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TECENICAL MEMORANDUM 1260

EXACT SOLUTIONS OF EQUATIONS OF GAS DYNAMICS*
By I. A. Kiebel

The equetions of the two-dimensionel stationary problem of ges
dynamics are of the form
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K o /1 _K\_
ax(P)+vay(pP>‘° ,

vhere u eand Vv are the components of the velocity along the
coordinate axes x and y, respectively, p 1is the pressurs,

o the density, and K= cp/cy, the ratio of specific heats.
The equation of continuity pPermits the introductlion of the stream
function from the equations

oV
pu = é-y—
(2)
p'V' = ﬁf
ox
The last of equations (1) glves
i
[
p = pd (V) (3)

*"Primer Tochnogo Reshenia Ploskoi Vikhrevol Zadachi Gazovol
Dinaniki.” Prikladnaya Matematlks 1 Mekhanica. Vol. XTI, 1947,
Pp. 183-198.
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2 NACA T™ 1260

vhere 4 1is a certain funoction only of V. The first two of
equations (1) give the Bernoulll law

2,.2 £=

uc+v K K

44V = 1 4
T et = 1 (W) (4)

where 1, 1s & function of ‘Jl, and the equation for the vorticity

is
K-1

o _du_ . <°li_o LI gz)
ox oy - P\av Tk-1P? a4 (5)
For the solution of the vortex problem in which at least one
of the derivatives diy/dy and dé/d¥ 1s different from zero, it
is convenient to pass from the varieblee x and y to the varl-
ables x*¥ = x and VY. Equations (2) and (5) then assume the form

(See, for exemple, reference 1.)

¥ _v )

dx* ~ u

A

vV  pu (6)
o2 . .9V

.oV Bx*J

The problem reduces to the determination of the five functlions
u, v, D, p, and y of x* and V¥ from equations (3), (4),
and (6). : -

By using the last of equations (6), the function ¥ 1is intro-
duced with the ald of the equations

o

P ==
(7)

oX

V= ==
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The first two equations of equation (8), on the basis of equa-
tions (3) and (4), then assume the forms

k=l . __1
2

g

= "oy [Ho ‘K-lé(ax <B\|Jj (8)
1 k-1 L

3 ax) 2k . (ax)" ax>2 ;

aw:,s (-a—£> 21 -K,_-]—_.é ('g;) -<.é$ (8)

where the asterisk on x has been dropped.

By differentiating equation (8) with respect to V¥ and equa-
tion (9) with respect to x, y can be eliminated and a2 single
equation for the function ¥ obtained.

In order to obtain an exemple of the exact solubion of the
system of equatlions, i, 1s set equal to a constant:

_k-1
K
X=-E @) x * (10)
where H 1is a certain function of V¥ +to be determined. ZEgqua-
tions (8) and (9) then give

_h-l e 2 Bl
= H 2T 21, - F_"L 3 (‘5-:]-‘ > + H‘z] x "+

a/1o/
e I‘<I

|-

o/l

2 o] K=1
L -2 2LV 2
Rl | K 2
_g (KoL H) oy | 2K K-l .2 K +1
S0 r g B eGEY) ow
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When equetion (11) is differentiated with respect to V¥ and
equation (12) is differentiated with respect to x, terms with
the same degree of x are collected and after simple trans-
formations there is obtained

1

N3
K-l H = K__“'l_ HN
K+l 2

Bt (H'240E B")' = - (k-1) B" (' C4kE B)

(13)

Successive integration of the second of equations (13) gilves

B'2 + kE B = CH' 17

K . (14)

1+K
1+RK
H= 02 (CI-E' >

From the last equation, the relation between V¥ and H can
be found with the ald of quadratures. It 1s more convenient, how-
ever, to introduce a numbering of the streamlines directly with
the aid of EH' and not V.

Thus, equations (14) give H as a function of H' and, using
equations (13), permit finding 4 1n terms of H' 1in the form

. 1-K 2&

K-l K=1 K 1-K l+vtm+:L
= —— - =" <H!
3 2K < K+l) H <01 B ) (15)

Substituting in equation (11) end integrating yields, for the
streamlines,

"R 2 e |
¥ =jH'x * [210 - G E My ] dx + F (5') (16)
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‘Comparison with equation (12) shows that F = constant and
wlthout loss of generallty cen be taken as F = 0.

3
For the determination of u, v, p, &and p the following
relations are written:

\
1-K
i 1+K
'le = 210 - clH'l-KX
) (17)
k-l
K+l
v=Hx | y
_ K 2K
1+ kK 1+K
P = Cz (Cl H'l-Hc) X (18)
_2K+l - 2
K R+l - 1+K .
=25 o, (Fl-ﬂll+”? gy (19)

For simplifiqgtion it_is convenient to introduce the nondimen~
slonal variables x and y and in place of H' introduce 7
with the aid of the following equations:

X = L'i
y=1y
(20)
l+k 1
H! = Cy =
|
where
LB+l 1
2 K-1 k-1
L = (215) Cy (21)

Equetions (18) and (17) then assume the following simple form:
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2 K"l —']-
- k+L 2
' 5 =f[m -1 am (22)
% = nu (F)
-p k-l )
w? =21, (1w ")
) (23)
k-1 _2_
v =pfer Em 5o br) L
o 1N X ),

If K= 1.4, the integral in equations (22) 1s evaluated and

glves
7 =6 /\/%- 1 [1 + ¢ Ofm-1) + -é- ( f/;-l)é] (24)

and the streamlines can therefore be easlly constructed.
Figure 1 shows the streaml.nes for 7 =1, 2, 3, . . . , 19.

This motion possesses both supersonic and subsonic velocitiles,
for the line of transition (shown dotted in fig. 1) 1s obtained if

u2 + vz = 2 %i% i
that 1s, -
.p &1 k-1 W
K -
1-m K+l . 3§1n +1 - E:%
b (25)
or
o k-1
0 Y,
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It is possible, wlthout difficulty, to construct the character-
istics in the x,y- and w,v-planes. Instead of the egquation of
the eplcycloid in the wu,v-~plane, in the case considered a more
complicated squatlon arises.

In the vorticity problem, along the characterlstic there
occurs

t 8ln a cos
T v = 2 2B % 3 108 (26)

ag ¥ o1

wﬁere a 1s the Mach angle, w +the magnitude of the velocity, and
B the angle of inclinstion of the veloclity to the x-axis. Equa-
tions (23) yileld

2i -u? 21 -wz cos2 B
2 (e} o
1'] = > = 2 (27)
i w2 sin B

But 4 depends only on H', thet is, on nz. According to
equation (15), the following is obtained:

1=K 2K
k-1 8-I\K & 1 ;.2 oo
= = {0, === G, — ~1)K+1
=2k \2 n+1> 15 (n°-1)
1-K K=l 2K
Cq

K-1 K=1\E 2 2 aYER+1 —wl YL
o (Cz 1 = (w© sin® g) K+l (2ig-we)k+l
. 2i,-w cos B

(28)

Substituting this valus of 3 1in the right side of equa-
tion (26) yields the differential equation for the characteristics
In the B,w-plane.

Finally, the question arises whether it ls possible to obtain
such vortex motlon by transition through e surface of strong dis-
continuity of some other kind but with irrotational motion. This
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problem mey be answered in the affirmative. For on & surface of
discontinuity there must, among others, be satisfied the relations

p, K-1 2Kk P, h
— +
K+l K+l 2
P- * P04
. / (29)
b. 2 'K'P+ p+13+2
P, . K+l p,0.°] p, J

where p,, p,, and 6, are the pressure, density, and velocity
of propagation of the surface of dlscontinuity on one silde of this
gsurface and p_ and p_. are the pressure and density on the other
silde. The megnitudes p, and p, may be taken from the vortex
motion. The magnitude 6, 1s found in terms of the elements des-
cribing the motion and in terms of the Inclination of the surfacs
of digcontinuity. Finally, p_ and p_ can be connected by the

relation p_lﬁ{ = 4;p., where 49, 1s a constant {(up to a certain

" degree of arbitrariness) magnitude. (At the left of the surface of
discontinuity the motion 1s irrotational.) :

Inashuch as

1
K
p.\ o, ¥
(-) .= L (30)
Py) P-4
then
= 2k
e - ) R4l
( - %1-) (’%Tl + %) = an? (n-1) (31)
where '
2 1
oy KoY F L F
oo (5) (_2_)
C 2 K=1
1 (32)
2
M = P08,
P,
Inasmuch as
- 6+ = D+ cos & + v+ gin ©

v
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where & 1s the angle between the normal to the surface of dis-
continuity and the x-axis (the normal 1s directed towerd the
"positive" region); M masy be expressed in terms of known magni-
tudes and 8.

By expressing tan & 1n terms of the derivative of X
with respect to n along the surface of discontinuity and using
equations (22), (18), and (19), the differential equation for
determining the surface of discontinuity (K = 1.4) 1is obtained
after simple transformations:

- ,/3 W* 71+n 1)_1

d.“ (% ) & M(n-l)

(33)

where M 1is expressed in terms of n2 from the transcendental
equation (31) in which the constant G 1s, to & great extent, arbi-
trary. The velocity in the "negative"” region will be determined
first on the surface of discontinulty and then extended on the
negative region by the usual graphlcal method of Busemann. A model
of the motion about a contour having an angle 1s obtalned.

The surface of discontinuity extends out from the angle and
on passing through the angle the motlon reconverts to the rotational
motion herein considered.

A solution analogous to that developed can also be obtained
for the problem with axlal symmetry. Taklng for the indepenient
varleble the distance r* = r Ffrom the axis of symmetry =z and
the stream functlon VY ylelds the relations

oz _ Yz
NN W
i (34)
oz_ _ __1
dr*  r¥pv,

wvhere v, and vy are the velociby components. As before,

1

f - a(We
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Bernoullit!'s law will have the form

1 2,2 Kg
5 (vp +7,%) + T D = 4,
The equations of Euler give

Or* oV

The function X(r*,V) can therefore be introduced from the
condltions

X

Vg = = W
| (35)

p = 13X

% Or¥*

Equations (34) and (35) now permit writing (the asterisks on r
are dropped)

oz _ X 1
v oV v,
1 (36)
bl u 3
Sz _ . K x) L
o0 - T 8(¥) (Br Ty
where
K=1 1

Yy = {210 - —- (V) ( SE)T <§§p zr

By eliminating z from equations (36), a single equation for
the determination of the function X 1s obtained. Particular
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solutions, analogous to the solutions in the first case, can be
constructed by seeking X 1n the form

g kel

X=-1r I‘i_ri.H(\V)

Translated by S. Relss
National Advisory Committee
for Aeronautics.
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