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equations of the two-dimensional.stationary problem of gas
are of the form

(1)

and v are the ccmmonents of the velocity along the
coordinate axes x and y, respectively, p is the pressure,
p the density, and K = Cp/Cv) the ratio of specific heats.
The equation of centinuity permits the introduction of the stream
function from the equations

atf
‘u==

1 (2)
atpv .-—
ax J

The last of equations (1) gives

-

*“Primer Tochnogo Reshenia Ploskoi Vikhrevoi Zadachi GazOVoi
D inamikl.” Prikladnaya Matematika i Mekhanica. Vol. XI, 1947,
pp. 193-198.
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where d is a certain
equations (1) give the
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funotion only of W. The first two of -
Bernoulli law

K-1
~2+v2

%PK
2 ‘K-1

= fo ($) (4)

.

where i. Is a function of $, and the equation for the vorticity
is

(
K-1

av au dio K TdQ
~-~=-p z“-K~p d$)

(5)

For the solution of the vortex problem in which at least one
of the derivatives dio/d$ and dd/d$ is different from zero, it
is convenient to pass from the variables x and y to the vari-
ables x* = x and $. Equations (2) and (5) then aasume the form
(See, for example, reference 1.)

.

#

(6)

The problem reduces to the determination of the five functions
u, v, P} P) and y of x* and $ from equations (3), (4),
and (6).

By using the laat of equations (6), the function X is intro-
duced with the aid of the equations

ax
p=&z

)

(7)

ax
v=-— aq

.
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The first two equations of equation (6), on the basis of equa-
tions (3) and (4), then assume the fOrms

[

by ax ’210 2K ~
z= -% ‘K-1

where the asterisk on x hsa been drOpma.

By differentiating equation (8) with respect to ~
tion (9) with respect to x, y canbe eliminated and a
equation for the function X obtained.

In order to obtain an exemple of the exact solution
system of equations, i. is set equal to a constant:

K-1

x=- H ($) ;Km

where H is a certain function of $ to be detemnined.
tions (8) and (9) then give

(8)

(9)

and equa-
single

of the

(lo)

Equa- .

(11)

(12)
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When equation (11) is differentiatedwith respect to $ and
equation (12) is differentiatedwith respect to x, terms with
the same degree of x are collected and after simple trans-
formations there is obtained

--

1 (13)

H! (Et2+KHH”)t= J- (M) w’ (H’2+KHH”~ ‘

Successive integration Qf the second of equations (13) gives

2 + KH H“ = CIH’1-K

K-—

::,2( )C1-H,l+K l+K )

(14)

.

From the lest equation, the relation between ~ and H can
be found with the aid of quadrature. It is more convenient, how-
ever. to introduce a numbering of the streamlines directly with

r

the aid of H! and not ~. -

Thus, equations (14) give H
equations (13), permit finding 8

1-K

88 a f~ction of H’ and, using
in terms of H’ in the form

Substituting in equation (11) and integrating yields, for the
streamlines,
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“Comparisonwith equation (12) %hows that F = constant and
without loss of generality can be taken es F s O.

5

For the determination of u, v, p, and p the foll~ing
relations are written:

(17)

P” C2 kl-H’’+9*x%(18)
2K+l

P =gc2
(’@’’+7mH’K-1x-&

(19) ‘
For simplification it is convenient to introduce the nondimen-

sional v~iahles ~ smd ~ and in place of H’ introduce q
with the aid of the following equations:

(20)

where

L

Equations (16) and (17)

x= G

Y = L;

HI1+K= Cl ~

n 1

1 K+l 1--——

= (2io) 2 ‘-1 c~-1 (21)

then assume the following simple form:

.

.
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J

-)
-2K-1 ‘

112 = 2io (l-m K-
)

K-1 2-—

v=
r <
2i ~m ‘+1 = 2io ~mW1Oq x

(22)

(23)

If R= 1.4, the integral in equations (22) is evaluated and
gives

(24)

and the streamlines oan therefore be easily constructed.

Figure 1 shows the streaml~nes for q = 1, 2, 3, . . . , 19.

This motion possesses
for the line of transition

that is,

or

U2

both supersonic and subsonic velocities,
(shown dotted in fig. 1) is obtained if

.

(25)

.

.

n

.



.

,

NACA TM 1260 7

It is possible, without difficulty, to construct the characte-
risticsin the x,y- and u,v-planes. Instead of the equatton of
the epicycloid in the u,v-plane, in the case considered a more
complicated equation arises.

In the vorticity problem, along the characteristic
occurs

Ctg a sin a cos a
ap~= dw=+ d 10$~

K-l

there

(26)

where a is the Mach angle, w the magnitude of the velocity, and
p the angle of inclination of the velocity to the x-axis. Equa-
tions (23) yield

2io-u2 2io-w2 COS2 p
#=-

= #sin2p
(27)

f2

But $ depends only on HI, that is, on ~2. Accordtng to
equation (15), the following is obtained:

1-KuK-1 T.gc2x c1 (V2sfn2 p)-R+(2fo-w2)3i
2io-w2 COS2 p-,

(28)

Substituting this value of 4 in the
tion (26) yields the differential equation
in the ~,w-plane.

right side of equa-
for the characteristics

Finally, the question arises whether it is possible to obtain
such vortex motion by transition through a surface of strong dis-
continuity of some other kind but with irrotational motion. This

.

*“
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problem may be answered in the effimat ive. For on a surface of
discontinuity there must, emong others, be satisfied the relations

P+ ~-l 2K p+
——

—=EiP- ‘K+l p+e+2

\
>

-=l+-S’$J
‘ P-

P+

(29)

where P+j P+} and e+ are the pressure, density, and velocity
of propagation of the surface of discontinuity on one side of this
surface and p- and p- exe the pressure-and density on the other
side. The magnitudes p+ and P+ may be taken from the vortex
motion. The magnitude .9+ is found in terms of the elements des-
cribing the motion and in terms of the inclination of the surface
of discontinuity. Finallyj p- and p- can be connected hy the

1A=41P-, whererelation p- 41 is a constant (up to a oertain
‘ degree of arbitrariness) magnitude. (At the left of the surface of
discontinuity the motion is irrotational.)

\ where

then

P+G+2
M =—

P+

Inasmuch as

(30)

(31)

(32)

.

.

.

- ‘9+=v+cos8+u+sin5

—
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4 where 5 Is the angle between the normal to the surface of &is-
continuity and the x-axis (the normal is directed toward the
“positive” region); Mmay be expressed in terms of known msgni-
tudes and 8.

By expressing tan 8 in terms of the derivative of ~
with respect to ~ along the surface of discontinuity and using
equations (22), (18), and (19), the differential equation for
determining the surface of discontinuity (K = 1.4) is obtained
after simple transformations:

d“
~=

where M

{ .}

‘~= -,@aJ@J=E “
l+q2 (w- )-1

M (q2-1)

(33)

h exuressed in terms of n2 from the transcendental
equation (31) i; which the constant “G is, to a great extent, arbi-
trary. The velocity in the “negative” region will be determined
first on the surface of discontinuity end then extended on the
negative region by the usual @?aphical method of Busemann. A model
of the motion about a contour having an angle is obtained.

The surface of discontinuity extends out from the angle and.
on paestng through the angle the motion reconverts to the rotational
motion herein considered.

A solution analogous to that developed can also be obtained
for the problem wtth axial symmetry. Taking for the independent
variable the distance & = r Fran the exis of s-try z and
the stream function $ yields the relations

where Vr and Vz are the

az 1
~= r++pvr J
velocity components. As before,

(34)

1

.
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Bernoulli’s law will have the form

The equations of Euler give

avz &*p
~=~

The function X(&,$) can therefore be introduced from the
Conditions

VZ=-j$

P= L&
r* &*

Equations (34) and (35) now permit
are dropped)

(35)

writing (the asterisks on r

where

K-l

(36)

1

[

Vr = 2io - ~ d(v) ($$K .(~,j’

BY elhninating z from equations (36), a single equation for
the determination of the function X is obtained. Particular

.

-.
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s olutions, analogous to the solutions in the first caae, can be
constructed by seeking X in the form

Translated by S. Reiss
National A&visory Committee
for Aeronautics.
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Figure 1.
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