

(1)

+ 2C2 (z-a) + . . . (2)

single-valued and homomorphic
outside the contour C and has a pole of the
point a.

D~noting by Va the velocity induced at

have ~a = Cl. If the vortex is free it will

velocity ;a.

first order at the

point a we shall

travel with
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From expansion (2) for (dw/dz)2 near

Since the velocity at infinity and the

45

the point a we obtain

*2
‘a +...

circulation over an

(3)

infinitely removed contour are equal to zero hence near the infi-
nitely removed point, the expansion holds:

cl’ C2’
W(z) .co’+-..+— . . .

22

whence

dw = cl’ 2C2 ‘-—-
a?

—- . . .
Z2 ~3

and

We
outside

()dw 2 C1’2 4C1’ C2’

z = -“J-- + +...
~s

shall compute, taking account of the behavior of w(z)
the contour C, the integral

(4)

In place of the contour C we may take for the integration the
contour L and the circle L1. The direction of integration is

indicated in figure 11. The contour L encloses the wing and the
vortex and all ite points may be taken as far aa we please from
the origin of coordinates;L1 is a circle of small radius with
center at point a.

From the expansion (4) for (dw/dz)2 about an infinitely
removed point it is evident that

()dw 2
;$ G

dz=O

L

1 ————
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The integral over the contour L1 is computed by replacing

(dw/dz)2 by its expansion (3). We obtain

l?= i?a17 (5)

To compute the integral denoted in section 7 by Q, we repre-
sent the complex potential function w=cp+i$ in the form

w(z) = We(z) + %@)

where

WC)(Z) is the complex pote~itialfunction of the motion of an infi-
nite fluid in the absence of any singularity within the fluid. The
conditions and methods for determining We(z) were exnlained in

section 4. WI(Z) is the complex potential function of the added

motion of the fluid outside the wing due to the presence of a point
vortex at the point a with circulation -1’. WI(Z) is determined
from the conditions

1. Along Cvl=o

2. Near the point a

Wl(z) = - .-& in (z-a) + P (z-a)

and therefore

dwl rl
z= ‘%Yz-a +P’ (z-a)

3. At infinity w1(z) is homomorphic

(6)

The function P(z - a) is holomcrphic everywhere outside the
contour C. Transforming the auter region of the contour C into
the interior of a unit circle in the C -plane and substituting ~
for z in wl(z) we obtain
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(7)

where b denotee the transformed point a in the C -plane. If
the transformation is such that z. @ corresponds to ~ = O then
near z =m, ~(z) willbe of the form

Making use of these exyaasions and (7) we obtain the expansion of
WI(Z) near an infinitely removed point, Neglecting the constant

terms we obtain

r

()
—k@ ;+ . . .WI(Z) = ~ni-

and

Replacing w by W. + WI we may write

dwl
Computing the integrals i $ z~dz and i $ zrdz

J
L Ll

with the aid of expansions (6) and (8) we obtain

For the hydrodynamic force formulas (I) and (111) with (5)
and (9) gives

(8)

(9)

810
ba r- ipi7ar + ip~k (b-~)X+iY -lr=~+iPqor+lP~
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It is readily seen that qO + 8a/5t is the absolute velocity of

the vortex. It is evident-also that ~ -t8a/5t - ~a is the
velocity of the vortex relative to the fluid which we shall denote
by ?rel. If the vortices are free ~rel = O. Setting

ipk (~-1/b) = 11 we may write

511
x+iY= X. + iYO + ET+ ip ;relr (VII)

We note that -11 may be considered as the momentum of the fluid

induced by the vortex in the presence of the wing. The concen-
trated force causing the vortex to move with a given velocity for
unsteady motion (reference 17) is equal to ip ~relr. If the

vortices are free

5(10 + I])
X + iY = —–_-..L

bt
(VIIa)

If the vortices are invariably fixed to the wing and the wing is
in translational motion, b = const, m = 0, and therefore
bI@ = o.

For the acting force we obtaj.nthe formula

x + iy . Xo + iyo +-ip ?re~r (VIIb)

The forces, if the vortex is fixed to the wing, are-,computedby the
Joukowsky formula if the corresponding values for Vrel are taken.

Tne reaction force of the fluid on the vortex is equal to -ip~re~r

and therefore in this case the total reaction of the fluid on the
vortex and on the wings is equal to zero.

Thus if the vortex idealizes a small wing invariably f~.xed
to the given wing the total hydrod.ynaulcforce act~ng on the system
consisting of the wing and the small wing reduces to x@ + iY~.
Such an infinitely small wing has no effect whatever on the Ceneral
hydrodynamic force. This result is of course valid only in the
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case where there are no sfngulariti.esin the flow except the vortex
under consideration. in particular the circulation over the con-
tour e-nclosingthe wing and vortex in the caee under consideration
is equal to zero.

We shall now suppose that we have a system of n vorticee
at the points ak with the circulation -rk (k= 1,2,3. . ●).
Evidently the circulation about the wing is 17.Z~k. In this

case 1’ i~ represented as the sum of the residues about the poles
of the inte&ratea function which will be the points ak.

(5a)

where ;* denotes the velocity of the motion of the center of
gravity of the system.of free vortices.

Decomposing w into the sum: WO + wl + W2 + . . . + Wn

where wk corresponds to the motion of the fluid abOUt a station-
ary wing in the presence of a vortex a“~point ak with the cir-

culation -I’k and proceeding in the same manner as for the case

of a single vortex we obtain

n n

z
Q= Q. + i a~~s + ivk(~

L(s
S=l S=l

where b~ js the image of as in the ~-plane, a* is the

coordinate of the center of gravity of the vortices and I

denotes the expression ip~(~s - ~;) I’s and -1 is the

mor.entumor the fluid induced by the system of vortices in the
prese.lceof a stationary wing. In place of’formula (VII) we
obtain in the given case the analogous formula

5(10 + 1)
X+iY= 8* + ip ~*re~r (VIII)
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where

I
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Ifr= O the ccncept of center of gravity becomes meaningless end
in formula (VII’) and in the previous relations the sunmation signs
must be retained.

If the wing is in translational motion (W = O) with constant
velocity and the motion of the fluid with respect to the wing is
steady, and the vortices within the fluid are free, then it is
evident that bk = const and therefore

x+iY=o

This is a generalization of the paradox of D’Alem%ert to the case
where the motion is steady and within the fluid there is an arbi-
trary system of free vortices at a finite distance.

If the motion of the wing is translational as before and the
motion of the fluid is steady but the vortices are bound then the
force acting on the wing is

x+iy=ip%relr

The force due to these vortices is likewise equal to ip~*relr

and therefore this force is entirely transmitted by the fluid to
the wing. The latter case has been considered by Lagally
(reference 18).

Fomnula (VII’) permits determining the hydrod~anic forces if
the positions and velocities of the vortices are known. If the
vortices are free or invariably fixed to the wing it is sufficient
for determining the forces to give only the positions of the vor-
tices, because in these two casea the absolute and relative veloc-
ities of the vortices are completely determined by the positions
of the vortices.

The problem of determining the positions of the free vortices
as a function of the time in any particular case, is generally
speaking, very difficult. It is sometimes possible to estimate
as(t) and therefore also bs(t) approximately from various

physical considerations.
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Let us consider the ltiiting caee where the system of free
vortices is very f= remo~ed from the wing aaII

+ m.

We have

Therefore

()1i-o~=-(a*- ()ko)I’+O $S

where a* is the center of gravity of the eystem of vortices.
The expression o(l/’a~) approaches zero together with l/se

for la~l ~m. With the aid of formula (VIII) we obtain for

the force
~(a* - k.)

X+iY= Xo + iYo - ip ———
bt ()

r+o _L—
as

Evidently

5(a* - ko) +
--——St— ‘

V* . ~k

where the right side represents the velocity of’the center of
gravity of the system of vortices with respect to the point z = ko.
For la~l am keeping only the principal terms we obtain

x+ iy=xo+iyo+idqk - ‘fi)r (lo)

Thus the additional force acting on the wing due to the presence
of a system of free vortices very far removed from the wing is
computed by the Joukowsky formula.
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If%= O we obtain a stationary vortex at infln!ty and we
ehall then have the force found in section “1. The result con.
tained in equation (10) applicable to the translational motion of
the wing was obtained by Wagner from other considerations (refer-
ence 19).

We shall now turn to the
hydrodynamic forces acting on
at point a. We consider the

computation of the moment of the
the wing in the presence of a vortex
integral

dz=~$+j$
L L,

-L

This integral taken over L is equal to zero since (dw/dz)2 is
of the order 1/24 at infinity, Further, it is evident that

From the expansion (3) for (dw/dz)2 near the point z=a it
follows that

Real R . Real [-isP] . Real a~aI’

since the real part of the first integi’alis equal to zero. Taking
into account (7) and (9) we obtain with the aid of formulas (11)
and (IV)

The sign Real before dL/dt 5s omitted since L is alwa,fsreal.
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( 1 1For~ .—-_——
Zlli

)

d~ = dwl but along the circle K~l=O

t ; c-b-=

If there is a system of vortices within the fluid then

Finally in the general case where we have a system of ‘mr-
tlces and a circulation over an infinitely removed contour r. jL O

we shall have for the force and moment the equations

+ ip qkro>

)

(VIIb)

(VIIIb)

As we have seen, in the formulae determining the hydrodynamic
forces there enters ‘thevector ;a representing the velocity
induced at the point where the vortex is situated. We shall now
give a rule for computim~ Ya if the complex potential
function w(~) is known,and z = f(~) where f(~) is a function
homomorphic near the point ~ = b, the image of tho point a at
which the vortex is situated.

By the expansion (2)

~a (dw r 1

)
= c1 = ~ + 2fiiz-a——

. z=a
(a)

1
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Near the point %, w(t) is of the form

where Q{C - t) is homomorphic near the point b. Moreover we
have

(z - a) s Zo’ (~- b)+; z0’’(~-b)2 +...

where

(P)

(Y)

(
Zom ~

) ‘1 “1 1;a. a)’(o) - z.-— - —
47ri zo’,Zo’ \

)]
2;l~n F-q//

~ =b

Noting also that

1 1
Zoll

—--

z’
---@= -—-(~-b) +...

Zo’

we obtain finally

(11)

We recall that the circulation about the vortex is -I’.
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As an example we shall determine the hydrodynamic forces
acting on a plate when there is a vortex in the fluid. For
simplicity we assume that the point A at which the vortex is
situated lies on the x-axis coinciding with the direction of the
plate (fig. 12).

With the aid of the function

the external region of the plate is transformed conformably into
the interior of the unit circle K in the ~-plane. Making use
of the expression for w~(c) found in section 5, we obtain the

complex potential function in the presence cf a vortex in the form

where to is the image of the point 20 at which the vortex is

situated. Remembering that zo = X. is real we obtain by

formula (11) for the velocity of the fluid at point A

+ r

[

Voxo 1+~,(Xo + J--)2 ~ xl)
v

Xo =
-i V. + —.——— —— — .—

Jxo2-a2 z -—
+ 2fii 2-a2 (12)

~~xo%z j Xo

For the force ly formula (VII), titer passing to the variables
in the z-plane, we may write

(13)

where dzo/dt denotes the velocity of the vortex relative to the
plate.
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Denoting the absolute velocity of the vortex by ?ab we shall
have

+ + 4 dzo
va~ = ‘H31+ ‘xo; ‘ab = —- ~dt ‘%+ ‘Xo

In particular:
dzo

1. If the vortex is free ~rel = O; ~ab = ;Xo; ~t— = ~xo-~-~xo;

2. If the vortex is bound dzO/dt = O

-b + 4

‘ab = qo + mx~; Vrel = q. + WX(J - Vxo
/

By formula (12) in the fi~st case:

dzo iVOxO i@ 2x02-a2 r XO

Tt— = -Uo+ — ——-. - —. ——

- + 2 w- 2“i ‘:-’2~;02 -a2

and in the second case:

2X 2_a2
r

-?rel= u~ - –:vQ:~ - + —0-—- -–=

Xo
— ——

J Xo2-a2 m+ 2“’ ‘02-’2

Thus if the vortex is free there is obtained from formula (13)

Xo

X+lY=Xo+iYO-ip

r

(u. + iVO) r +
2-T

xo -a

(14)
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For the vortex bound to the plate we obtain
—

%r–x~ + x~ -a
x+ iy = Xo + iyo + idu(j+f-vo)r + p /s2 vor +

p~2r PX$2
—+.—

+ 2%@-a2 2fi(xo2-a2)

57

(15)

From formulas (14) and (15) for X. -+ -m there is obtained

X+iY= X()+ iyo + ip(uo{-ivo)r

Thus in both cases the force depending on the circulation is a
Joukowsky force.

If the plate is stationary we obtain from formulas (14) and
(15)

pxor2
x.— P AO-.— r~; y = (-j

22=2fi(xo-a )
zfiAM”AB

that is, the vortex acts on the plate with a force which is the
same in both cases. The sucbton of the tip of the wing on the
side of the vortex is greater.

From formulas (14) and (15) it follows that the forces
increase without limit when X. ~ - a. This indicates the

impossibility of the shedding of a vortex with finite velocity
from the trailing edge. As X() approaches -a the forcee will

be finite if the circulation I’ is small cf the order of
-a.

In conclusion, we compute the moment of hydrodynamic forces
applied at a plate. By formula (VIII) we have

i!. ii.+ p Real{-i (xo+/xo2-a2 ) r - X. ~xjj+ ~
--—-— .
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The expression for L in the given case is of the form

%ssing to variables in the z-plane and differentiating L with
respect to t, we find

Thus if the vortex is free

(16)

For a vortex fixed invariably to the plate

dL *—=
dt

and therefore

— ..
$.

pfia4do
Jp# UO T-O+ p(xO + xo2-a2) uor-— —-----

8 dt
(17)

From forznulas(16) and (17) it is seen that for X. -+ -m the terms

depending on
tionary then

1. Prandtl -
1931.

the circulation+approachzero. If the plate it sta-
in both cases M = 0.

REKLPJ3NC3S

Tietjens: Hydro- und Aeromechanik, Bd. 11, Berlin,



NACA TM No. 1156 59

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16,

17.

1

1

r

Prandtl,L.: ber die Ihtstehung von Wir3eln in einer idealen
Fltissigkeit. Vortr~ge zur Hydro- und Aerodynamic, Berlin 1924.

Birnbaum,W.: Die tragende Wirbelfl~che ala Hilfsmittel zur
Behan$lung des ebenan Problems der Tragflfigeltheorie.Z. ang.
Math. Mech. 1923, p. 290-297.

Birnbaum,W.: Das ebene Problem des schlagenden Fl~gels.
Z. ang. Math. Mech. 1924, p. 277-292.

..
Jagner,H.: tier die Entstehung des dynamischen Auftribs von
Tragflugeln, Z. ang. Math. un, Mech. 1925, p. 17-35.

21auert: The force and moment on an oscillating aerofoil,
R and M. 1242.

Keldish and Lavrentev: On the theory of the oscillating wing,
CAHI Technical Note, No. 45, 1935.

Lamb: Hydrodynamics, 1931.

rhomson and Tait: NaLural Philosophy.

Kirchhoff: Mechanik, 19 Vorlesung.

Chaplygin, S.
parallel air

Courant, R.:
variable.

Joukowsky, N.

A. : The motion of a cylindrical
flow. CAHI Report No. 19, 1926.

Geometric theory

E.: Fundamental

of functions of’

Airfoil Theory,

wing in a plane-

a complex

1911, p. 221.

Trefftz: Graphische konstrulcbionJoukowskyscher Tra@l~chen,
Z.F.M. 1913, p, 125.

Mises: Motorrechnung ein neues Hil.fsmittelder Mechanik.
Z. ang. Math. und Mech. Heft. 3, 1924, p. 193.

Joukowsky, N. E.: Lectures on Hydrodynamics, Collected Works,
Vol. II, 2nd ed. p. 104, 1929.

Sedov, L.: On the force producing a preassigned motion of a
vortex. To be published.



60 NACA TM No. 1156

18. Lagally: her,,den Ilruckeiner str8menden Fl;ssigkeit
geschlosse Flache. Sitzungsberichte der Bayr, Akad.
1922,

Translation by S.
National Advisory
for Aeronautics,

Reiss,
Committee

auf eine
H. 2,

I



61 NACA TM NO. 1156

TAf3LE I - VALUES OF THE VI RTUAL MASS

Joukowsky profile

of arbi trary form

Th I ck, sllghtly

Symm et ri c curved profl le.

profi Ie only first or-

derterms ina

retal ned

‘~ ~ ~=

l-,+%~

pKt12 ~ix *rE+lP —2 cos2a) ~(—?)(l+l) y’ (/–2)(1+1)

pmaz
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32



NACA TM No- i156 62

CO EFFICI ENTS FOR JO UK OWSKY PROFILES----

Thin, SI ight-

Strongly curved Various positions of axes Iy curved

thin profile or of coordinates for arc of profile. Only plate

arc of ci rcl e ci rcl e terms in a r~

tained
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